KR100390389B1 - Process for Preparing Nanocrystalline Dielectric Ceramics - Google Patents

Process for Preparing Nanocrystalline Dielectric Ceramics Download PDF

Info

Publication number
KR100390389B1
KR100390389B1 KR10-2000-0056463A KR20000056463A KR100390389B1 KR 100390389 B1 KR100390389 B1 KR 100390389B1 KR 20000056463 A KR20000056463 A KR 20000056463A KR 100390389 B1 KR100390389 B1 KR 100390389B1
Authority
KR
South Korea
Prior art keywords
oxygen
batio
sintering
powder
dielectric ceramics
Prior art date
Application number
KR10-2000-0056463A
Other languages
Korean (ko)
Other versions
KR20020024690A (en
Inventor
김병국
김진상
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2000-0056463A priority Critical patent/KR100390389B1/en
Priority to JP2000338252A priority patent/JP3576959B2/en
Publication of KR20020024690A publication Critical patent/KR20020024690A/en
Application granted granted Critical
Publication of KR100390389B1 publication Critical patent/KR100390389B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 희토류 원소 및 CuO가 첨가된 초미립 BaTiO3계 유전체 세라믹스의 제조 방법에 관한 것이다. 본 발명의 초미립 유전체 세라믹스의 제조 방법은 통상의 고상 반응법에 따라 BaTiO3분말에 RE2O3(RE는 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er 및 Yb로 이루어지는 군 중에서 선택되는 1종 이상의 희토류 원소이다) 분말 및 CuO 분말을 첨가하여 혼합 분말을 제조한 후, 이를 산소 분위기 하에서 소결시키는 것을 특징으로 한다. 본 발명에 따르면, BaTiO3에 희토류 원소 및 CuO를 첨가하고 소결 공정을 산소 분위기로 제어함으로써 저온에서 고밀도이며 초미립인 BaTiO3계 유전체 세라믹스를 얻을 수 있다.The present invention relates to a method for producing ultrafine BaTiO 3 -based dielectric ceramics to which rare earth elements and CuO are added. According to the conventional solid-phase reaction method, the method of preparing the ultrafine dielectric ceramics of the present invention is performed on BaTiO 3 powders with RE 2 O 3 (RE is La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb At least one rare earth element selected from the group consisting of) powder and CuO powder is added to prepare a mixed powder, it is characterized by sintering in an oxygen atmosphere. According to the present invention, by adding a rare earth element and CuO to BaTiO 3 and controlling the sintering process to an oxygen atmosphere, a high density, ultrafine BaTiO 3 based dielectric ceramic can be obtained at low temperature.

Description

초미립 유전체 세라믹스의 제조 방법{Process for Preparing Nanocrystalline Dielectric Ceramics}Process for Preparing Nanocrystalline Dielectric Ceramics

본 발명은 초미립 유전체 세라믹스의 제조 방법에 관한 것으로, 보다 구체적으로는, BaTiO3에 CuO 및 희토류 금속 산화물을 첨가하고 소결 공정을 산소 분위기로 제어함으로써 저온에서 고밀도이며 초미립인 티탄산바륨유전체 세라믹스를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing ultrafine dielectric ceramics. More specifically, by adding CuO and rare earth metal oxides to BaTiO 3 and controlling the sintering process in an oxygen atmosphere, high density and ultrafine barium titanate dielectric ceramics are produced at low temperature. It relates to a manufacturing method.

적층형 세라믹 콘덴서 (Multi-Layer Ceramics Capacitor)는 작고 가벼운 전자 회로를 구성하는데 있어서 필수적인 수동 부품이다. 현재까지 적층형 세라믹 콘덴서의 제조에 있어서 BaTiO3를 중심으로 한 티탄산 (titanate)계가 주로 사용되어 왔다. 그러나, 이러한 재료들은 일반적으로 1300℃ 이상의 높은 소결 온도에서 제조되므로, Pd, Pt 등과 같은 값비싼 귀금속 내부 전극을 필요로 한다. 이러한 값비싼 전극을 사용하는데 따른 비용을 줄이기 위해서는 Ag, Ag-Pd 등의 값싼 전극을 사용할 수 있는 저온 소성용 유전체 세라믹 조성물이 필요하게 된다.Multi-Layer Ceramics Capacitors are an essential passive component for building small, lightweight electronic circuits. To date, titanate based on BaTiO 3 has been mainly used in the manufacture of multilayer ceramic capacitors. However, these materials are generally manufactured at high sintering temperatures of 1300 ° C. or higher, requiring expensive precious metal internal electrodes such as Pd, Pt and the like. In order to reduce the cost of using such an expensive electrode, there is a need for a low-temperature baking dielectric ceramic composition that can use a cheap electrode such as Ag, Ag-Pd.

한편, 최근 각종 전자 기기의 경박단소화 및 전자 회로의 고집적화에 의한 부품의 소형화 추세에 따라 적층형 세라믹 콘덴서 역시 초소형 소자로 개발할 필요성이 급격히 대두되고 있다. 초소형의 적층형 세라믹 콘덴서를 제조하기 위해서는 소결 후 초미립을 유지할 수 있는 유전체 세라믹 조성물의 개발이 선결되어야 한다. 즉, 저온 소성이 가능하면서도 소성 후 초미립인 유전체 세라믹 조성물이 필요하게 된다.On the other hand, in accordance with the trend of miniaturization of components due to the recent miniaturization of various electronic devices and high integration of electronic circuits, the necessity of developing multilayer ceramic capacitors as micro devices is also rapidly increasing. In order to manufacture a compact multilayer ceramic capacitor, development of a dielectric ceramic composition capable of maintaining ultrafine particles after sintering should be made in advance. That is, a low-temperature firing and ultrafine dielectric ceramic composition is required after firing.

현재까지 적층형 세라믹 콘덴서의 주원료로 사용되고 있는 BaTiO3계 유전체 세라믹스를 저온 소성이 가능하면서도 소성후 초미립이 유지되게 하기 위해서는 Pb계, Cd계, Bi계, B계, Li계 등의 소결조제를 첨가하여 소결 온도를 낮춤으로써 입자성장을 억제시키는 시도가 이루어져 왔다 (참조: 日本 特許 公開 平5-120915호, 同 平1-192762호). 그러나 이들 소결조제는 모두 유독성을 가지며, 환경 친화적이지 않으며, 유전체 소지와 반응할 뿐만 아니라 수계에서 용매로 사용되는 물과의 반응하는 등의 문제점을 안고 있다. 이와 같은 문제점을 해결하기 위해서는 환경 친화적이며 화학적으로 안정한 저온 소성용 초미립 BaTiO3계 유전체 세라믹 조성물이 필요하게 된다.Sintering aids such as Pb-based, Cd-based, Bi-based, B-based, Li-based, etc. are added to keep BaTiO 3 -based dielectric ceramics, which have been used as a main raw material of multilayer ceramic capacitors, at low temperature and maintain ultra-fine particles after firing. Attempts have been made to suppress particle growth by lowering the sintering temperature (cf. Japanese Patent No. Hei 5-120915, Hei 1-92762). However, these sintering aids are all toxic, not environmentally friendly, and have problems such as not only reacting with the dielectric material but also reacting with water used as a solvent in the water system. In order to solve such a problem, an environmentally friendly and chemically stable ultrafine BaTiO 3 based dielectric ceramic composition for low temperature firing is required.

La3+, Yb3+, Dy3+등 환경친화적이고 화학적으로 안정한 희토류 원소를 첨가하여 초미립의 BaTiO3유전체 세라믹스를 제조하는 방법이 제안되었다. [참조: A. F. Shimanskij, M. Drofenik 및 D. Kolar의 "Subsolidus Grain Growth in Donor Doped Barium Titanate", J. Mater. Sci. 29, 6301-6304 (1994); A. Yamaji, Y. Enomoto, K. Kinoshita 및 T. Murakami의 "Preparation, Characterization, and Propertiesof Dy-Doped Small-Grained BaTiO3Ceramics", J. Am. Ceram. Soc., 60, 97-101 (1977); N. M. Molokhia, M. A. A. Issa 및 S. A. Nasser의 "Dielectric and X-Ray Diffraction Studies of Barium Titanate Doped with Ytterbium", J. Am. Ceram. Soc., 67, 289-291 (1984)]. 이는 희토류 원소가 Ba2+자리에 치환 고용됨에 따라 입성장에 필요한 산소 이온 공공의 농도를 감소시키기 때문으로 이해되고 있다. 그러나 희토류 원소가 첨가된 BaTiO3계 유전체 세라믹스는 입성장이 억제됨에 따라 소결체의 치밀화도 극력 억제되어 만족할만한 소결 밀도를 얻을 수 없다는 단점으로 인하여 적층형 세라믹 콘덴서의 제조에 널리 사용되지 못하고 있다.A method for producing ultrafine BaTiO 3 dielectric ceramics by adding environmentally friendly and chemically stable rare earth elements such as La 3+ , Yb 3+ , and Dy 3+ has been proposed. See, AF Shimanskij, M. Drofenik and D. Kolar, "Subsolidus Grain Growth in Donor Doped Barium Titanate", J. Mater. Sci. 29, 6301-6304 (1994); A. Yamaji, Y. Enomoto, K. Kinoshita and T. Murakami, "Preparation, Characterization, and Properties of Dy-Doped Small-Grained BaTiO 3 Ceramics", J. Am. Ceram. Soc., 60, 97-101 (1977); "Dielectric and X-Ray Diffraction Studies of Barium Titanate Doped with Ytterbium" by NM Molokhia, MAA Issa and SA Nasser, J. Am. Ceram. Soc., 67, 289-291 (1984)]. This is understood as the rare earth element substitutes for the Ba 2+ site and reduces the concentration of oxygen ion vacancy required for grain growth. However, BaTiO 3 -based ceramics containing rare earth elements have not been widely used in the manufacture of multilayer ceramic capacitors due to the disadvantage that grain size is suppressed and densification of the sintered body is suppressed as much as possible.

이러한 문제점을 해결하기 위하여 BaTiO3에 소결 온도에서 액상을 형성하여 치밀화를 촉진시키는 Cu의 2가 산화물 CuO및 희토류 원소를 동시에 첨가한 저온 소성용 초미립 유전체 세라믹 조성물이 본 발명자들에 의하여 제안된 바 있다 (한국특허출원 제2000-1094호 ). 그러나 이 조성물 역시 평균 입경이 0.1㎛ 이하일 때에 5.2 ± 0.2 g/cm3의 소결밀도밖에 얻을 수 없어 적층형 세라믹 콘덴서로 사용되는 데에 충분한 기계적 강도 및 고유전율은 얻기 힘들다는 문제점이 있다.In order to solve this problem, the present inventors have proposed an ultrafine dielectric ceramic composition for low-temperature sintering at the same time adding a divalent oxide of CuO and rare earth elements to form a liquid phase at a sintering temperature in BaTiO 3 to promote densification. (Korean Patent Application No. 2000-1094). However, this composition also has a problem that when the average particle diameter is 0.1 μm or less, only a sintered density of 5.2 ± 0.2 g / cm 3 can be obtained, and thus sufficient mechanical strength and high dielectric constant for use as a multilayer ceramic capacitor are difficult to obtain.

따라서, 본 발명은 상기한 한국특허출원 제2000-1094호의 개량에 관한 것으로, 그 목적은, BaTiO3에 환경 친화적이고 화학적으로 안정한 희토류 원소 및 Cu의 2가 산화물 CuO를 동시에 첨가하여 소결공정을 개선함으로써, 저온에서 고밀도이면서도 초미립인 BaTiO3계 유전체 세라믹스를 제조하는 방법을 제공하는 데 있다.Accordingly, the present invention relates to the improvement of the above-described Korean Patent Application No. 2000-1094, and an object thereof is to improve the sintering process by simultaneously adding environmentally friendly and chemically stable rare earth element and Cu divalent oxide CuO to BaTiO 3 . The present invention provides a method of manufacturing BaTiO 3 -based dielectric ceramics having high density and ultrafine grain at low temperature.

이러한 목적을 달성하기 위하여, 본 발명에 따르면, 고순도의 BaTiO3분말과 CuO 분말 및 RE2O3분말을 정량으로 칭량한 다음 볼밀링하여 BaTiO3+ xCuO + yRE2O3(여기서, 0.00 < x ≤ 0.05이고, 0.00 < y ≤ 0.05이고, RE는 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er 및 Yb로 이루어지는 군 중에서 선택되는 1종 이상의 희토류 원소이다) 혼합 슬러리를 얻는 단계, 상기 슬러리를 하소하는 단계, 상기 BaTiO3+ xCuO + yRE2O3하소분말을 성형하는 단계, 및 얻어진 성형체를 산소 분위기하에서 소결하는 단계를 포함하는 초미립 유전체 세라믹스의 제조 방법이 제공된다.In order to achieve this object, according to the present invention, BaTiO 3 + xCuO + yRE 2 O 3 (wherein 0.00 <x, high-purity BaTiO 3 powder, CuO powder and RE 2 O 3 powder are weighed quantitatively). ≤ 0.05, 0.00 <y ≤ 0.05, RE is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb) There is provided a method of producing ultrafine dielectric ceramics comprising the steps of obtaining, calcining the slurry, molding the BaTiO 3 + xCuO + yRE 2 O 3 calcined powder, and sintering the obtained molded body in an oxygen atmosphere. .

이하, 본 발명에 따른 초미립 유전체 세라믹스 제조 방법을 상세히 설명한다.Hereinafter, a method of manufacturing ultrafine dielectric ceramics according to the present invention will be described in detail.

본 발명의 방법에 따라 초미립 유전체 세라믹스를 제조하기 위한 출발 원료로는 BaTiO3분말과 CuO 분말 및 RE2O3(RE는 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er 및 Yb로 이루어진 군 중에서 선택되는 1종 이상의 희토류 원소이다) 분말을 사용하며, 순도 약 99.9% 이상의 고순도의 것을 사용하는 것이 좋다.Starting materials for producing ultrafine dielectric ceramics according to the method of the present invention include BaTiO 3 powder and CuO powder and RE 2 O 3 (RE is La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, At least one rare earth element selected from the group consisting of Er and Yb), and a powder having a high purity of about 99.9% or more is preferably used.

먼저, 고상 반응법에 따라 BaTiO3분말과 CuO 분말 및 RE2O3분말을 각각 최종적으로 얻고자 하는 BaTiO3+ xCuO + yRE2O3유전체 세라믹의 조성대로 칭량한 후, 에틸알콜과 지르코니아볼을 사용하여 습식 혼합하여 슬러리를 제조한다. 여기서CuO및 RE2O3의 몰분율 x, y는 각각 0.05 이하의 값을 가진다. CuO의 몰분율이 0.05를 초과하게 되면 소결시 액상이 지나치게 많이 생성되어 비정상적인 입자성장이 일어나고, RE2O3의 몰분율이 0.05를 초과하게 되면 치밀화가 일어나지 않으므로 바람직하지 않다.First, BaTiO 3 powder, CuO powder, and RE 2 O 3 powder are finally weighed according to the composition of BaTiO 3 + xCuO + yRE 2 O 3 dielectric ceramic, which is to be finally obtained according to the solid phase reaction method, and then ethyl alcohol and zirconia ball are Wet mixing to prepare slurry. The mole fractions x and y of CuO and RE 2 O 3 have a value of 0.05 or less, respectively. When the mole fraction of CuO exceeds 0.05, excessive liquid phase is generated during sintering, and abnormal grain growth occurs. When the mole fraction of RE 2 O 3 exceeds 0.05, densification does not occur, which is not preferable.

혼합된 슬러리는 건조한 후 소결온도 이하의 약 900∼1100℃의 공기 분위기하에서 하소시킨다.The mixed slurry is dried and then calcined in an air atmosphere at about 900 to 1100 ° C. below the sintering temperature.

이와 같이 준비된 BaTiO3+ xCuO + yRE2O3하소 분말을 가압 성형에 이은 정수압 성형에 의해 성형한 후, 산소 분위기 하에서 상온으로부터 약 360℃/hr의 속도로 1100℃까지 승온하여 소결한다.The BaTiO 3 + xCuO + yRE 2 O 3 calcined powder thus prepared is molded by press molding followed by hydrostatic molding, and then sintered by raising the temperature to 1100 ° C. at a rate of about 360 ° C./hr from normal temperature in an oxygen atmosphere.

본 발명에서는 산소분위기에서 소결을 수행함으로써 고밀도 초미립의 BaTiO3계 유전체 세라믹스를 제조할 수 있다. 산소분위기하의 소결에 의해서 소결체의 입자성장에 필요한 산소이온 공공의 농도는 감소하는 반면 치밀화에 필요한 Ba 이온 공공의 농도가 증가하게 된다.In the present invention, the high-density ultrafine BaTiO 3 -based dielectric ceramics can be manufactured by performing sintering in an oxygen atmosphere. By sintering under an oxygen atmosphere, the concentration of oxygen ions vacancies necessary for grain growth of the sintered compact is reduced while the concentration of Ba ion vacancy necessary for densification is increased.

소결시 산소분위기를 만들어 주기 위한 산소의 유량은 소결반응로의 부피를 기준으로 분당 1.1배 이상, 바람직하기로는 분당 3.2배 이상으로 한다. 산소의 유량이 분당 1.1배 미만으로 되면 공기분위기의 소결과 큰 차이가 없어 산소이온 공공의 농도감소에 실질적인 기여를 기대하기 어렵다. 또한 본 발명자들의 연구결과에 의하면 산소의 유량이 분당 3.2배에서 소결체의 조직이 초미립화되며 그 이상의 유량에서는 큰 변화가 없었다.The flow rate of oxygen for sintering oxygen is 1.1 times or more per minute, preferably 3.2 times or more, based on the volume of the sintering reactor. If the flow rate of oxygen is less than 1.1 times per minute, there is no big difference from the sintering of the air atmosphere, and it is difficult to expect a substantial contribution to the concentration reduction of the oxygen ion vacancies. In addition, according to the results of the present inventors, the structure of the sintered compact was ultrafine at an oxygen flow rate of 3.2 times per minute, and there was no significant change in the flow rate above.

상기 본 발명의 방법에 따라 제조된 BaTiO3계 유전체 세라믹스는 평균입경이 약 100 ∼ 90 nm이고, 소결 밀도가 약 5.2 ∼ 5.8 g/cm3인 고밀도 초미립의 유전체 세라믹스이다.BaTiO 3 -based dielectric ceramics prepared according to the method of the present invention are high density ultrafine dielectric ceramics having an average particle diameter of about 100 to 90 nm and a sintered density of about 5.2 to 5.8 g / cm 3 .

이하, 실시예에 의해 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

<실시예 1∼36><Examples 1 to 36>

먼저, 순도 약 99.9%의 BaTiO3분말과 CuO 분말 및 La2O3분말을 하기 표 1에 기재된 조성대로 칭량한 후, 에틸알콜과 지르코니아 볼을 사용하여 약 36시간 동안 습식 혼합하였다. 혼합된 슬러리를 건조한 후 공기 분위기 하에 약 1000℃에서 약 2시간 동안 하소하였다.First, BaTiO 3 powder, CuO powder, and La 2 O 3 powder having a purity of about 99.9% were weighed according to the composition shown in Table 1, followed by wet mixing for about 36 hours using ethyl alcohol and zirconia balls. The mixed slurry was dried and then calcined at about 1000 ° C. for about 2 hours under an air atmosphere.

이와 같이 준비된 BaTiO3+ xCuO + yLa2O3(여기서, x = 0.03이고, 0.00 < y ≤ 0.05이다) 분말을 지름 10 ㎜의 주형에서 1 톤/㎠의 압력으로 일축 가압 성형한 후, 다시 3 톤/㎠의 압력으로 정수압 성형하였다. 얻어진 성형체를 지름 6㎝의 알루미나 튜브내에서 상온으로부터 약 360℃/hr로 1100℃까지 승온시킴으로써 소결시켰다. 이 때의 소결 분위기는 하기 표 1에 기재된 바와 같이 질소, 공기 또는 산소 각 1기압으로 하였으며, 각 가스의 순도는 약 99.9% 이상이고, 그 유량은 300 ∼ 1500 cm3/분 범위 내에서 조절하였다.BaTiO 3 + xCuO + yLa 2 O 3 (where x = 0.03 and 0.00 <y ≤ 0.05) prepared in this way was uniaxially press-molded at a pressure of 1 ton / cm 2 in a mold having a diameter of 10 mm, followed by 3 Hydrostatic molding was carried out at a pressure of ton / cm 2. The obtained molded object was sintered by raising the temperature to 1100 ° C. at about 360 ° C./hr from normal temperature in an alumina tube having a diameter of 6 cm. The sintering atmosphere at this time was as nitrogen, air or oxygen at 1 atm as shown in Table 1 below, the purity of each gas was about 99.9% or more, and the flow rate was adjusted within the range of 300 to 1500 cm 3 / min. .

여기에서, 산소 유량, 300 cm3/분은 지름 6 cm의 튜브로 이루어진 소결반응로의 유효길이(hot zone)가 10 cm임을 감안할 때 소결반응로의 부피를 기준으로 분당1.1배에 해당한다(π×32×10=283 cm3).Here, the oxygen flow rate, 300 cm 3 / min corresponds to 1.1 times per minute based on the volume of the sintering reactor, considering that the hot zone of the sintering reactor consisting of a tube of 6 cm diameter is 10 cm ( π × 3 2 × 10 = 283 cm 3 ).

소결한 후 최종적인 시편의 두께가 1 ㎜가 되도록 SiC 연마지 (#1000)를 이용하여 연마하였다. 연마 후, 은 페이스트를 시편의 양쪽 면에 바르고 약 600℃에서 약 10분간 열처리하여 전극을 형성하였다. 얻어진 시편의 유전 특성은 LCR meter (Hewlett Packard사 제품, 모델명 4263B)를 사용하여 1.0 Vrms, 1 ㎑에서 측정하였다.After sintering, polishing was performed using SiC abrasive paper (# 1000) so that the final specimen thickness was 1 mm. After polishing, silver paste was applied to both sides of the specimen and heat treated at about 600 ° C. for about 10 minutes to form electrodes. Dielectric properties of the obtained specimens were measured at 1.0 V rms , 1 Hz using an LCR meter (model name 4263B manufactured by Hewlett Packard).

이 후, 시편 양쪽 면의 전극을 모두 제거한 후 소결 밀도를 측정하고, SiC 연마지 (#2000)와 다이아몬드 페이스트 (9, 3, 1 ㎛)으로 한쪽 면을 연마하여 주사전자현미경 (Hitachi사 제품, S-4200)으로 소결체의 평균 입경을 측정하였다.Subsequently, after removing all electrodes on both sides of the specimen, the sintered density was measured, and one side was polished with SiC abrasive paper (# 2000) and diamond paste (9, 3, 1 μm), followed by scanning electron microscope (manufactured by Hitachi, S-4200), the average particle diameter of the sintered compact was measured.

그 결과를 하기 표 1에 나타내었다.The results are shown in Table 1 below.

BaTiO3+ xCuO + yLa2O3유전체 세라믹스의 유전 특성 및 소결 특성.Dielectric and Sintering Properties of BaTiO 3 + xCuO + yLa 2 O 3 Dielectric Ceramics. No.No. yy 소결분위기Sintering atmosphere 가스 유량(cm3/min)Gas flow rate (cm 3 / min) 소결 온도 (℃)Sintering Temperature (℃) 유전 상수Dielectric constant 평균 입경(㎚)Average particle diameter (nm) 소결 밀도(cm3/min)Sintered Density (cm 3 / min) 1One 00 공기air 300300 11001100 24802480 150150 6.16.1 22 0.010.01 질소nitrogen 300300 11001100 22502250 140140 5.65.6 33 0.010.01 공기air 300300 11001100 18801880 120120 6.06.0 44 0.010.01 산소Oxygen 300300 12001200 17201720 120120 6.06.0 55 0.010.01 산소Oxygen 600600 12001200 16601660 110110 6.06.0 66 0.010.01 산소Oxygen 900900 12001200 16201620 100100 6.06.0 77 0.010.01 산소Oxygen 12001200 12001200 15901590 100100 6.06.0 88 0.010.01 산소Oxygen 15001500 12001200 15901590 100100 6.06.0 99 0.020.02 질소nitrogen 300300 11001100 22502250 180180 5.35.3 1010 0.020.02 공기air 300300 11001100 17201720 100100 5.65.6 1111 0.020.02 산소Oxygen 300300 12001200 16501650 100100 5.25.2 1212 0.020.02 산소Oxygen 600600 12001200 16301630 9090 5.25.2 1313 0.020.02 산소Oxygen 900900 12001200 16001600 9090 5.35.3 1414 0.020.02 산소Oxygen 12001200 12001200 15801580 9090 5.45.4 1515 0.020.02 산소Oxygen 15001500 12001200 15301530 9090 5.35.3 1616 0.030.03 질소nitrogen 300300 11001100 21602160 140140 4.94.9 1717 0.030.03 공기air 300300 11001100 16901690 100100 5.15.1 1818 0.030.03 산소Oxygen 300300 12001200 16801680 9090 5.15.1 1919 0.030.03 산소Oxygen 600600 12001200 16201620 9090 5.15.1 2020 0.030.03 산소Oxygen 900900 12001200 15901590 8080 5.25.2 2121 0.030.03 산소Oxygen 12001200 12001200 16001600 8080 5.25.2 2222 0.030.03 산소Oxygen 15001500 12001200 15801580 8080 5.35.3 2323 0.040.04 질소nitrogen 300300 11001100 20502050 140140 4.74.7 2424 0.040.04 공기air 300300 11001100 16701670 9090 5.05.0 2525 0.040.04 산소Oxygen 300300 12001200 16001600 9090 5.35.3 2626 0.040.04 산소Oxygen 600600 12001200 15201520 9090 5.35.3 2727 0.040.04 산소Oxygen 900900 12001200 15001500 9090 5.35.3 2828 0.040.04 산소Oxygen 12001200 12001200 14901490 8080 5.35.3 2929 0.040.04 산소Oxygen 15001500 12001200 14901490 8080 5.25.2 3030 0.050.05 질소nitrogen 300300 11001100 20102010 130130 4.94.9 3131 0.050.05 공기air 300300 11001100 16901690 9090 5.05.0 3232 0.050.05 산소Oxygen 300300 12001200 15101510 9090 5.25.2 3333 0.050.05 산소Oxygen 600600 12001200 14201420 9090 5.35.3 3434 0.050.05 산소Oxygen 900900 12001200 13701370 8080 5.35.3 3535 0.050.05 산소Oxygen 12001200 12001200 13301330 8080 5.35.3 3636 0.050.05 산소Oxygen 15001500 12001200 13401340 8080 5.35.3 x = 0.03x = 0.03

상기 표 1의 결과에서 CuO 및 La2O3첨가량이 같을 경우에 질소, 공기, 산소 분위기의 순으로 유전 상수는 다소 작으나 소결밀도가 높고 평균 입경이 작은 유전체 세라믹스를 얻을 수 있었다. 또, 산소 분위기에서 소결할 경우에 900 cm3/분 이상의 유량에서 가장 고밀도이며 초미립인 BaTiO3계 유전체 세라믹스를 얻을 수 있었다.In the results of Table 1, when the amounts of CuO and La 2 O 3 were the same, dielectric ceramics having a relatively small dielectric constant but a high sintered density and a small average particle diameter were obtained in order of nitrogen, air, and oxygen atmosphere. In addition, when sintered in an oxygen atmosphere, the most dense and ultrafine BaTiO 3 dielectric ceramics were obtained at a flow rate of 900 cm 3 / min or more.

이와 같은 BaTiO3의 고밀도 초미립화는 산소 분위기 하에서의 소결로 인하여 입자 성장에 필요한 산소 이온 공공의 농도가 감소하고 치밀화에 필요한 Ba 이온 공공의 농도가 증가하며 900 cm3/분 이상의 유량에서 표면 교환 반응에 필요한 산소 이온이 충분히 공급되는데 기인하는 것으로 보인다. 즉, 산소 분위기 소결에 의하여 입자 성장에 필요한 산소 이온 공공의 농도가 감소하고 치밀화에 필요한 Ba 이온 공공의 농도가 증가됨으로써 질소 및 공기 분위기 소결에 비하여 고밀도이며 초미립인 저온 소성용 BaTiO3계 유전체 세라믹스를 얻을 수 있는 것으로 판단된다.Such high-density ultrafine atomization of BaTiO 3 decreases the concentration of oxygen ion vacancies required for particle growth due to sintering under oxygen atmosphere, increases the concentration of Ba ion vacancies required for densification, and results in surface exchange reaction at a flow rate of 900 cm 3 / min or more. It appears to be due to the sufficient supply of necessary oxygen ions. That is, by the oxygen atmosphere sintering reduces the concentration of oxygen ions public necessary for the grain growth and increasing the concentration of the Ba ion public necessary for densification by being a high density as compared with a nitrogen and air atmosphere sintering ultrafine a low-temperature co-fired BaTiO 3 based dielectric ceramics for It is judged that can be obtained.

<실시예 37∼66><Examples 37-66>

혼합 분말의 조성을 하기 표2와 같이 하고, 산소 분위기 하에서 가스 유량 1200 cm3/분의 조건으로 소결하는 것을 제외하고는 상기 실시예 1∼36의 방법을 반복하고, 그 결과를 표 2에 함께 나타내었다.The compositions of the mixed powder were prepared as shown in Table 2 below, except that the powders were sintered under a gas flow rate of 1200 cm 3 / min under an oxygen atmosphere, and the methods of Examples 1 to 36 were repeated, and the results are shown in Table 2 together. It was.

표 2에서 보는 바와 같이, 희토류 산화물을 다양하게 변화시키고 가스유량을 900㎤/분 이상인 1200㎤/분으로 한 경우에도 표 1에서 얻은 결과와 큰 차이를 나타내지는 않음을 알 수 있다.As shown in Table 2, it can be seen that even when the rare earth oxide is variously changed and the gas flow rate is set to 1200 cm 3 / min, which is 900 cm 3 / min or more, the results obtained in Table 1 do not show a significant difference.

BaTiO3+ xCuO + yRE2O3유전체 세라믹스의 유전 특성 및 소결 특성.Dielectric and Sintering Characteristics of BaTiO 3 + xCuO + yRE 2 O 3 Dielectric Ceramics. No.No. xx yy RERE 유전 상수Dielectric constant 평균 입경(㎚)Average particle diameter (nm) 소결 밀도(cm3/min)Sintered Density (cm 3 / min) 3737 0.010.01 0.020.02 LaLa 16501650 100100 5.55.5 3838 0.010.01 0.030.03 LaLa 16901690 100100 5.45.4 3939 0.010.01 0.040.04 LaLa 15701570 9090 5.35.3 4040 0.020.02 0.020.02 LaLa 16001600 100100 5.35.3 4141 0.020.02 0.030.03 LaLa 14101410 9090 5.25.2 4242 0.020.02 0.040.04 LaLa 15501550 9090 5.25.2 4646 0.030.03 0.020.02 PrPr 16101610 9090 5.35.3 4747 0.030.03 0.020.02 NdNd 15401540 9090 5.45.4 4848 0.030.03 0.020.02 EuEu 15001500 9090 5.25.2 4949 0.030.03 0.020.02 DyDy 15801580 9090 5.35.3 5050 0.030.03 0.020.02 YbYb 16301630 9090 5.25.2 5151 0.030.03 0.030.03 PrPr 14001400 8080 5.25.2 5252 0.030.03 0.030.03 NdNd 15901590 9090 5.35.3 5353 0.030.03 0.030.03 EuEu 16201620 9090 5.35.3 5454 0.030.03 0.030.03 DyDy 16801680 9090 5.25.2 5555 0.030.03 0.030.03 YbYb 15201520 8080 5.35.3 5656 0.030.03 0.040.04 PrPr 15301530 9090 5.35.3 5757 0.030.03 0.040.04 NdNd 14201420 8080 5.25.2 5858 0.030.03 0.040.04 EuEu 15901590 8080 5.25.2 5959 0.030.03 0.040.04 DyDy 16401640 9090 5.35.3 6060 0.030.03 0.040.04 YbYb 14801480 8080 5.25.2 6161 0.040.04 0.020.02 LaLa 17201720 100100 5.35.3 6262 0.040.04 0.030.03 LaLa 16401640 100100 5.25.2 6363 0.040.04 0.040.04 LaLa 16001600 9090 5.25.2 6464 0.050.05 0.020.02 LaLa 18301830 100100 5.25.2 6565 0.050.05 0.030.03 LaLa 17701770 100100 5.35.3 6666 0.050.05 0.040.04 LaLa 15201520 100100 5.35.3 소결 온도 = 1200℃, 산소 분위기, 산소 유량 = 1200 cm3/분Sintering temperature = 1200 ° C, oxygen atmosphere, oxygen flow rate = 1200 cm 3 / min

본 발명에 따르면, BaTiO3에 CuO 및 희토류 금속 산화물을 첨가하고 소결 공정을 산소 분위기로 제어함으로써 저온에서 고밀도이며 초미립인 유전체 세라믹스를 얻을 수 있다.According to the present invention, by adding CuO and rare earth metal oxides to BaTiO 3 and controlling the sintering process in an oxygen atmosphere, high density, ultrafine dielectric ceramics can be obtained at low temperatures.

Claims (4)

고순도의 BaTiO3분말과 CuO 분말 및 RE2O3분말을 정량으로 칭량한 다음 볼밀링하여 BaTiO3+ xCuO + yRE2O3로 구성되는 혼합 슬러리를 얻는 단계,Quantitatively weighing high purity BaTiO 3 powder, CuO powder and RE 2 O 3 powder and then ball milling to obtain a mixed slurry consisting of BaTiO 3 + xCuO + yRE 2 O 3 , 상기 슬러리를 하소하는 단계,Calcining the slurry, 상기 BaTiO3+ xCuO + yRE2O3하소분말을 성형하는 단계, 및Molding the calcined powder of BaTiO 3 + xCuO + yRE 2 O 3 , and 얻어진 성형체를 산소 분위기 하에서 소결하는 단계를 포함하며, 상기 BaTiO3+ xCuO + yRE2O3에서 0.00 < x ≤ 0.05이고, 0.00 < y ≤ 0.05이고, RE는 La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er 및 Yb로 이루어지는 군 중에서 선택되는 1종 이상의 희토류 원소인 것을 특징으로 하는 초미립 유전체 세라믹스의 제조방법.Sintering the obtained compact under an oxygen atmosphere, wherein at BaTiO 3 + xCuO + yRE 2 O 3 , 0.00 <x ≦ 0.05, 0.00 <y ≦ 0.05, and RE is La, Pr, Nd, Sm, Eu, A method for producing ultrafine dielectric ceramics, characterized in that it is at least one rare earth element selected from the group consisting of Gd, Tb, Dy, Ho, Er and Yb. 제 1 항에 있어서, 상기 산소분위기를 만들어 주기 위한 산소의 유량은 소결반응로의 부피를 기준으로 분당 1.1배 이상으로 산소를 공급하는 것을 특징으로하는 초미립 유전체 세라믹스의 제조방법.The method of claim 1, wherein the flow rate of oxygen for producing the oxygen atmosphere is to supply oxygen at least 1.1 times per minute based on the volume of the sintering reactor. 제 2 항에 있어서, 상기 산소분위기를 만들어 주기 위한 산소의 유량은 소결반응로의 부피를 기준으로 분당 3.2배 이상으로 산소를 공급하는 것을 특징으로하는 초미립 유전체 세라믹스의 제조방법.The method of claim 2, wherein the flow rate of oxygen for making the oxygen atmosphere is at least 3.2 times per minute based on the volume of the sintering reactor. 제 1 항에 있어서, 상기 하소단계는 900∼1100℃에서 0.5∼2시간 수행하는 것을 특징으로하는 초미립 유전체 세라믹스의 제조방법.The method of claim 1, wherein the calcination step is performed at 900 to 1100 ° C. for 0.5 to 2 hours.
KR10-2000-0056463A 2000-09-15 2000-09-26 Process for Preparing Nanocrystalline Dielectric Ceramics KR100390389B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2000-0056463A KR100390389B1 (en) 2000-09-26 2000-09-26 Process for Preparing Nanocrystalline Dielectric Ceramics
JP2000338252A JP3576959B2 (en) 2000-09-15 2000-11-06 Method for producing ultrafine barium titanate dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0056463A KR100390389B1 (en) 2000-09-26 2000-09-26 Process for Preparing Nanocrystalline Dielectric Ceramics

Publications (2)

Publication Number Publication Date
KR20020024690A KR20020024690A (en) 2002-04-01
KR100390389B1 true KR100390389B1 (en) 2003-07-07

Family

ID=19690490

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0056463A KR100390389B1 (en) 2000-09-15 2000-09-26 Process for Preparing Nanocrystalline Dielectric Ceramics

Country Status (1)

Country Link
KR (1) KR100390389B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106278247B (en) * 2015-12-31 2018-11-16 浙江九康电气有限公司 A kind of preparation method of the barium titanate ceramics suitable for supercapacitor

Also Published As

Publication number Publication date
KR20020024690A (en) 2002-04-01

Similar Documents

Publication Publication Date Title
TWI402872B (en) Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
WO1997010189A1 (en) Bismuth-based dielectric ceramic compositions
CN114230335B (en) BaTiO with giant dielectric constant, low loss and high resistivity 3 Fine crystal ceramic and its prepn
KR101732422B1 (en) Precursor powder for sintering used for preparing dielectric material and process for preparing the same
KR101905143B1 (en) Nonferroelectric dielectric materials and method thereof
KR100466072B1 (en) Dielectric Composition For Multilayer Ceramic Condenser And Multilayer Ceramic Condenser Using The Same
JP7522654B2 (en) Dielectric inorganic composition
JP3995319B2 (en) Dielectric material and manufacturing method thereof
KR100390389B1 (en) Process for Preparing Nanocrystalline Dielectric Ceramics
EP0731066A1 (en) Temperature stable dielectric
JP3421810B2 (en) Method for producing ultrafine barium titanate dielectric ceramic material
CN102010200A (en) Nickel and copper inner electrode anti-reduction ceramic medium material and preparation method thereof
KR100390468B1 (en) Process for Preparing Nanocrystalline Dielectric Ceramics
JP2006156450A (en) Laminated ceramic capacitor and its manufacturing method
KR100390467B1 (en) Process for Preparing Nanocrystalline Dielectric Ceramics
JP3576959B2 (en) Method for producing ultrafine barium titanate dielectric ceramics
KR100356644B1 (en) Process for Preparing BaTiO3-based Dielectric Ceramics with High Density and Ultra-Fine Grains
KR100333498B1 (en) Low temperature firable dielectric ceramic compositions having ultrafine grains
KR100395512B1 (en) Method for Fabrication of Easily Sinterable Ultrafine BaTiO3 Powders
KR100356642B1 (en) Low Temperature Firable Dielectric Ceramic Compositions Having Ultrafine Grains
Lee et al. Effects of ceramic processing parameters on the microstructure and dielectric properties of (Ba 1-x Ca x)(Ti 0.99-y′ Zr y Mn 0.01) O 3 sintered in a reducing atmosphere
KR100313324B1 (en) Low temperature firable dielectric ceramic compositions having ultrafine grains
JP3587753B2 (en) Porcelain composition
CN111499374B (en) Ceramic dielectric material for capacitor and preparation method thereof
CN117303898B (en) High-entropy dielectric ceramic and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080530

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee