KR100382109B1 - High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process - Google Patents

High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process Download PDF

Info

Publication number
KR100382109B1
KR100382109B1 KR10-2000-0065347A KR20000065347A KR100382109B1 KR 100382109 B1 KR100382109 B1 KR 100382109B1 KR 20000065347 A KR20000065347 A KR 20000065347A KR 100382109 B1 KR100382109 B1 KR 100382109B1
Authority
KR
South Korea
Prior art keywords
heat treatment
hours
cast steel
cooling
quenching
Prior art date
Application number
KR10-2000-0065347A
Other languages
Korean (ko)
Other versions
KR20020035185A (en
Inventor
김웅기
백경열
김대영
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR10-2000-0065347A priority Critical patent/KR100382109B1/en
Publication of KR20020035185A publication Critical patent/KR20020035185A/en
Application granted granted Critical
Publication of KR100382109B1 publication Critical patent/KR100382109B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 용접 구조용 고강도 고인성 합금 주강품 및 그 제조 방법에 관한 것으로, 그 목적은 종래 기술에서 부족한 화학성분 및 열처리방법을 개선하여 해양 장비 및 특수분야의 기계부품에 사용되는 용접성이 우수하고 고강도 고인성 합금 주강품 및 그 제조방법을 제공하는데 있다.The present invention relates to a high-strength high toughness alloy cast steel for welded structures and a method of manufacturing the same, the object of which is to improve the chemical composition and heat treatment method lacked in the prior art, excellent weldability and high strength and high strength used in machinery parts of marine equipment and special fields The present invention provides a tough alloy cast steel and a method of manufacturing the same.

본 발명은 용접 구조용 고강도 고인성 합금 주강품에 있어서, 전체 합금강 100wt%를 기준으로 0.14∼0.15wt% C와, 0.44∼0.53wt% Si와, 1.26∼ 1.33wt% Mn과, 0.003∼0.021wt%P와, 0.008∼0.017wt% S와, 0.09∼0.14wt% Cr과, 0.08∼0,10wt% Cu와, 1.14∼1.19wt% Ni과, 0.001∼0.09wt% Mo과, 0.008∼0.017wt% Nb와, 0.009∼0.010wt% N과, 0.035∼0.042wt% Al과, 0.001wt% Ti과, 0.001∼0.002wt% V과, 0.010∼0.029wt% Nb+V와, 0.011∼0.031wt% Nb+V+Ti과 나머지는 철로 조성되고, 탄소당량(CE)이 0.44∼0.49% 인 주강품 및 그 제조방법을 요지로 한다.The present invention is a high strength high toughness alloy cast steel for welded structures, 0.14 to 0.15wt% C, 0.44 to 0.53wt% Si, 1.26 to 1.33wt% Mn, 0.003 to 0.021wt% P based on 100wt% total alloy steel With 0.008 to 0.017 wt% S, 0.09 to 0.14 wt% Cr, 0.08 to 0,10 wt% Cu, 1.14 to 1.19 wt% Ni, 0.001 to 0.09 wt% Mo, 0.008 to 0.017 wt% Nb , 0.009 to 0.010 wt% N, 0.035 to 0.042 wt% Al, 0.001 wt% Ti, 0.001 to 0.002 wt% V, 0.010 to 0.029 wt% Nb + V, 0.011 to 0.031 wt% Nb + V + Ti and the remainder are made of iron, and cast steel products having a carbon equivalent (CE) of 0.44-0.49% and the manufacturing method thereof are the main points.

Description

용접 구조용 고강도 고인성 합금 주강품 및 그 제조 방법{High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process}High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process

본 발명은 주로 해양 장비 및 특수분야의 기계 부품에 사용되는 합금 주강품(Steel Casting)으로서 용접성이 우수하고 저온(-20℃이하)에서도 충격치가 높은 용접 구조용 고강도 고인성 합금 주강품 및 그 제조 방법에 관한 것이다.The present invention relates to an alloy cast steel mainly used for marine equipment and machinery parts in a special field, and has high weldability and high impact strength even at low temperatures (below -20 ° C). will be.

일반적으로 기계구조용으로 사용되는 주강품은 우수한 용접성이나 저온(-20℃ 이하)에서의 높은 충격치 값을 요구하고 있지 않다.In general, cast steels used for mechanical structures do not require good weldability or high impact values at low temperatures (below -20 ° C).

그러나, 해양 장비에 사용되는 기계구조용 주강품은 일반기계 구조용에서 요구되는 기계적 성질, 화학적 성분과 함께 추가로, 용접성이 우수하고 저온(-20℃ 이하)에서도 견딜 수 있는 높은 충격치 값을 요구한다.However, mechanical structural cast steels used in marine equipment, in addition to the mechanical properties and chemical components required for general mechanical structures, require high impact values that are excellent in weldability and withstand low temperatures (below -20 ° C).

대부분의 해양장비는 용접이 요구되는 주강품에 대해서는 용접성을 좋게 하기 위해서 화학성분 중, 탄소(C) 함유량을 0.18% 이하로 규제하고, 기계적 성질과 용접성을 해치는 인(P)과 황(S)의 함유량도 아주 낮게 규제하며 탄소당량(CE)도 0.50% 이하로 규제하고 있다.Most offshore equipment regulates carbon (C) content to 0.18% or less of chemical components to improve weldability of cast steel products that require welding. The content is also very low and the carbon equivalent (CE) is regulated below 0.50%.

또한 기계적 성질에 있어서는 -20℃ 이하의 저온에서도 견딜 수 있어야 하므로 저온에서의 충격치 값이 높은 재질을 요구하고 있다.In addition, the mechanical properties require a material with a high impact value at low temperatures because it must be able to withstand low temperatures below -20 ℃.

이러한 것은 해양 장비가 작업 여건이 아주 나쁜 북해등 극지방에서도 문제없이 작업이 가능하게 하기 위하여 특별히 요구되는 사항들이다.This is especially necessary for the marine equipment to be able to work without problems even in the polar regions such as the North Sea where the working conditions are very poor.

해양 장비용 기계 부품에 사용되는 주강품의 요구 사양은 기계적 성질에서 인장 강도 : 최소 540N/㎟, 항복점: 최소 400 N/㎟, 연신율: 최소 20%, 단면 수축율 : 최소 40%, 충격치 : -20℃에서 3개의 시험편 측정하여 평균 41J 이상 및 개별적 시험편 측정치 최소 21J 이상으로 규제하고, 화학적 성분이 C : 0.18% 이하, P : 0.03% 이하, S : 0.020% 이하, 탄소당량(CE) : 0.50% 이하로 규제하고 있다.The required specifications for cast steel used in machinery parts for marine equipment are mechanical properties in terms of tensile strength: at least 540 N / mm2, yield point: at least 400 N / mm2, elongation: at least 20%, section shrinkage: at least 40%, impact value: -20 ° C. 3 specimens are measured at an average of 41J or more and individual specimens are measured at least 21J.The chemical composition is C: 0.18% or less, P: 0.03% or less, S: 0.020% or less, and carbon equivalent (CE): 0.50% or less. We regulate with.

따라서, 이와 유사한 재질을 일반 기계 구조용 강에서 조사한 결과, ASTM Al48 90-60, JIS SCW550, JIS SCMnCr3B 재질을 선택하여 표 1과 같이 기계적 성질 및 화학적 성분을 비교 검토하였으나, 해양 장비용 기계부품에서 요구하는 사양에 적합한 재질은 없었다.Therefore, as a result of investigating similar materials in general mechanical structural steel, we selected ASTM Al48 90-60, JIS SCW550, JIS SCMnCr3B and compared the mechanical properties and chemical components as shown in Table 1. There was no material suitable for the specification.

표 1. 유사재질의 기계적 성질 및 화학성분 분석표Table 1. Table of Mechanical Properties and Chemical Compositions of Similar Materials

ASTM A148 90-60: 기계적 성질에서 인장강도, 항복점, 연신율, 단면 수축율은 모두 만족했으나, -20℃에서의 충격치 값이 불확실함. ASTM A148 90-60 : Although the tensile strength, yield point, elongation, and cross-sectional shrinkage were satisfactory in mechanical properties, the impact value at -20 ° C was uncertain.

화학적 성분에서는 C. P. S값 및 탄소당량(CE) 값이 요구하는 사영에 훨씬 미달하고 있으며, 용접성에 문제가 있음.In chemical composition, C. P. S value and carbon equivalent (CE) value are far below the required projection, and there is a problem in weldability.

JIS SCW550: 기계적 성질에서 인장강도값만 요구사양에 만족하고 있으며, 항복점, 연신율, 단면수축율, 충격치는 모두 요구사양에 미달함. 화학적 성분에서는 C, P, S 값이 요구사양에 비해서 약간 초과하며 용접성은 우수한 것으로 판단함. JIS SCW550 : In mechanical properties, only the tensile strength value satisfies the requirements, and the yield point, elongation, section shrinkage, and impact values all fall short of the requirements. In chemical composition, C, P, S values are slightly exceeded to the requirements, and weldability is judged to be excellent.

JIS SCMnCr3B: 기계적 성질에서 인장강도, 항복점은 우수하나 연신율, 단면수축율은 요구사양에 미달이며, -20℃에서의 충격치값이 불확실함. 화학적 성분에서는 C, P, S 및 탄소당량(CE)값이 요구하는 사양에 훨씬 미달하고 있으며, 용접성에 문제가 있음. JIS SCMnCr3B : Excellent tensile strength and yield point in mechanical properties, but elongation and cross-sectional shrinkage are less than required specifications, and the shock value at -20 ℃ is uncertain. In chemical components, C, P, S and CE equivalents are far below the specifications required, and there is a problem in weldability.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 종래 재질에서 부족한 화학성분 및 열처리방법을 개선하여 해양 장비 및 특수분야의 기계부품에 사용되는 용접성이 우수하고 고강도 고인성 합금 주강품 및 그 제조방법을 제공하는데 있다.An object of the present invention for solving the above problems is to improve the chemical composition and heat treatment method lacking in the conventional material to provide excellent weldability and high strength high toughness alloy cast steel and its manufacturing method used in machinery parts of marine equipment and special fields To provide.

상기와 같은 목적은 용해 및 화학성분 조정시 용접성에 영향을 미치는 C, P, S 함량을 제어하고 강도 및 인성의 동시 확보를 위한 경화능 개선제(Ni)와 입자 메세화제(Al, Ti, Nb, V)를 첨가하여 제품을 주조하고, 주조된 제품을 소정의 담금질 및 뜨임 열처리 방법으로 열처리하는 고강도, 고인성을 갖는 합금주강품 및 그 제조방법을 제공함으로서 달성된다.The purpose of the above is to control the content of C, P, S affecting the weldability during dissolution and chemical composition adjustment, and to improve the strength and toughness of the hardenability improving agent (Ni) and the particle messenger (Al, Ti, Nb, It is achieved by providing an alloy cast steel product having a high strength, high toughness and a method of manufacturing the same by casting the product by adding V) and heat-treating the cast product by a predetermined quenching and tempering heat treatment method.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 상세히 설명하면 다음과 같다.본 발명은 목형제작단계 → 조형단계 → 고철(Scrap) 준비와 용해 및 화학성분조정단계 → 용탕주입단계 → 냉각 단계 → 탈사 단계 → 불림(Normalizing) 열처리 단계 → 라이저 절단 단계 → 스트레스 릴리이빙 단계 →1차 황삭기계가공 단계 →비파괴검사(1차) 단계 →보수작업 단계 →비파괴검사(2차) 단계 →담금질(Quenching) 열처리 단계 → 뜨임(Tempering) 열처리 단계 →2차 황삭기계가공 단계 → 그라인딩 및 마무리 작업 단계의 공정을 거쳐 제조되는 용접 구조용 고강도 고인성 합금 주강품 조성물의 제조방법에 있어서,상기 공정에 따라 주강품을 제조하되,상기 고철 준비와 용해 및 화학성분 조정단계에서 합금조성물을 전체 합금강 100wt%를 기준으로 0.14∼0.15wt% C와, 0.44∼0.53wt% Si와, 1.26∼ 1.33wt% Mn과, 0.003∼0.021wt%P와, 0.008∼0.017wt% S와, 0.09∼0.14wt% Cr과, 0.08∼0,10wt% Cu와, 1.14∼1.19wt% Ni과, 0.001∼0.09wt% Mo과, 0.008∼0.017wt% Nb와, 0.009∼0.010wt% N과, 0.035∼0.042wt% Al과, 0.001wt% Ti과, 0.001∼0.002wt% V과, 0.010∼0.029wt% Nb+V와, 0.011∼0.031wt% Nb+V+Ti과 나머지는 철로 조성하되, 탄소당량(CE)이 0.44∼0.49%가 되도록 각 합금원소들을 조성하여 준비하고,상기 불림(Normalizing)열처리 단계는 가열속도(℃/hr)를 50이하로 하여 940~ 970℃까지 가열 14시간동안 유지한 후 공냉시키는 열처리 단계를 거치도록 하고,상기 담금질(Water Quenching)열처리 단계는 가열속도(℃/hr)를 50이하로 하여 920±15℃까지 가열하고 14시간동안 유지한 후 수냉시키는 열처리 단계를 거치도록 하고,상기 뜨임(Tempering)열처리 단계는 가열속도(℃/Hr)를 50이하로 하여 620 ~ 680℃까지 가열하고 20시간동안 유지한 후 로냉시키는 열처리 단계를 거치도록 하여 주강품을 제조하는 방법을 특징으로 한다.When explaining the configuration and the operation of the embodiment of the present invention to achieve the object as described above and to perform the task for eliminating the conventional defects in detail. The present invention is a wood-making step → molding step → scrap steel (Scrap) Preparation, dissolution and chemical composition adjustment step → Melt injection step → Cooling step → Desalting step → Normalizing heat treatment step → Riser cutting step → Stress relieving step → Primary rough machining step → Non-destructive test (1st step) → High-strength, toughness alloy for welded structures manufactured through the process of repair work → non-destructive test (secondary) → quenching heat treatment → tempering heat treatment → second rough machining → → grinding and finishing In the method for producing a cast steel composition, to produce a cast steel according to the above process, the preparation and dissolution of the scrap metal and chemical composition adjustment step The alloy composition is composed of 0.14 to 0.15 wt% C, 0.44 to 0.53 wt% Si, 1.26 to 1.33 wt% Mn, 0.003 to 0.021 wt% P, 0.008 to 0.017 wt% S, based on 100 wt% of the total alloy steel. , 0.09 to 0.14 wt% Cr, 0.08 to 0,10 wt% Cu, 1.14 to 1.19 wt% Ni, 0.001 to 0.09 wt% Mo, 0.008 to 0.017 wt% Nb, 0.009 to 0.010 wt% N, 0.035 to 0.042 wt% Al, 0.001 wt% Ti, 0.001 to 0.002 wt% V, 0.010 to 0.029 wt% Nb + V, 0.011 to 0.031 wt% Nb + V + Ti, and the remainder of iron Each alloy element is prepared and prepared so that the equivalent (CE) is 0.44-0.49%, and the normalizing heat treatment step is performed at a heating rate (° C./hr) of 50 or less and heated to 940-970 ° C. for 14 hours. After the air-cooled heat treatment step, the quenching (Water Quenching) heat treatment step is heated to 920 ± 15 ℃ and maintained for 14 hours at a heating rate (℃ / hr) or less to 50 and then subjected to a heat treatment step of water cooling Through the tempering column After heating step is maintained for 20 hours, and 620 ~ 680 ℃ to the heating rate (℃ / Hr) to 50 or less so as to mount the heat treatment step of ronaeng features a method for producing a cast steel.

상기 제조공정 중에서 해양 장비용 기계구조용 합금 주강품에서 요구하는 사양을 만족시키기 위해서는 화학적 성분을 조절(Control)하는 공정인 고철(Scrap) 준비, 용탕주입 공정에 대해서 개선된 사항을 설명하고, 기계적 성질에 결정적인 영향을 미치는 담금질(Quenching)열처리, 뜨임(Tempering)열처리 방법에 대해서 상세히 기술한다.In order to satisfy the specifications required for the alloy steel castings for machinery structures for marine equipment in the manufacturing process, the improvements to the scrap preparation and molten metal injection processes, which are processes for controlling chemical components, will be described. Quenching and tempering heat treatment methods that have a decisive effect will be described in detail.

해양 장비용 합금 주강품에서는 화학성분 중에서 강도와 용접성에 큰 영향을 미치는 C, P, S, 탄소당량(CE)에 대해서 특히 규제하고 있으며 본 발명 합금 주강품과 유사 재질인 ASTM Al48 90-60, JIS SCW550, JIS SCMnCr3B의 화학성분을 비교 분석해 보면 다음의 표 2와 같다The alloy cast steel for marine equipment is specifically regulated for C, P, S, and carbon equivalent (CE), which have a significant effect on the strength and weldability among chemical components, and ASTM Al48 90-60, JIS SCW550, which is similar to the alloy cast steel of the present invention. The chemical composition of JIS SCMnCr3B is shown in Table 2 below.

표 2. C, P, S, CE 화학성분 비교표Table 2. C, P, S, CE Chemical Composition Comparison Table

일반적인 고강도 합금주강품은 상기 표 2에서 보는 것과 같이 C 함유량이 0.22∼0.40%의 함유량을 갖고 있는데 탄소함량을 높게 조절하면 강의 강도를 확보하는데 유리하지만 제품의 인성 및 용접성을 나쁘게 한다.반면 인성과 용접성을 확보하기 위해 탄소함량 및 탄소당량을 낮게 관리하게 되면 반대로 필요한 강도를 확보하기 어렵다.따라서 강도와 인성을 동시에 확보하기 위해서는 조밀한 미세조직이 생성되도록 화학성분 제어와 열처리 공정을 설계하여야 되므로, 고철 준비와 용해 및 화학성분 조정시 용접성에 영향을 미치는 C, P, S 함량을 제어하고 강도 및 인성의 동시 확보를 위한 경화능 개선제(Ni)와 입자 메세화제(Al, Ti, Nb, V)를 첨가하여 제품을 주조하고, 주조된 제품을 소정의 담금질 및 뜨임 열처리 방법으로 열처리하는 고강도, 고인성을 갖는 합금주강품 및 그 제조방법을 제공하여야 한다.In general, high strength alloy cast steels have a C content of 0.22 to 0.40%, as shown in Table 2 above. High carbon content is advantageous for securing the strength of the steel but deteriorates the toughness and weldability of the product. When the carbon content and the carbon equivalent are managed low to secure a low level, it is difficult to secure the required strength. Therefore, in order to secure strength and toughness simultaneously, the chemical composition control and heat treatment process must be designed to produce a dense microstructure. Control the C, P, S content affecting weldability during preparation, dissolution and chemical composition adjustment, and use hardening agent (Ni) and particle messenger (Al, Ti, Nb, V) to simultaneously secure strength and toughness. It is added to cast the product, and has a high strength and high toughness to heat the cast product by a predetermined quenching and tempering heat treatment method It should provide alloy castings and a method of manufacturing the same.

본 발명 고강도 고인성 합금 주강품에 요구되는 물성치를 얻기 위하여 12회의 시험편 측정을(상세 내용 결과치 생략) 실시한 결과, C, P, S 함유량은 물론 강의 제 성질을 향상시키기 위해 고의로 첨가한 합금원소 및 잔재등으로 부터 유입되는 미량의 잔류원소를 포함하여 조절 가능한 화학성분이 범위는 다음과 같다.In order to obtain the physical properties required for the high strength high toughness alloy cast steel of the present invention, twelve test pieces were measured (detailed results are omitted), and alloy elements and residues deliberately added to improve the properties of steel, as well as C, P, and S contents. The range of chemical components that can be adjusted, including traces of residual elements, is introduced as follows.

본 발명은 전체 합금강 100wt%를 기준으로 다음의 첨가원소를 포함한다.The present invention includes the following additional elements based on 100 wt% of the total alloy steel.

C: 0.14∼0.15wt% Si: 0.44∼0.53wt% Mn: 1.26∼ 1.33wt%C: 0.14-0.15 wt% Si: 0.44-0.53 wt% Mn: 1.26-1.33 wt%

P: 0.003∼0.021wt% S: 0.008∼0.017wt% Cr: 0.09∼0.14wt%P: 0.003-0.021 wt% S: 0.008-0.017 wt% Cr: 0.09-0.14 wt%

Cu: 0.08∼0,10wt% Ni: 1.14∼1.19wt% Mo: 0.001∼0.09wt%Cu: 0.08-0.10 wt% Ni: 1.14-1.19 wt% Mo: 0.001-0.09 wt%

Nb: 0.008∼0.017wt% N: 0.009∼0.010wt% Al:0.035∼0.042wt%Nb: 0.008 to 0.017 wt% N: 0.009 to 0.010 wt% Al: 0.035 to 0.042 wt%

Ti : 0.001wt% V : 0.001∼0.002wt% Nb+V :0.010∼0.029wt%,Ti: 0.001 wt% V: 0.001-0.002 wt% Nb + V: 0.010-0.029 wt%,

Nb+V+Ti : 0.011∼0.031wt%, 탄소당량(CE) : 0.44∼0.49%상기와 같이 합금 원소에 대해 수치 한정한 이유는 상기 수치 범위에서 본 발명이 이루고자 하는 목적을 달성할 수 있기 때문이다.주강품의 성분 특성 중에서 탄소당량(탄소 이외의 강화 합금 원소를 탄소에 대한 가중치를 곱하여 단일 탄소함량으로 나타낸 수치: 이 수치가 높으면 강도는 증가하고 인성은 감소한다.) 범위가 중요하며 개별 합금 원소 중에는 합금의 경화능력을 향상시키는 Ni, 입자 미세화 기능을 가지는 Al, Ti, Nb 과 V(일명 입자 미세화 원소)의 함량 범위가 중요하다.본 발명에서 얻고자 하는 항복강도(400MPa 이상)와 충격인성(영하 20℃에서 평균 충격흡수에너지가 41Joule 이상)을 동시에 만족하는 주강품은 개별원소로는 Ni을 1.14에서 1.19wt.% 수준으로 그리고 Al, Ti, Nb과 V등의 입자 미세화제를 반드시 함유하면서 0.44%에서 0.49%의 탄소당량을 가지고 있는 것을 화학성분적 특징으로 한다.일반적으로 탄소당량이 하한치보다 낮게되면 항복강도 부족 현상이 그리고 상한치를 넘게되면 충격인성이 미달되는 현상이 발생하는데,Ni의 첨가와 입자 미세화제의 첨가로 제시한 탄소당량 범위에서 강도와 인성의 2가지 특성을 모두 개선할 수 있다.한편 Ni의 첨가 없이 여타 다른 원소(예를 들면 C, Mn, Cr, Mo)에 의한 탄소당량 조절만으로는 소정의 담금질 특성을 얻을 수 없고 궁극적으로는 항복강도와 충격인성을 확보할 수 없기 때문에 상기와 같이 수치 한정을 하게 되었다.Nb + V + Ti: 0.011-0.031 wt%, carbon equivalent (CE): 0.44--0.49% The reason for the numerical limitation on the alloying elements as described above is because the object of the present invention can be achieved within the above numerical range. Among the properties of cast steel, carbon equivalents (numbers of reinforcing alloy elements other than carbon multiplied by the weight of carbon as a single carbon content: high values increase strength and decrease toughness) are important and individual alloys. Among the elements, the content ranges of Ni, Al, Ti, Nb, and V (aka particle refinement elements) having a particle refining function, which improve the curing ability of the alloy are important. Yield strength (400 MPa or more) and impact to be obtained in the present invention are important. Cast steel that satisfies toughness (average shock absorption energy above 41 Joule at minus 20 ℃) is 1.14 to 1.19 wt.% Of Ni as individual element and half of particle refiner such as Al, Ti, Nb and V. The chemical composition is characterized by having a carbon equivalent of 0.44% to 0.49%, which is contained in the sample.In general, when the carbon equivalent is lower than the lower limit, the yield strength is insufficient, and when the upper limit is exceeded, the impact toughness is insufficient. The addition of Ni and the addition of particle refiner can improve both strength and toughness in the range of carbon equivalents presented. On the other hand, other elements (e.g., C, Mn, Cr, Mo without addition of Ni) can be improved. Only by adjusting the carbon equivalent by), it is not possible to obtain a predetermined quenching characteristic and ultimately yield strength and impact toughness is limited as described above.

상기 화학적 성분을 갖는 본 발명의 합금강은 해양 장비용 고강도 고인성 합금강이 갖추어야할 기계, 물리적인 특성이 개선되어 종래의 강보다 저온(-20℃ 이하)에서의 충격성, 용접성, 인성이 크게 향상된다(표 6. 시험편 측정 결과치 참조).The alloy steel of the present invention having the above chemical composition has improved mechanical and physical properties of high strength, high toughness alloy steel for marine equipment, thereby greatly improving impact resistance, weldability, and toughness at low temperatures (below -20 ° C) than conventional steel. (See Table 6. Test Piece Measurements).

다음으로, 본 발명 합금 주강품의 기계적 성질을 좌우하는 가장 중요한 공정인 열처리(Quenching Tempering) 공정에 대해서 12회의 시험편 측정을 통하여 얻은 결과를 하기와 같이 기술한다.이하 본 발명의 바람직한 실시예이다.Next, the results obtained through the measurement of 12 test specimens for the Quenching Tempering process, which is the most important process that determines the mechanical properties of the alloy cast steel of the present invention, are described as follows.

(실시예)주강품을 만드는 정체공정 중 고철 준비단계에서 합금조성물을 전체 합금강 100wt%를 기준으로 0.14∼0.15wt% C와, 0.44∼0.53wt% Si와, 1.26∼ 1.33wt% Mn과, 0.003∼0.021wt%P와, 0.008∼0.017wt% S와, 0.09∼0.14wt% Cr과, 0.08∼0,10wt% Cu와, 1.14∼1.19wt% Ni과, 0.001∼0.09wt% Mo과, 0.008∼0.017wt% Nb와, 0.009∼0.010wt% N과, 0.035∼0.042wt% Al과, 0.001wt% Ti과, 0.001∼0.002wt% V과, 0.010∼0.029wt% Nb+V와, 0.011∼0.031wt% Nb+V+Ti과 나머지는 철로 조성하되, 탄소당량(CE)이 0.44∼0.49wt%가 되도록 각 합금원소들을 조성하여 준비한 후, 가열속도(℃/hr)를 50이하로 하여 940 ~ 970℃까지 가열하고 14시간 동안 유지한 후 공냉시키는 불림(Normalizing) 열처리 단계와, 가열속도(℃/hr)를 50이하로 하여 920±15℃까지 가열하고 14시간동안 유지한 후 수냉시키는 담금질(Water Quenching)열처리 단계와, 가열속도(℃/hr)를 50이하로 620 ~ 680℃까지 가열하고 20시간동안 유지한 후 로냉시키는 뜨임(Tempering)열처리 단계를 거쳐 본 발명의 주강품이 완성 되는데,한 바람직한 예를 들자면 상기담금질(Water Quenching)열처리 단계는, 전단계로 13시간동안 가열속도(℃/Hr) 50으로 650℃까지 가열하여 승온 후 4시간 유지한 후 다시 5.5시간에 걸쳐 920±15℃로 가열하여 14시간 동안 유지한 후, 냉각단계로 수온 20~50℃의 냉각조에 5분 이내에 급냉한 후 수온을 유지한 상태로 2시간 동안 냉각하는 단계로 실시하였고,상기 뜨임(Tempering)열처리 단계는, 전단계로 13시간동안 가열속도(℃/hr) 50으로 620℃까지 가열하여 20시간동안 유지한 후, 냉각단계로 냉각속도(℃/hr) 50으로 8시간동안 300℃까지 로냉하여 냉각 후 계속해서 공냉하는 단계로 실시하였다.(Example) The alloy composition is 0.14 to 0.15 wt% C, 0.44 to 0.53 wt% Si, 1.26 to 1.33 wt% Mn, and 0.003 to 0.021 wt% P, 0.008 to 0.017 wt% S, 0.09 to 0.14 wt% Cr, 0.08 to 0,10 wt% Cu, 1.14 to 1.19 wt% Ni, 0.001 to 0.09 wt% Mo, and 0.008 to 0.017 wt% Nb, 0.009 to 0.010 wt% N, 0.035 to 0.042 wt% Al, 0.001 wt% Ti, 0.001 to 0.002 wt% V, 0.010 to 0.029 wt% Nb + V, 0.011 to 0.031 wt% Nb + V + Ti and the remainder are made of iron, and each alloy element is prepared so as to have a carbon equivalent (CE) of 0.44-0.49wt%, and the heating rate (℃ / hr) is 50 or less at 940-970 ℃. Normalizing heat treatment step of heating to and holding for 14 hours and then air-cooling, and heating up to 920 ± 15 ℃ with heating rate (℃ / hr) below 50, holding for 14 hours, and water quenching (Water Quenching) Heat treatment step and heating rate (℃ / hr) below 50 The steel casting of the present invention is completed through a tempering heat treatment step of heating to 620 to 680 ° C. and holding for 20 hours, followed by quenching. For example, the quenching heat treatment step is performed for 13 hours as a previous step. After heating up to 650 ℃ with heating rate (℃ / Hr) 50 for 4 hours and maintaining it for 4 hours, and then heating to 920 ± 15 ℃ for 5.5 hours and maintaining it for 14 hours, the water temperature is 20 ~ 50 ℃ After quenching in a cooling tank within 5 minutes, cooling was performed for 2 hours while maintaining a water temperature. The tempering heat treatment step was performed at a heating rate (° C / hr) of 50 to 620 ° C for 13 hours as a previous step. After heating for 20 hours, the cooling step was performed by cooling to 300 ° C. for 8 hours at a cooling rate (° C./hr) of 50, followed by air cooling after cooling.

화학성분과 더불어 재질의 기계적 성질을 결정하는 열처리 조건은 12회의 시험편 측정(상세 내용 결과치 생략)을 통하여 표 3에서 보는 바와 같이 불림(Normalizing) 열처리 →담금질(Water Quenching) 열처리 →뜨임(Tempering) 열처리의 3단계 열처리로 결정하고, 시험 블록을 주입하여 기계적 성질 확인 시험을 수행하였다.The heat treatment conditions to determine the mechanical properties of the material together with the chemical composition were obtained through 12 test specimen measurements (detailed results are omitted), as shown in Table 3.Normalizing heat treatment → Water Quenching heat treatment → Tempering heat treatment Determined by a three-step heat treatment of, the test block was injected to perform a mechanical property test.

이때 시험 블록의 기준 크기는 두께 100mm x 가로 300mm x 세로 300mm로 선정하였다.At this time, the reference size of the test block was selected as thickness 100mm x 300mm x 300mm.

표 3. 고강도 고인성 재질의 물성 확보를 위한 열처리 절차Table 3. Heat Treatment Procedure for Securing Properties of High Strength High Toughness Materials

표 4. 고강도 고인성 재질의 물성 확보를 위한 Q-T 열처리 곡선Table 4. Q-T heat treatment curve for securing the properties of high strength, high toughness materials

상기와 같이 열처리(Quenching 및 Tempering)를 실시하여 최종적으로 측정된 결과치는 표 5와 같으며 해양 장비용 고강도 고인성 합금 주강품에서 요구하는 모든 기계적 성질을 만족하였다.Finally, the results obtained by performing heat treatment (quenching and tempering) are shown in Table 5, and satisfy all mechanical properties required for high strength, high toughness alloy cast steel for marine equipment.

표 5. 기계적 성질 시험편 측정 결과치Table 5. Mechanical Property Test Result

* 상기 표 내용은 12회 시험편 Test하여 최종 선정된 열처리 방법(표4 Q-T열처리곡선)에 의하여 열처리 수행하고 측정된 기계적 성질 결과치 임.* The above table shows the results of mechanical properties measured after performing heat treatment according to the final heat treatment method (Table 4 Q-T heat treatment curve) after 12 test specimen tests.

표 6. 시험편 측정 결과치Table 6. Test Piece Measurement Results

상기 표 6의 시험편 측정은 DNV 검사관 입회하여 측정 시행되었으며 재질에 대한 DNV Certificate(보증서) 발행되었음.Specimen measurement in Table 6 was performed in the presence of a DNV inspector and issued a DNV Certificate for the material.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

상기한 바와 같이, 본 발명에 따른 해양 장비용 기계구조용 합금 주강품으로서 용접성이 우수하고 저온(-2O℃)에서 고강도, 고인성을 갖는 합금 주강품의 제조가 가능하기 때문에 외자재에 의존할 필요가 없으며 가격도 절반으로 제조 가능해져 경쟁력도 높일 수 있다.As described above, the alloy cast steel for machine construction for marine equipment according to the present invention is excellent in weldability and can be manufactured alloy cast steel having high strength and toughness at low temperature (-2O ℃), there is no need to rely on external materials It can be manufactured at half the price, increasing competitiveness.

또한 종래의 합금강에 비해 용접성이 뛰어나고 기계적 성질이 크게 개선되어 특수기계 부품에도 사용할 수 있어 그 실용성이 매우 높다.In addition, the weldability is superior to the conventional alloy steel and the mechanical properties are greatly improved, so that it can be used for special mechanical parts, and its practicality is very high.

Claims (3)

용접 구조용 고강도 고인성 합금 주강품에 있어서,In the high strength high toughness alloy cast steel for welding structure, 전체 합금강 100wt%를 기준으로 0.14∼0.15wt% C와, 0.44∼0.53wt% Si와, 1.26∼ 1.33wt% Mn과, 0.003∼0.021wt%P와, 0.008∼0.017wt% S와, 0.09∼0.14wt% Cr과, 0.08∼0,10wt% Cu와, 1.14∼1.19wt% Ni과, 0.001∼0.09wt% Mo과, 0.008∼0.017wt% Nb와, 0.009∼0.010wt% N과, 0.035∼0.042wt% Al과, 0.001wt% Ti과, 0.001∼0.002wt% V과, 0.010∼0.029wt% Nb+V와, 0.011∼0.031wt% Nb+V+Ti과 나머지는 철로 조성하고, 탄소당량(CE)이 0.44∼0.49%인 주강품을 특징으로 하는 용접 구조용 고강도 고인성 합금 주강품.0.14 to 0.15 wt% C, 0.44 to 0.53 wt% Si, 1.26 to 1.33 wt% Mn, 0.003 to 0.021 wt% P, 0.008 to 0.017 wt% S, 0.09 to 0.14 based on 100 wt% of the total alloy steel wt% Cr, 0.08-0.10 wt% Cu, 1.14-1.19 wt% Ni, 0.001-0.09 wt% Mo, 0.008-0.017 wt% Nb, 0.009-0.010 wt% N, 0.035-0.942 wt % Al, 0.001 wt% Ti, 0.001 to 0.002 wt% V, 0.010 to 0.029 wt% Nb + V, 0.011 to 0.031 wt% Nb + V + Ti, and the rest are composed of iron, and carbon equivalent (CE) A high strength, high toughness alloy cast steel for welded structures, characterized by 0.44 to 0.49% cast steel. 목형제작단계 → 조형단계 → 고철(Scrap) 준비와 용해 및 화학성분 조정단계 → 용탕주입단계 → 냉각 단계 → 탈사 단계 → 불림(Normalizing) 열처리 단계 → 라이저 절단 단계 → 스트레스 릴리이빙 단계 →1차 황삭기계가공 단계 →비파괴검사(1차) 단계 →보수작업 단계 →비파괴검사(2차) 단계 →담금질(Quenching) 열처리 단계 → 뜨임(Tempering) 열처리 단계 →2차 황삭기계가공 단계 → 그라인딩 및 마무리 작업 단계의 공정을 거쳐 제조되는 용접 구조용 고강도 고인성 합금 주강품 조성물의 제조방법에 있어서,Sculpting step → Molding step → Scrap preparation and dissolution and chemical composition step → Melt injection step → Cooling step → Desalting step → Normalizing heat treatment step → Riser cutting step → Stress relieving step → Primary roughing machine Machining stage → Non-destructive inspection (1st stage) → Maintenance work stage → Non-destructive inspection (second stage) → Quenching heat treatment stage → Tempering heat treatment stage → Second rough machining process → Grinding and finishing In the manufacturing method of the high strength high toughness alloy cast steel composition for welded structure produced through the process, 상기 공정에 따라 주강품을 제조하되,According to the above process to manufacture a cast steel, 상기 고철(Scrap) 준비와 용해 및 화학성분 조정 단계에서 합금조성물을 전체 합금강 100wt%를 기준으로 0.14∼0.15wt% C와, 0.44∼0.53wt% Si와, 1.26∼ 1.33wt% Mn과, 0.003∼0.021wt%P와, 0.008∼0.017wt% S와, 0.09∼0.14wt% Cr과, 0.08∼0,10wt% Cu와, 1.14∼1.19wt% Ni과, 0.001∼0.09wt% Mo과, 0.008∼0.017wt% Nb와, 0.009∼0.010wt% N과, 0.035∼0.042wt% Al과, 0.001wt% Ti과, 0.001∼0.002wt% V과, 0.010∼0.029wt% Nb+V와, 0.011∼0.031wt% Nb+V+Ti과 나머지는 철로 조성하되, 탄소당량(CE)이 0.44∼0.49%가 되도록 각 합금원소들을 조성하여 준비하고,In the scrap preparation, melting, and chemical composition adjustment, the alloy composition was 0.14 to 0.15 wt% C, 0.44 to 0.53 wt% Si, 1.26 to 1.33 wt% Mn, and 0.003 to 100 wt% based on 100 wt% of the total alloy steel. 0.021 wt% P, 0.008 to 0.017 wt% S, 0.09 to 0.14 wt% Cr, 0.08 to 0,10 wt% Cu, 1.14 to 1.19 wt% Ni, 0.001 to 0.09 wt% Mo, and 0.008 to 0.017 wt% Nb, 0.009 to 0.010 wt% N, 0.035 to 0.042 wt% Al, 0.001 wt% Ti, 0.001 to 0.002 wt% V, 0.010 to 0.029 wt% Nb + V, 0.011 to 0.031 wt% Nb + V + Ti and the remainder are made of iron, and each alloying element is prepared to prepare a carbon equivalent (CE) of 0.44-0.49%, 상기 불림(Normalizing)열처리 단계는 가열속도(℃/hr)를 50이하로 하여 940 ~ 970℃까지 가열하고 14시간 동안 유지한 후 공냉시키는 열처리 단계를 거치도록 하고,In the normalizing heat treatment step, the heating rate (℃ / hr) is 50 or less, heated to 940 to 970 ° C. and maintained for 14 hours, followed by a heat treatment step of air cooling. 상기 담금질(Water Quenching)열처리 단계는 가열속도(℃/hr)를 50이하로 하여 920±15℃까지 가열하고 14시간동안 유지한 후 수냉시키는 열처리 단계를 거치도록 하고,The quenching (Water Quenching) heat treatment step is a heating rate (℃ / hr) to 50 or less to heat up to 920 ± 15 ℃ and maintained for 14 hours to undergo a heat treatment step of water cooling, 상기 뜨임(Tempering)열처리 단계는 가열속도(℃/hr)를 50이하로 하여 620 ~ 680℃까지 가열하고 20시간동안 유지한 후 로냉시키는 열처리 단계를 거치도록 하여 주강품을 제조하는 방법을 특징으로 하는 용접 구조용 고강도 고인성 합금 주강품 조성물의 제조방법.The tempering (Tempering) heat treatment step is to heat the heating rate (℃ / hr) to 50 or less to 620 ~ 680 ℃ and maintained for 20 hours and then subjected to a heat treatment step of cooling to produce a cast steel product Method for producing a high strength, high toughness alloy cast steel composition for welded structures. 제 2항에 있어서,The method of claim 2, 상기 담금질(Water Quenching)열처리 단계는, 전단계로 13시간동안 가열속도(℃/Hr) 50으로 650℃까지 가열하여 승온 후 4시간 유지한 후 다시 5.5시간에 걸쳐 920±15℃로 가열하여 14시간 동안 유지한 후, 냉각 단계로 수온 20~50℃의 냉각조에 5분 이내에 급냉한 후 2시간 동안 냉각하는 단계로 이루어지고,The quenching (Water Quenching) heat treatment step, the heating step (heat / ℃ / Hr) for 13 hours as a previous step to heat up to 650 ℃ to 4 hours after the temperature is maintained for 4 hours and then again heated to 920 ± 15 ℃ over 5.5 hours 14 hours After holding for a while, the cooling step consists of quenching in a cooling bath of water temperature 20 ~ 50 ℃ within 5 minutes and then cooling for 2 hours, 상기 뜨임(Tempering)열처리 단계는, 전단계로 13시간동안 가열속도(℃/hr) 50으로 620℃까지 가열하여 20시간동안 유지한 후, 냉각 단계로 냉각속도(℃/hr) 50으로 8시간동안 300℃까지 로냉하여 냉각 후 계속해서 공냉하는 단계로 이루어진 것을 특징으로 하는 용접 구조용 고강도 고인성 합금 주강품 조성물의 제조방법.The tempering heat treatment step was carried out by heating up to 620 ° C. at a heating rate (° C./hr) of 50 for 13 hours as a previous step and maintaining it for 20 hours, followed by cooling at 50 ° C. (° C./hr) for 8 hours. A method of producing a high strength, high toughness alloy cast steel composition for welded structures, characterized by consisting of a step of cooling down to 300 ° C. followed by air cooling.
KR10-2000-0065347A 2000-11-04 2000-11-04 High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process KR100382109B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0065347A KR100382109B1 (en) 2000-11-04 2000-11-04 High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0065347A KR100382109B1 (en) 2000-11-04 2000-11-04 High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process

Publications (2)

Publication Number Publication Date
KR20020035185A KR20020035185A (en) 2002-05-11
KR100382109B1 true KR100382109B1 (en) 2003-05-09

Family

ID=19697236

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0065347A KR100382109B1 (en) 2000-11-04 2000-11-04 High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process

Country Status (1)

Country Link
KR (1) KR100382109B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506328B1 (en) * 2002-11-20 2005-08-05 이일규 Special steel as hot-cool composite material and manufacturing process thereof

Also Published As

Publication number Publication date
KR20020035185A (en) 2002-05-11

Similar Documents

Publication Publication Date Title
EP2267177B1 (en) High-strength steel plate and producing method therefor
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
EP2520683B1 (en) High strength steel sheet having excellent brittle crack resistance and method for manufacturing same
EP2290116B1 (en) Thick steel sheet having high strength and method for producing same
US11352683B2 (en) Production of HIC-resistant pressure vessel grade plates using a low-carbon composition
KR20080017365A (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
JPS6411105B2 (en)
KR20170139111A (en) Steel, a product made of the above steel, and a method for producing the same
JP6784960B2 (en) Martensitic stainless steel member
JP2010132945A (en) High-strength thick steel plate having excellent delayed fracture resistance and weldability, and method for producing the same
JP6427272B2 (en) bolt
EP0694626A1 (en) Austenitic stainless steel with low nickel content
WO2000046416A1 (en) Method of making a weathering grade plate and product therefrom
JP6798557B2 (en) steel
JP5635477B2 (en) Submarine hull steel with improved weldability
JP4645461B2 (en) High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP2007197776A (en) High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
KR100382109B1 (en) High Tensile & High Toughness carbon steel casting for welded structure purpose and Manufacturing process
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
KR101764083B1 (en) Marine steel forging
JPH03291358A (en) Duplex stainless steel excellent in toughness and hot workability and its production
JP3536001B2 (en) Cast steel for welded structures
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
JP4316014B2 (en) Alloy steel, steel products and methods of use
JP7464832B2 (en) Bolts and bolt steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060407

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee