KR100380253B1 - Method for forming resistor using aluminum oxide layer - Google Patents

Method for forming resistor using aluminum oxide layer Download PDF

Info

Publication number
KR100380253B1
KR100380253B1 KR1019950033254A KR19950033254A KR100380253B1 KR 100380253 B1 KR100380253 B1 KR 100380253B1 KR 1019950033254 A KR1019950033254 A KR 1019950033254A KR 19950033254 A KR19950033254 A KR 19950033254A KR 100380253 B1 KR100380253 B1 KR 100380253B1
Authority
KR
South Korea
Prior art keywords
layer
photoresist pattern
aluminum
oxide
forming
Prior art date
Application number
KR1019950033254A
Other languages
Korean (ko)
Other versions
KR970018514A (en
Inventor
송유선
Original Assignee
페어차일드코리아반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 페어차일드코리아반도체 주식회사 filed Critical 페어차일드코리아반도체 주식회사
Priority to KR1019950033254A priority Critical patent/KR100380253B1/en
Publication of KR970018514A publication Critical patent/KR970018514A/en
Application granted granted Critical
Publication of KR100380253B1 publication Critical patent/KR100380253B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • H01L28/24Resistors with an active material comprising a refractory, transition or noble metal, metal compound or metal alloy, e.g. silicides, oxides, nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE: A method for forming a resistor using layer is provided to be capable of reducing the variation of resistance for the change of temperature and being easily produced. CONSTITUTION: An oxide layer is coated on the entire surface of a base metal line structure. The first photoresist pattern(50) is formed on the resultant structure. A connection contact hole is formed on the resultant structure by carrying out an etching process. The first photoresist pattern is then removed. An aluminum layer(60) is deposited on the oxide layer. The second photoresist pattern(52) is formed on the aluminum layer. Oxygen ion implantation is performed on the resultant structure by using the second photoresist pattern as a mask. The second photoresist pattern is then removed. The aluminum layer is transformed into an oxide aluminum layer(62) by carrying out a heat treatment.

Description

신화 알루미늄을 이용한 저항 소자 형성방법Resistive element formation method using aluminum nitride

본 발명은 산화알루미늄을 이용한 저항 소자 제조 방법에 관한 것으로서, 보다 상세하게는 바이폴라 트랜지스터의 저항 소자로서 알루미늄에 산소 이온을 주입절연체로 형성시켜 저항 소지로서 이용할 수 있게 한 산화알루미늄을 이용한 저항 소자 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a resistive element using aluminum oxide, and more particularly, to a resistive element forming method using aluminum oxide in which oxygen ions are formed as an insulator for a bipolar transistor to be used as a resistor. It is about.

반도체 장치에서는 주로 실리콘 내부에 양성(P형) 또는 음성(N형) 불순물을 주입하여 형성하는 확산 저항과, 일반적으로 다결정 실리콘으로 제조하는 막(필름)저항을 사용하고 있다.In semiconductor devices, diffusion resistors formed by injecting positive (P-type) or negative (N-type) impurities into silicon and film (film) resistors generally made of polycrystalline silicon are used.

그러나, 확산 저항은 저항값 조정이 어려울 뿐 아니라 온도 변동에 따른 저항값 변동이 큰 단점이 있고 막 저항, 특히 금속 박막 저항은 저항값 변동이 적은 장점을 가지고 있으나 제조가 어렵고 공해 유발 소지가 많아 그 실용화에 제한을 받고 있다.However, diffusion resistors are not only difficult to adjust the resistance value but also have a large resistance value fluctuation due to temperature fluctuations. Membrane resistance, in particular, metal thin film resistors, has a small resistance value fluctuation, but is difficult to manufacture and causes a lot of pollution. It is limited in practical use.

따라서 본 발명은 이러한 선행 기술의 문제점을 해결하기 위한 것으로, 그 주된 목적은 기존 박막 저항과 같이 온도에 대한 저항값 변동이 적고, 제조의 용이성 및 강제성 있는 산화알루미늄을 이용한 저항 소자를 제공하는데 있다.Therefore, the present invention is to solve the problems of the prior art, the main object is to provide a resistance element using aluminum oxide which is less fluctuations in resistance value with temperature, like the existing thin film resistance, and easy to manufacture and forcibly.

또한 본 발명의 다른 목적은 산화 알루미늄을 이용한 저항 소자의 형성 방법을 제공하는데 있다.Another object of the present invention is to provide a method of forming a resistance element using aluminum oxide.

본 발명에 따른 산화알루미늄을 이용한 저항 소자의 형성 방법은,Method for forming a resistance element using aluminum oxide according to the present invention,

반도체 장치의 기본 배선 구조의 상부에 산화막이 도포된 기본 소자에 저항을 형성함에 있어서,In forming a resistance in a basic element coated with an oxide film on the upper part of the basic wiring structure of a semiconductor device,

상기 산화막 상, 하부층의 연결 콘택 형성을 위한 감광막 패턴 형성 및 에치를 실시하는 단계,Forming a photoresist pattern and etching the connection contact between the oxide layer and the lower layer;

상기 감광막 제거 후 산화막 위에 알루미늄층을 증착하는 단계;Depositing an aluminum layer on an oxide film after removing the photoresist film;

상기 알루미늄층에 감광막 패턴을 형성한 후 산소 이온을 주입하는 단계: 및Injecting oxygen ions after forming a photoresist pattern on the aluminum layer; and

상기 감광막 패턴 제거하고 알루미늄층 포토와 에치의 실시한 후 이를 가열하여 산화알루미늄을 형성하는 단계로 구성되어 있다.The photoresist pattern is removed, and the aluminum layer photo and the etching are carried out, and then heated to form aluminum oxide.

이와 같은 본 발명에 따른 산화알루미늄을 이용한 저항 소자는, 바이폴라 소자 및 보스회로 등에 적용할 수 있는 것으로서, 이하 첨부도면을 참조하여 상세히 설명하고자 한다.Such a resistive element using aluminum oxide according to the present invention, which can be applied to a bipolar element, a boss circuit and the like, will be described in detail with reference to the accompanying drawings.

제 1 도는 기본 소자층을 형성한 바이이폴라 소자의 단면도이고, 제 2 도는 제1 도의 바이폴라 소자에 본 발명의 저항 소자를 형성하는 단계별 공정도이다.FIG. 1 is a cross-sectional view of a bipolar device in which a basic device layer is formed, and FIG. 2 is a step-by-step process chart for forming a resistance device of the present invention in the bipolar device of FIG.

실리콘 기판(10)과 에피층(30) 사이에 매몰층(20)이 형성되고, 상기 매몰층(20) 좌 우 에피층(30)에 격리층(아이솔레이션)(32)(32a)이 구비되면, 또한 상기 에피층(30)의 상부에 각각 에미터(34), 베이스(36) 및 콜렉터(38)가 형성되어 있고, 최상층으로 산화막(40)이 도포되어 있는 제 1 도의 바이폴라 기본 소자에, 저항을 형성하기 위해 먼저 상기 산화막(40) 상에 감광막(50) 패턴을 형성한 후 에칭하여 산화막(40)의 상부층과 에미터(34), 베이스(36) 및 콜렉터(38)의 연결을 위한 콘택홀을 형성하였다. 그런 다음, 감광막(50)을 제거하고 산화막(40) 상에 알루미늄층(60)을 증착한 다음, 그 위에 다시 알루미늄층(60)에 감광막(52) 패턴을 형성하여 이 감광막(52) 패턴은 마스크로 하여 산소이온을 알루미늄층(60)에 주입한다. 이 때에 알루미늄층(60)에 주입된 산소 이온의 양에 따라 알루미늄층(60)이 산화하여 형성되는 절연체, 즉 산화알루미늄 양이 가감되는 바, 이 절연체의 양에 따라알루미늄의 전기 전도성을 조절하게 되는 것이다. 이때 0.8 x1018~ 1.2x1018ions/ ㎠ 의 도우즈량 400~900KeV의 주입에너지로 하여 산소이온이 주입된다.When the buried layer 20 is formed between the silicon substrate 10 and the epi layer 30, and the isolation layers 32 and 32a are provided on the left and right epi layers 30 of the buried layer 20. In addition, in the bipolar basic element of FIG. 1 in which an emitter 34, a base 36, and a collector 38 are formed on the epitaxial layer 30, respectively, and an oxide film 40 is coated on the uppermost layer. In order to form a resistance, a photoresist layer 50 pattern is first formed on the oxide layer 40 and then etched to connect the upper layer of the oxide layer 40 to the emitter 34, the base 36, and the collector 38. Contact holes were formed. Then, the photoresist film 50 is removed and the aluminum layer 60 is deposited on the oxide film 40, and then the photoresist 52 pattern is formed on the aluminum layer 60 again. Oxygen ions are injected into the aluminum layer 60 as a mask. At this time, according to the amount of oxygen ions injected into the aluminum layer 60, the insulator formed by oxidizing the aluminum layer 60, that is, the amount of aluminum oxide is added or subtracted, so that the electrical conductivity of the aluminum is adjusted according to the amount of the insulator. Will be. At this time, oxygen ion is implanted with an implantation energy of 400 to 900 KeV in the dose amount of 0.8 x 10 18 to 1.2 x 10 18 ions / cm 2.

그리고 산소 이온의 주입 후 상기 감광막(52) 패턴을 제거하고, 메탈, 즉 알루미늄층(60)의 포토 및 에치를 실시한 다음, 350∼550℃로 가열하여 알루미늄이 주입된 산소 이온과 반응함으로써 절연물질인 산화알루미늄(62)을 생성하게 되므로 알루미늄과 실리콘 사이의 저항이 형성되는 것이다.After the implantation of oxygen ions, the photoresist layer 52 pattern is removed, and the metal, that is, photo and etching of the aluminum layer 60 is performed. Since phosphorus aluminum 62 is produced, a resistance is formed between aluminum and silicon.

이와 같이 본 발명은 종래와 같이 소자간 연결을 메탈 재질을 사용하여 단지 산소 이온을 주입함으로써 저항 패턴을 형성할 수 있는 것으로 제조가 용이하고, 이렇게 제조된 저항 소자는 알루미늄에 주입되는 산소 이온의 양에 의해 저항값을 조정할 수 있으므로 확산 저항에 비하여 높은 정밀도를 가지며, 아울러 일반 금속 박막 저항과 동등한 수준의 온도 특성을 보유하는 장점이 있다.As described above, the present invention can easily form a resistance pattern by simply injecting oxygen ions using a metal material to connect the devices as in the related art. Since the resistance value can be adjusted by the method, the resistance value is higher than that of the diffusion resistance, and the temperature characteristic is equivalent to that of the general metal thin film resistor.

제 1 도는 기본 소자층을 형성한 바이폴라 소자의 단면도.1 is a cross-sectional view of a bipolar device forming a basic device layer.

제 2 도는 제 1도의 기본 소자층이 형성된 바이폴라 소자에 본 발명의 저항 소자를 형성하는 단계별 공정도.2 is a step-by-step process chart for forming a resistance element of the present invention in a bipolar element in which the basic element layer of FIG.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 실리콘 기판 20: 매몰층10 silicon substrate 20 buried layer

30: 에피층 32,32a: 격리층(이이솔레이션)30: epi layer 32, 32a: isolation layer (isolated)

34: 에미터 36: 베이스34: emitter 36: base

38: 컬렉터 40: 산화막38: collector 40: oxide film

50,52: 감광막 60: 알루미늄층(워드라인)50, 52: photosensitive film 60: aluminum layer (word line)

Claims (1)

기본 배선 구조의 상부에 산화막이 도포된 기본 소자에 저항을 형성함에 있어서,In forming a resistor in a basic element coated with an oxide film on top of the basic wiring structure, 상기 산화막 상,하부층의 연결 콘택 형성을 위한 감광막 패턴 형성 및 에치를 실시하는 단계;Forming a photoresist pattern and etching the connection contact of the upper and lower layers of the oxide layer; 상기 감광막 제거 후 산화막 위에 알루미늄층을 증착하는 단계;Depositing an aluminum layer on an oxide film after removing the photoresist film; 상기 알루미늄층에 감광막 패턴을 형성한 후 산소 이온을 주입하는 단계; 및Injecting oxygen ions after forming a photoresist pattern on the aluminum layer; And 상기 감광막 패턴 제거하고 알루미늄층 포토와 에치의 실시한 후 이를 가열하여 산화알루미늄을 형성하는 단계로 구성되는 산화알루미늄을 이용한 저항 소자의 형성 방법.Removing the photoresist pattern, performing aluminum layer photo and etching, and then heating the photoresist layer to form aluminum oxide.
KR1019950033254A 1995-09-30 1995-09-30 Method for forming resistor using aluminum oxide layer KR100380253B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950033254A KR100380253B1 (en) 1995-09-30 1995-09-30 Method for forming resistor using aluminum oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950033254A KR100380253B1 (en) 1995-09-30 1995-09-30 Method for forming resistor using aluminum oxide layer

Publications (2)

Publication Number Publication Date
KR970018514A KR970018514A (en) 1997-04-30
KR100380253B1 true KR100380253B1 (en) 2003-07-18

Family

ID=37417161

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950033254A KR100380253B1 (en) 1995-09-30 1995-09-30 Method for forming resistor using aluminum oxide layer

Country Status (1)

Country Link
KR (1) KR100380253B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227153A (en) * 1983-06-07 1984-12-20 Seiko Epson Corp Mos type semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227153A (en) * 1983-06-07 1984-12-20 Seiko Epson Corp Mos type semiconductor integrated circuit device

Also Published As

Publication number Publication date
KR970018514A (en) 1997-04-30

Similar Documents

Publication Publication Date Title
US4486942A (en) Method of manufacturing semiconductor integrated circuit BI-MOS device
JPH0119404Y2 (en)
JPH0550144B2 (en)
JPH05347383A (en) Manufacture of integrated circuit
US5323057A (en) Lateral bipolar transistor with insulating trenches
US4418469A (en) Method of simultaneously forming buried resistors and bipolar transistors by ion implantation
US4313255A (en) Method for manufacturing integrated circuit device
EP0052198A2 (en) Method of manufacturing semiconductor devices using self-alignment techniques
KR900005123B1 (en) Bipolar transistor manufacturing method
US4216574A (en) Charge coupled device
JPS5879762A (en) Submicron bipolar transistor and method of producing same
JPH0412628B2 (en)
KR100380253B1 (en) Method for forming resistor using aluminum oxide layer
US4224088A (en) Method for manufacturing a semiconductor device
KR100366353B1 (en) Formation method of junction for solar cell
US4968635A (en) Method of forming emitter of a bipolar transistor in monocrystallized film
US6974745B2 (en) Method of manufacturing semiconductor device
JPH10223650A (en) Semiconductor device and its manufacture
JPH06104384A (en) High-value resistance and its manufacture
JPS6330787B2 (en)
KR930010675B1 (en) Manufacturing method of semiconductor device using mbe process
KR0154307B1 (en) Method of fabricating semiconductor device
KR900005786B1 (en) Transistor manufacturing method using chemical deposition oxide film
JP3070088B2 (en) Method for manufacturing semiconductor device
JP2619040B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120330

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130322

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee