KR100379547B1 - Method for forming barrier layer of hydrogen diffusion - Google Patents

Method for forming barrier layer of hydrogen diffusion Download PDF

Info

Publication number
KR100379547B1
KR100379547B1 KR10-2000-0079639A KR20000079639A KR100379547B1 KR 100379547 B1 KR100379547 B1 KR 100379547B1 KR 20000079639 A KR20000079639 A KR 20000079639A KR 100379547 B1 KR100379547 B1 KR 100379547B1
Authority
KR
South Korea
Prior art keywords
hydrogen diffusion
peald
forming
diffusion barrier
oxide film
Prior art date
Application number
KR10-2000-0079639A
Other languages
Korean (ko)
Other versions
KR20020050483A (en
Inventor
최은석
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-2000-0079639A priority Critical patent/KR100379547B1/en
Publication of KR20020050483A publication Critical patent/KR20020050483A/en
Application granted granted Critical
Publication of KR100379547B1 publication Critical patent/KR100379547B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

열화 현상이 발생하는 것을 방지할 수 있는 수소 확산 방지막 형성방법을 제공하기 위한 것으로, 이와 같은 목적을 달성하기 위한 수소 확산 방지막 형성방법은 기판이 구비된 반응로에 반응원료와 산소를 포함한 반응가스를 이용한 피이에이엘디(Plasma Enhanced Atomic Layer Deposition:PEALD)법으로 수소 확산 방지막을 형성함을 특징으로 한다.The present invention provides a method for forming a hydrogen diffusion barrier, which can prevent deterioration. A method of forming a hydrogen diffusion barrier for achieving the above object includes a reaction gas including a reaction raw material and oxygen in a reactor equipped with a substrate. It is characterized by forming a hydrogen diffusion prevention film by using a plasma enhanced atomic layer deposition (PEALD) method.

Description

수소 확산 방지막 형성방법{METHOD FOR FORMING BARRIER LAYER OF HYDROGEN DIFFUSION}Hydrogen diffusion prevention film formation method {METHOD FOR FORMING BARRIER LAYER OF HYDROGEN DIFFUSION}

본 발명은 반도체소자에 대한 것으로, 특히 플라즈마 인핸스먼트 오토메틱 레이어 데포지션(Plasma Enhanced Atomic Layer Deposition:PEALD)법을 이용한 수소 확산 방지막(hydrogen barrier) 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly, to a method of forming a hydrogen barrier using a plasma enhanced atomic layer deposition (PEALD) method.

첨부 도면을 참조하여 종래 수소 확산 방지막 형성방법에 대하여 설명하면 다음과 같다.Referring to the accompanying drawings, a conventional method for forming a hydrogen diffusion barrier is as follows.

도 1은 종래 수소 확산 방지막 형성방법을 나타낸 예시도이다.1 is an exemplary view showing a conventional method for forming a hydrogen diffusion barrier.

도 1에 도시된 바와 같이 종래 수소 확산 방지막은 에이엘디(Atomic Layer Deposition:ALD) 또는 화학 기상 증착(Chemical Vapor Deposition)법으로 기판이 구비된 반응로에 반응원료로 TMA(Tri Methyls Aluminum)를 사용하고 반응가스는H2O 또는 NH3를 사용하여서 형성한다.As shown in FIG. 1, the conventional hydrogen diffusion barrier layer uses TMA (Tri Methyls Aluminum) as a reaction material in a reactor equipped with a substrate by Atomic Layer Deposition (ALD) or Chemical Vapor Deposition. The reaction gas is formed using H 2 O or NH 3.

상기와 같은 종래 수소 확산 방지막 형성방법은 다음과 같은 문제가 있다.The conventional hydrogen diffusion barrier film formation method as described above has the following problems.

반응가스로 수소 소오스 가스를 이용하여 ALD(Atomic Layer Deposition)법으로 증착할 때 수소 소오스로 인한 열화(degradation) 현상이 발생할 수 있다.When deposition is performed by ALD (Atomic Layer Deposition) using a hydrogen source gas as a reaction gas, degradation due to hydrogen source may occur.

본 발명은 상기와 같은 문제를 해결하기 위하여 안출한 것으로 특히, 열화 현상이 발생하는 것을 방지할 수 있는 수소 확산 방지막 형성방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and in particular, an object of the present invention is to provide a method for forming a hydrogen diffusion prevention film that can prevent the occurrence of degradation.

도 1은 종래 수소 확산 방지막 형성방법을 나타낸 예시도1 is an exemplary view showing a conventional method for forming a hydrogen diffusion barrier

도 2는 본 발명의 일실시예에 따른 수소 확산 방지막 형성방법을 나타낸 예시도2 is an exemplary view showing a method for forming a hydrogen diffusion barrier according to an embodiment of the present invention.

상기와 같은 목적을 달성하기 위한 본 발명 수소 확산 방지막 형성방법은 기판이 구비된 반응로에 반응원료와 산소를 포함한 반응가스를 이용한 피이에이엘디(Plasma Enhanced Atomic Layer Deposition:PEALD)법으로 수소 확산 방지막을 형성함을 특징으로 한다.In order to achieve the above object, the present invention provides a method for forming a hydrogen diffusion barrier using a plasma enhanced atomic layer deposition (PEALD) method using a reaction gas containing a reaction material and oxygen in a reactor equipped with a substrate. Characterized in that.

첨부 도면을 참조하여 본 발명의 수소 확산 방지막 형성방법에 대하여 설명하면 다음과 같다.Referring to the accompanying drawings, a method for forming a hydrogen diffusion barrier of the present invention will be described.

도 2는 본 발명의 일실시예에 따른 수소 확산 방지막 형성방법을 나타낸 예시도이다.2 is an exemplary view showing a method for forming a hydrogen diffusion barrier according to an embodiment of the present invention.

본 발명은 일반 디램 소자나 FeRAM에 커패시터를 제조한 후에 PEALD(Plasma Enhanced Atomic Layer Deposition)법으로 알루미늄 산화막(Al2O3)이나 탄탈륨 산화막(Ta2O5)이나 실리콘 산화막(SiO2)이나 티타늄 산화막(TiO2)이나 지르코늄 산화막(ZrO2)이나 스트론튬 산화막(SrOx)이나 비스무스 산화막(Bi2O3)이나 스트론튬 산화막(SrOx)과 탄탈륨 산화막(Ta2O5)의 혼합막 또는 적층막으로 구성된 수소 확산 방지막을 형성하기 위한 것으로, 이와 같은 수소 확산 방지막을 형성할 때 반응가스로 수소 소오스를 사용하지 않고 산소를 플라즈마 상태로 여기하여 사용한다.According to the present invention, after a capacitor is manufactured in a general DRAM device or a FeRAM, an aluminum oxide film (Al 2 O 3), a tantalum oxide film (Ta 2 O 5), a silicon oxide film (SiO 2), a titanium oxide film (TiO 2), or a zirconium oxide film is produced by a plasma enhanced atomic layer deposition (PEALD) method. It is for forming a hydrogen diffusion prevention film composed of a mixed film or a laminated film of (ZrO2), strontium oxide film (SrOx), bismuth oxide film (Bi2O3), strontium oxide film (SrOx), and tantalum oxide film (Ta2O5). When forming, oxygen is used in a plasma state without using a hydrogen source as a reaction gas.

도 2는 상기의 수소 확산 방지막들 중 알루미늄 산화막을 형성할 때 반응로에 위치한 기판상에 반응원료로 TMA(Tri Methyls Aluminum)를 사용하고 반응가스로 O2나 N2O나 O2와 N2O의 혼합가스를 사용하는 예를 나타낸 것이다.FIG. 2 illustrates the use of TMA (Tri Methyls Aluminum) as a reaction material on a substrate positioned in a reactor when forming an aluminum oxide film among the hydrogen diffusion barrier layers, and a mixture of O 2 or N 2 O or O 2 and N 2 O as a reaction gas. An example is shown.

상기와 같은 수소 확산 방지막을 형성할 때 사용된 반응원료와 반응가스에 대하여 설명하면 다음과 같다.Referring to the reaction raw materials and the reaction gas used when forming the hydrogen diffusion barrier as described above are as follows.

먼저, 알루미늄 산화막(Al2O3)을 PEALD로 증착할 때 반응원료는 Al(CH3)3, (C2H5)2AlX(X=Br,Cl,I), (I-C4H9)2AlH, (CH3)2AlX(X=NH2,Cl,H), (CH3)2AlH:N(CH3)2C2H5, AlH:N(CH3)2C2H5, RalCl2(R=CH3,C2H5), R3Al(R=n-C3H7,n=C4H9), Al(C2H5)3, (I-C4H9)3Al, AlH3:N(CH3)3 또는 이들을 용매에 녹인 화합물을 사용한다.First, when the aluminum oxide film (Al2O3) is deposited by PEALD, the reaction materials are Al (CH3) 3, (C2H5) 2AlX (X = Br, Cl, I), (I-C4H9) 2AlH, (CH3) 2AlX (X = NH2, Cl, H), (CH3) 2AlH: N (CH3) 2C2H5, AlH: N (CH3) 2C2H5, RalCl2 (R = CH3, C2H5), R3Al (R = n-C3H7, n = C4H9), Al ( C 2 H 5) 3, (I-C 4 H 9) 3 Al, AlH 3: N (CH 3) 3 or a compound dissolved in a solvent are used.

그리고 탄탈륨 산화막(Ta2O5)를 PEALD로 증착할 때 반응원료는 Ta(OEt)5, Ta(I-OC3H7)5, Ta(OCH3)5 또는 이들을 용매에 녹인 화합물을 사용한다.When the tantalum oxide layer (Ta2O5) is deposited by PEALD, the reaction raw material is Ta (OEt) 5, Ta (I-OC3H7) 5, Ta (OCH3) 5 or a compound obtained by dissolving them in a solvent.

그리고 실리콘 산화막(SiO2)을 PEALD로 증착할 때 반응원료는 (C2H5)2SiH2, (CH3)2SiCl2, (CH3)2Si(OC2H5)2, (CH3)2Si(OCH3)2, (CH3)2SiH2, C2H5Si(OC2H5)3, CH3SiH, CH3SiCl3, CH3Si(OC2H5)3, CH3Si(OCH3)3, (C2H5)xSiHy(x+y=4,x=0~4), (CH3)xSiHy(x+y=4,x=0~4), (CH3)xSiHy(x+y=4,x=0~4) 또는 이들을 용매에 녹인 화합물을 사용한다.And when the silicon oxide (SiO2) is deposited by PEALD, the reaction materials are (C2H5) 2SiH2, (CH3) 2SiCl2, (CH3) 2Si (OC2H5) 2, (CH3) 2Si (OCH3) 2, (CH3) 2SiH2, C2H5Si ( OC2H5) 3, CH3SiH, CH3SiCl3, CH3Si (OC2H5) 3, CH3Si (OCH3) 3, (C2H5) xSiHy (x + y = 4, x = 0 ~ 4), (CH3) xSiHy (x + y = 4, x = 0-4), (CH3) xSiHy (x + y = 4, x = 0-4) or a compound in which these are dissolved in a solvent.

그리고 티타늄 산화막(TiO2)를 PEALD로 증착할 때 반응원료는 DPM2TiCl2, Ti(I-Opr)4, Ti(I-Opr)2DPM2, Ti(OCH(CH3)2)2(C11H19O2)2 또는 이들을 용매에 녹인 화합물을 사용한다.And when the titanium oxide film (TiO2) is deposited by PEALD, the reaction materials are DPM2TiCl2, Ti (I-Opr) 4, Ti (I-Opr) 2DPM2, Ti (OCH (CH3) 2) 2 (C11H19O2) 2 or these in a solvent. Use dissolved compound.

그리고 지르코늄 산화막(ZrO2)을 PEALD로 증착할 때 반응원료는 Zr(i-Opr)4, Zr(n-OBu)4, Zr(t-OBu)4 또는 이들을 용매에 녹인 화합물을 사용한다.When the zirconium oxide layer (ZrO 2) is deposited by PEALD, the reaction raw material is Zr (i-Opr) 4, Zr (n-OBu) 4, Zr (t-OBu) 4 or a compound dissolved in a solvent.

그리고 스트론튬 산화막(SrOx)을 PEALD로 증착할 때 반응원료는 Sr(DPM)2, Sr(DPM)2(tetraene)2, Sr(DPM)2(triene)2 또는 이들을 용매에 녹인 화합물을 사용한다.When the strontium oxide film (SrOx) is deposited by PEALD, the reaction raw material may be Sr (DPM) 2, Sr (DPM) 2 (tetraene) 2, Sr (DPM) 2 (triene) 2 or a compound dissolved in a solvent.

그리고 비스무스 산화막(Bi2O3)을 PEALD로 증착할 때 반응원료는 (Ph)3Bi, Bi(OtAm)3, Bi(CH3)3 또는 이들을 용매에 녹인 화합물을 사용한다.When the bismuth oxide film (Bi 2 O 3) is deposited by PEALD, the reaction material is (Ph) 3 Bi, Bi (OtAm) 3, Bi (CH 3) 3 or a compound dissolved in a solvent.

또는 SrOx와 Ta2O5의 혼합막 또는 적층막을 수소 확산 방지막으로 형성할 때 반응원료는 Sr[Ta(OEt)5(OC2H4OCH3)], Sr[Ta(OEt)6]2 또는 이들을 용매에 녹인 화합물을 사용한다.Alternatively, when a mixed film or a laminated film of SrOx and Ta2O5 is formed as a hydrogen diffusion barrier, the reaction raw material may be Sr [Ta (OEt) 5 (OC2H4OCH3)], Sr [Ta (OEt) 6] 2 or a compound dissolved in a solvent. .

다음에 상기에 열거한 것과 같은 수소 확산 방지막을 PEALD법으로 형성할 때 반응로에 주입되는 반응가스는 플라즈마 반응가스인 O2, N2O 또는 이들의 혼합가스를 사용한다.Next, when forming a hydrogen diffusion barrier film as listed above by the PEALD method, the reaction gas injected into the reactor uses O 2, N 2 O or a mixture of these gases.

상기에서와 같이 PEALD법으로 수소 확산 방지막을 형성할 때 수소 소오스를 사용하지 않고 산소를 포함한 가스를 이용해서 수소 확산 방지막을 형성함과 동시에 플라즈마 처리가 진행된다.As described above, when the hydrogen diffusion barrier is formed by the PEALD method, the hydrogen diffusion barrier is formed using a gas containing oxygen instead of a hydrogen source, and the plasma treatment proceeds.

상기와 같은 본 발명 수소 방지막 형성방법은 다음과 같은 효과가 있다.The hydrogen barrier film forming method of the present invention as described above has the following effects.

수소 소오스가 없는 산소를 플라즈마 상태로 여기하여 수소 확산 방지막을 형성하므로 수소에 의한 열화 현상이 발생하는 것을 방지할 수 있다.Since hydrogen without hydrogen source is excited in a plasma state to form a hydrogen diffusion preventing film, deterioration due to hydrogen can be prevented from occurring.

Claims (11)

기판이 구비된 반응로에 반응원료와 산소를 포함한 반응가스를 이용한 피이에이엘디(Plasma Enhanced Atomic Layer Deposition:PEALD)법으로 수소 확산 방지막을 형성함을 특징으로 하는 수소 확산 방지막 형성방법.A method of forming a hydrogen diffusion barrier, wherein a hydrogen diffusion barrier is formed in a reactor equipped with a substrate by using a plasma enhanced atomic layer deposition (PEALD) method. 제 1 항에 있어서, 상기 수소 확산 방지막은 알루미늄 산화막(Al2O3)이나 탄탈륨 산화막(Ta2O5)이나 실리콘 산화막(SiO2)이나 티타늄 산화막(TiO2)이나 지르코늄 산화막(ZrO2)이나 스트론튬 산화막(SrOx)이나 비스무스 산화막(Bi2O3)이나 스트론튬 산화막(SrOx)과 탄탈륨 산화막(Ta2O5)의 혼합막 또는 적층막으로 형성되는 것을 포함함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1, wherein the hydrogen diffusion barrier is formed of aluminum oxide (Al2O3), tantalum oxide (Ta2O5), silicon oxide (SiO2), titanium oxide (TiO2), zirconium oxide (ZrO2), strontium oxide (SrOx) or bismuth oxide ( Bi2O3) or a strontium oxide film (SrOx) and tantalum oxide film (Ta2O5) formed of a mixed film or a laminated film, characterized in that it comprises a hydrogen diffusion preventing film forming method. 제 1 항에 있어서, 상기 반응가스는 O2 또는 N2O 또는 O2와 N2O의 혼합가스를 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1, wherein the reaction gas uses O 2 or N 2 O or a mixed gas of O 2 and N 2 O. 7. 상기 제 1 항 또는 제 2 항에 있어서, 상기 알루미늄 산화막(Al2O3)을 상기 PEALD법으로 증착할 때 상기 반응원료는 Al(CH3)3, (C2H5)2AlX(X=Br,Cl,I), (I-C4H9)2AlH, (CH3)2AlX(X=NH2,Cl,H), (CH3)2AlH:N(CH3)2C2H, AlH:N(CH3)2C2H5, RalCl2(R=CH3,C2H5), R3Al(R=n-C3H7,n=C4H9), Al(C2H5)3, (I-C4H9)3Al, AlH3:N(CH3)3 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1 or 2, wherein when the aluminum oxide film (Al2O3) is deposited by the PEALD method, the reaction material is Al (CH3) 3, (C2H5) 2AlX (X = Br, Cl, I), ( I-C4H9) 2AlH, (CH3) 2AlX (X = NH2, Cl, H), (CH3) 2AlH: N (CH3) 2C2H, AlH: N (CH3) 2C2H5, RalCl2 (R = CH3, C2H5), R3Al ( A method of forming a hydrogen diffusion barrier, wherein R = n-C3H7, n = C4H9), Al (C2H5) 3, (I-C4H9) 3Al, AlH3: N (CH3) 3 or a compound dissolved in a solvent. 상기 제 1 항 또는 제 2 항에 있어서, 상기 탄탈륨 산화막(Ta2O5)를 상기 PEALD법으로 증착할 때 상기 반응원료는 Ta(OEt)5, Ta(I-OC3H7)5, Ta(OCH3)5 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1 or 2, wherein when the tantalum oxide film (Ta2O5) is deposited by the PEALD method, the reaction raw material is Ta (OEt) 5, Ta (I-OC3H7) 5, Ta (OCH3) 5 or A method for forming a hydrogen diffusion barrier, characterized by using a compound dissolved in a solvent. 상기 제 1 항 또는 제 2 항에 있어서, 상기 실리콘 산화막(SiO2)을 상기 PEALD법으로 증착할 때 상기 반응원료는 (C2H5)2SiH2, (CH3)2SiCl2, (CH3)2Si(OC2H5)2, (CH3)2Si(OCH3)2, (CH3)2SiH2, C2H5Si(OC2H5)3, CH3SiH, CH3SiCl3, CH3Si(OC2H5)3, CH3Si(OCH3)3, (C2H5)xSiHy(x+y=4,x=0~4), (CH3)xSiHy(x+y=4,x=0~4), (CH3)xSiHy(x+y=4,x=0~4) 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1 or 2, wherein when the silicon oxide film (SiO2) is deposited by the PEALD method, the reaction raw material is (C2H5) 2SiH2, (CH3) 2SiCl2, (CH3) 2Si (OC2H5) 2, (CH3). ) 2Si (OCH3) 2, (CH3) 2SiH2, C2H5Si (OC2H5) 3, CH3SiH, CH3SiCl3, CH3Si (OC2H5) 3, CH3Si (OCH3) 3, (C2H5) xSiHy (x + y = 4, x = 0 ~ 4 ), (CH3) xSiHy (x + y = 4, x = 0 to 4), (CH3) xSiHy (x + y = 4, x = 0 to 4) or a compound obtained by dissolving them in a solvent Method of forming diffusion barrier. 상기 제 1 항 또는 제 2 항에 있어서, 상기 티타늄 산화막(TiO2)를 상기 PEALD로 증착할 때 상기 반응원료는 DPM2TiCl2, Ti(I-Opr)4, Ti(I-Opr)2DPM2, Ti(OCH(CH3)2)2(C11H19O2)2 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1 or 2, wherein when the titanium oxide layer (TiO2) is deposited with the PEALD, the reaction raw materials are DPM2TiCl2, Ti (I-Opr) 4, Ti (I-Opr) 2DPM2, Ti (OCH ( CH3) 2) 2 (C11H19O2) 2 or a compound obtained by dissolving them in a solvent. 상기 제 1 항 또는 제 2 항에 있어서, 상기 지르코늄 산화막(ZrO2)을 상기 PEALD법으로 증착할 때 상기 반응원료는 Zr(i-Opr)4, Zr(n-OBu)4, Zr(t-OBu)4 또는이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.According to claim 1 or 2, wherein when the zirconium oxide film (ZrO2) is deposited by the PEALD method, the reaction raw material is Zr (i-Opr) 4, Zr (n-OBu) 4, Zr (t-OBu 4) or a method for forming a hydrogen diffusion barrier, characterized by using a compound dissolved in a solvent. 상기 제 1 항 또는 제 2 항에 있어서, 상기 스트론튬 산화막(SrOx)을 상기 PEALD법으로 증착할 때 상기 반응원료는 Sr(DPM)2, Sr(DPM)2(tetraene)2, Sr(DPM)2(triene)2 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.According to claim 1 or 2, wherein when the strontium oxide film (SrOx) is deposited by the PEALD method, the reaction raw material is Sr (DPM) 2, Sr (DPM) 2 (tetraene) 2, Sr (DPM) 2 (triene) 2 or a compound in which these are dissolved in a solvent. 상기 제 1 항 또는 제 2 항에 있어서, 상기 비스무스 산화막(Bi2O3)을 상기 PEALD법으로 증착할 때 상기 반응원료는 (Ph)3Bi, Bi(OtAm)3, Bi(CH3)3 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The method of claim 1 or 2, wherein when the bismuth oxide film (Bi2O3) is deposited by the PEALD method, the reaction raw material is (Ph) 3Bi, Bi (OtAm) 3, Bi (CH3) 3 or these dissolved in a solvent. Method for forming a hydrogen diffusion barrier, characterized in that using a compound. 상기 제 1 항 또는 제 2 항에 있어서, 상기 스트론튬 산화막(SrOx)과 상기 탄탈륨 산화막(Ta2O5)의 혼합막 또는 적층막을 상기 PEALD법으로 증착할 때 상기 반응원료는 Sr[Ta(OEt)5(OC2H4OCH3)], Sr[Ta(OEt)6]2 또는 이들을 용매에 녹인 화합물을 사용함을 특징으로 하는 수소 확산 방지막 형성방법.The reaction raw material according to claim 1 or 2, wherein when the mixed film or the laminated film of the strontium oxide film (SrOx) and the tantalum oxide film (Ta2O5) is deposited by the PEALD method, the reaction raw material is Sr [Ta (OEt) 5 (OC2H4OCH3). )], Sr [Ta (OEt) 6] 2 or a compound in which these are dissolved in a solvent.
KR10-2000-0079639A 2000-12-21 2000-12-21 Method for forming barrier layer of hydrogen diffusion KR100379547B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079639A KR100379547B1 (en) 2000-12-21 2000-12-21 Method for forming barrier layer of hydrogen diffusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079639A KR100379547B1 (en) 2000-12-21 2000-12-21 Method for forming barrier layer of hydrogen diffusion

Publications (2)

Publication Number Publication Date
KR20020050483A KR20020050483A (en) 2002-06-27
KR100379547B1 true KR100379547B1 (en) 2003-04-10

Family

ID=27684160

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0079639A KR100379547B1 (en) 2000-12-21 2000-12-21 Method for forming barrier layer of hydrogen diffusion

Country Status (1)

Country Link
KR (1) KR100379547B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507864B1 (en) * 2001-12-10 2005-08-18 주식회사 하이닉스반도체 Method of manufacturing semiconductor device having hydrogen diffusion barrier layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564609B1 (en) * 2003-02-27 2006-03-29 삼성전자주식회사 Method for forming silicon dioxide film using siloxane compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129827A (en) * 1995-11-02 1997-05-16 Sony Corp Ferroelectric capacitor
KR19990037319A (en) * 1997-10-24 1999-05-25 도루 하라 Semiconductor memory device with less deterioration of dielectric thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129827A (en) * 1995-11-02 1997-05-16 Sony Corp Ferroelectric capacitor
KR19990037319A (en) * 1997-10-24 1999-05-25 도루 하라 Semiconductor memory device with less deterioration of dielectric thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507864B1 (en) * 2001-12-10 2005-08-18 주식회사 하이닉스반도체 Method of manufacturing semiconductor device having hydrogen diffusion barrier layer

Also Published As

Publication number Publication date
KR20020050483A (en) 2002-06-27

Similar Documents

Publication Publication Date Title
JP4057184B2 (en) Thin film manufacturing method using atomic layer deposition
US8361910B2 (en) Pretreatment processes within a batch ALD reactor
KR100555543B1 (en) Method for forming high dielectric layer by atomic layer deposition and method for manufacturing capacitor having the layer
KR100385947B1 (en) Method of forming thin film by atomic layer deposition
US8017182B2 (en) Method for depositing thin films by mixed pulsed CVD and ALD
US7476420B2 (en) Process for producing metal oxide films at low temperatures
TWI488290B (en) Semiconductor device including carbon-containing electrode and method for fabricating the same
US20060205186A1 (en) High dielectric film and related method of manufacture
JP2005509287A5 (en)
US20020001974A1 (en) Method for manufacturing zirconium oxide film for use in semiconductor device
US20060062917A1 (en) Vapor deposition of hafnium silicate materials with tris(dimethylamino)silane
KR20080003387A (en) Multilayer, multicomponent high-k films and methods for depositing the same
JP2004256916A (en) Atomic layer deposition of oxide film
KR20080011236A (en) Plasma treatment of dielectric material
KR20070009747A (en) Method of growing oxide films
US6984565B2 (en) Method of manufacturing a semiconductor device
CN213295503U (en) Article for semiconductor processing chamber
JP7250397B2 (en) Selective film deposition using halogen passivation
Musgrave et al. Precursors for atomic layer deposition of high-k dielectrics
KR100379547B1 (en) Method for forming barrier layer of hydrogen diffusion
JP3224084U (en) Erosion resistant metal fluoride coatings deposited by atomic layer deposition
KR20020085794A (en) Thin film comprising multi components and method for forming the same
US9064694B2 (en) Nitridation of atomic layer deposited high-k dielectrics using trisilylamine
KR100507864B1 (en) Method of manufacturing semiconductor device having hydrogen diffusion barrier layer
US20100055321A1 (en) Precursors for atomic layer deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110222

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee