KR100362678B1 - Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore - Google Patents

Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore Download PDF

Info

Publication number
KR100362678B1
KR100362678B1 KR1019990059506A KR19990059506A KR100362678B1 KR 100362678 B1 KR100362678 B1 KR 100362678B1 KR 1019990059506 A KR1019990059506 A KR 1019990059506A KR 19990059506 A KR19990059506 A KR 19990059506A KR 100362678 B1 KR100362678 B1 KR 100362678B1
Authority
KR
South Korea
Prior art keywords
flow
ore
conduits
pressure
furnace
Prior art date
Application number
KR1019990059506A
Other languages
Korean (ko)
Other versions
KR20010065007A (en
Inventor
신명균
이준혁
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
뵈스트-알핀 인두스트리안라겐바우 게엠바하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원, 뵈스트-알핀 인두스트리안라겐바우 게엠바하 filed Critical 주식회사 포스코
Priority to KR1019990059506A priority Critical patent/KR100362678B1/en
Priority to UA2001074557A priority patent/UA70348C2/en
Priority to AU14200/01A priority patent/AU755507B2/en
Priority to US09/869,725 priority patent/US6736876B1/en
Priority to PCT/KR2000/001257 priority patent/WO2001032941A1/en
Priority to JP2001535619A priority patent/JP3506690B2/en
Priority to AT00976417T priority patent/ATE298806T1/en
Priority to EP00976417A priority patent/EP1163375B1/en
Priority to RU2001118469/02A priority patent/RU2218418C2/en
Priority to BR0007280-0A priority patent/BR0007280A/en
Priority to DE60021064T priority patent/DE60021064T2/en
Priority to CA002358425A priority patent/CA2358425C/en
Publication of KR20010065007A publication Critical patent/KR20010065007A/en
Application granted granted Critical
Publication of KR100362678B1 publication Critical patent/KR100362678B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Abstract

본 발명은 용융가스화로내의 조업상황 변동에 의해 용융가스화로내에서 배출되어 다단으로 설치된 유동환원로측으로 공급되는 고온의 환원가스 유량의 급격한 변동이 야기되는 상황에서 다단 유동환원로들 사이의 광석흐름이 과도하게 정체되는 것을 방지할수 있도록 개선된 용철제조공정에 있어서 유동 환원로의 광석흐름 정체방지장치에 관한 것으로,In the present invention, the ore flow between the multi-stage flow reduction reactors is caused by the fluctuation of the flow rate of the high temperature reducing gas discharged from the melting gasification furnace and supplied to the flow reduction path installed in the multistage due to the change of operating conditions in the melting gasifier. The present invention relates to an apparatus for preventing stagnation of ore flow in a flow reducing furnace in an improved molten iron manufacturing process to prevent excessive stagnation.

제 1,2도관(11)(12)과 배기관(13)사이를 각각 연결하는 제 1,2연결관(2)(3); 상기 제 1,2연결관(2)(3)을 통한 가스흐름을 개폐하는 제 1,2개폐밸브(4)(5); 상기 제 1,2개폐밸브(4)(5)의 전,후단에 각각 연결구성되는 제 1,2질소퍼징용 도관(6a)(6b)(7a)(7b); 상기 제 1,2도관(11)(12)에 부과되는 압력변동을 수시로 검지할수 있도록 상기 예비환원로(C), 최종환원로(D)에 근접한 제 1,2도관(11)(12)의 각 말단부에 설치되는 제 1,2압력계(8)(9); 상기 제 1,2압력계(8)(9)에서 검지된 값을 근거로 하여 상기 제 1,2개폐밸브(4)(5)를 제어하는 제어기;를 포함하는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치를 제공한다.First and second connection pipes 11 and 12 and the first and second connection pipes 2 and 3 respectively connecting between the first and second conduits 11 and 12; First and second open / close valves (4) (5) for opening and closing the gas flow through the first and second connection pipes (2) and (3); First and second nitrogen purging conduits (6a) (6b) (7a) (7b) connected to the front and rear ends of the first and second open / close valves (4) and (5), respectively; The first and second conduits 11 and 12 adjacent to the preliminary reduction path C and the final reduction path D so that pressure fluctuations imposed on the first and second conduits 11 and 12 can be detected at any time. First and second pressure gauges 8 and 9 provided at each end portion; A controller for controlling the first and second open / close valves (4) and (5) based on values detected by the first and second pressure gauges (8) and (9); Provided is an apparatus for preventing stagnation of ore flow in a flow reduction furnace in a process.

Description

일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치{DEVICE FOR PREVENTING MATERIAL FLOW BLOCKAGE OF FLUIDIZED BED REACTOR IN IRONMAKING PROCESS USING NON-COKING COAL AND FINE ORE}DEVICE FOR PREVENTING MATERIAL FLOW BLOCKAGE OF FLUIDIZED BED REACTOR IN IRONMAKING PROCESS USING NON-COKING COAL AND FINE ORE}

본 발명은 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로에서의 광석흐름이 정체,역류되는 것을 방지할 수 있는 장치에 관한 것으로, 보다 상세히는 용융가스화로내의 조업상황 변동에 의해 용융가스화로내에서 배출되어 다단으로 설치된 유동환원로측으로 공급되는 고온의 환원가스 유량의 급격한 변동이 야기되는 상황에서 다단 유동환원로들 사이의 광석흐름이 과도하게 정체되는 것을 방지할수 있도록 개선된 용철제조공정에 있어서 유동 환원로의 광석흐름 정체방지장치에 관한 것이다.The present invention relates to an apparatus capable of preventing stagnation and backflow of ore flow in a fluid reduction furnace in a molten iron manufacturing process using ordinary coal and fine iron ore. More specifically, the present invention relates to a molten gasification furnace. Improved molten iron production to prevent excessive stagnation of ore flow between the multi-stage flow reduction reactors in the event of rapid fluctuations in the flow rate of high-temperature reducing gas discharged from the gasifier to the multistage flow reduction reactor. The present invention relates to a device for preventing ore flow stagnation in a flow reduction furnace.

일반적으로 용철생산설비의 대종을 이루고 있는 고로법은 그 반응로 특성상 일정이상으 강도를 보유하고 있으며, 로내 통기성 확보를 보장할수 있는 입도를 보유한 원료를 요구하는바, 연료 및 환원제로 사용하는 탄소원으로서는 특정원료탄을 가공처리한 코오크스에 의존하고 있으며, 철원으로서는 일련의 괴상화 공정을 거친 소결광에 주로 의존하고 있다.In general, the blast furnace method, which constitutes a large scale of molten iron production equipment, has a certain strength or higher due to the characteristics of the reactor, and requires a raw material having a particle size to ensure the ventilation of the furnace. As a carbon source used as a fuel and a reducing agent, It relies on coke processed specific raw coal, and as an iron source, it mainly depends on sintered ore which has undergone a series of bulking processes.

이에 따라, 현행 고로법은 코오크스 제조설비 및 소결설비등의 원료예비처리설비가 반드시 수반되고 있는바, 상기한 부대설비의 구축에 필요한 제비용 및 상기 부대설비에서 발생하는 제반 환경오염물질에 대한 전세계적인 규제를 극복하기 위한 막대한 환경오염방지설비에 대한 막대한 투자비용등에 의하여 현행 고로법의 경쟁력은 급속히 잠식되고 있는 실정이다.Accordingly, the current blast furnace method necessarily involves preliminary processing of raw materials such as coke manufacturing facilities and sintering facilities. The competitiveness of the current blast furnace law is rapidly being encroached by the enormous investment costs for environ- mental pollution prevention facilities to overcome the regulations.

상기와 같은 상황에 대처하기 위하여 세계각국은 연료 및 환원제로서 일반탄을 직접 사용하며, 철원으로서는 전세계 광석생산량의 80%이상을 점유하고 있는 분철광을 직접 사용하여 용철을 제조하는 신제선공정의 개발에 박차를 가하고 있다.In order to cope with the above situation, countries around the world directly use general coal as fuel and reducing agent, and as a source of iron, develop new steelmaking process to manufacture molten iron by using ferrous ore, which occupies more than 80% of the world's ore production. Spurs on

이와 같은 기술과 관련된 종래의 일반탄 및 분광을 직접 사용하는 용철제조설비에 있어서는 오스트리아에서 특허출원중인 AT2092/92등이 알려져 있다.In the molten iron manufacturing equipment which uses the conventional general coal and spectroscopy directly related to this technique, AT2092 / 92 etc. which are patent-pending in Austria are known.

상기 공지된 기술에 의하면, 전체공정은 도 1에 도시한 바와같이 예열로(B), 예비환원로(C) 및 최종환원로(D)등의 3단 유동환원로와 석탄충진층이 형성되어 있는 용융가스화로(A)로 구성되어 있는바, 최상단의 예비환원로(C)에 연속적으로 장입되는 상온의 분광은 상기 3단의 유동환원로(B)(C)(D)를 거치면서 상기한 용융가스화로(A)로부터 공급되는 고온의 환원기류와 접촉함으로서, 승온 및 90%이상의 환원이 이루어진 고온의 환원분광으로 전환되어 배출되는 한편, 배출된 환원분광은 석탄충진층이 형성되어 있는 상기 용융가스화로(A)내로 환원광공급라인(24)을 통하여 연속적으로 장입되어 상기 석탄충진층내에서 용융됨으로서 용선으로 전환되어 상기 용융가스화로(A)의 외부로 출선된다.According to the known technique, as shown in FIG. 1, a three-stage flow reduction reactor such as a preheating furnace (B), a preliminary reduction reactor (C), and a final reduction reactor (D) and a coal packed bed are formed. It consists of a molten gasifier (A), the spectroscopy at room temperature continuously charged into the preliminary reduction reactor (C) of the upper stage while passing through the three-stage flow reduction reactor (B) (C) (D) By contacting with a high temperature reducing air stream supplied from a melt gasifier (A), it is converted into a high temperature reducing spectrometer which is heated up and reduced by more than 90%, and discharged, while the reduced reducing spectroscopy is formed with the coal packed layer. The molten gasifier A is continuously charged into the molten gasifier A through the reducing light supply line 24 and melted in the coal packed bed to be turned into molten iron and discharged to the outside of the molten gasifier A.

또한, 상기 용융가스화로(A)에 있어서는 로상부에서 괴상의 일반탄이 연속적으로 공급되어 로내부에 일정한 높이의 석탄충진층을 형성하게 되며, 상기 석탄충진층내로 그 외벽하단에 형성된 복수개의 풍구를 통해 산소가 취입되어 상기 석탄충진층내 석탄이 연속되고, 그 연소가스가 층진층을 통과하여 상승하면서 고온의 환원기류로 전환된 다음 상기 용융가스화로(A)의 외부로 배출되어 상기 3단의 유동환원로로 공급된다.In addition, in the molten gasifier (A), the bulky coal is continuously supplied from the upper part of the furnace to form a coal filling layer having a constant height inside the furnace, and a plurality of air holes formed at the bottom of the outer wall into the coal filling layer. Oxygen is blown in through the coal in the coal packed bed, and the combustion gas rises through the bed and is converted to a high temperature reducing air and then discharged to the outside of the molten gasifier (A). It is fed to the flow reduction reactor.

그리고, 상기 3단 유동환원로를 통과하는 광석의 예열로(B), 예비환원로(C) 및 최종환원로(D)간의 이동은 인접하는 로사이를 연결하는 제 1,2광석흐름도관(이하, 도관이라 한다.)(11)(12)을 통해 이루어지며, 상기 도관(11)(12)내에서는 상,하단압력차이에 의해 하단의 유동환원로로부터 상단의 유동환원로로 형성되는 고온환원가스의 흐름과 중력에 의해 상단의 유동환원로로부터 하단의 유동환원로로 형성되는 광석흐름이 서로 교차되어 형성하게 된다.In addition, the movement between the preheating furnace (B), the preliminary reduction reactor (C), and the final reduction reactor (D) of the ore passing through the three-stage flow reduction reactor is the first and second ore flow conduits connecting the adjacent furnaces (hereinafter, It is made through (11) (12), the high temperature reduction formed in the flow reduction path of the lower flow path from the lower flow reduction path by the upper and lower pressure difference in the conduit (11, 12) Ore flows formed from the flow reduction path at the top to the flow reduction path at the bottom by the flow of gas and gravity are formed to cross each other.

한편, 상기한 용융가스화로(A)로부터 제 1,2,3가스공급라인(21)(22)(23)을 통하여 3단의 유동환원로(B)(C)(D)로 공급되는 고온환원가스는 일반탄의 연소 및 가스화에 의해 생성되는바, 그 생성량은 원료석탄의 성상 및 조업이상에 따라 상당히 변동할수 있는데, 현재까지의 조업결과에 따르면 상기 용융가스화로(A)내에서의 고온환원가스량의 변동폭은 심한 경우는 평균 생성량의 20 내지 30%정도에 이르며, 상기한 극심함 변동이 수분 정도의 상단히 짧은 시간내에 일어나고 있다.On the other hand, the high temperature is supplied to the three-stage flow reduction path (B) (C) (D) through the first, second, third gas supply lines 21, 22, 23 from the melt gasifier (A) The reducing gas is produced by combustion and gasification of ordinary coal, and the amount of generation may vary considerably depending on the characteristics of raw coal and operation abnormalities. According to the results of the operation so far, the high temperature in the molten gasifier A In the severe case, the fluctuation range of the reducing gas amount is about 20 to 30% of the average amount produced, and the above extreme fluctuation occurs within a short time of about a few minutes.

이러한 현상은 통상적으로 압력피크(pressure peak)라고 통칭되며, 상기 압력피크가 발생한 경유에는 예열로(B), 예비환원로(C)측으로 공급되는 고온환원가스량이 단시간내에 급격하게 증가하게 됨에 따라 로사이를 연결하는 제 1,2가스공급라인(21)(22)을 통해 예열로(B)와 예비환원로(C)측으로의 환원가스의 공급량이 증가함과 더불어, 분광이 배출되어 흐르는 상기 제 1,2도관(11)(12)을 통해 하부로부터 상승하는 환원가스의 양도 급격하게 증가하게 된다.This phenomenon is commonly referred to as a pressure peak, and as the amount of the hot reducing gas supplied to the preheating furnace (B) and the preliminary reduction reactor (C) side is increased rapidly in a short time. The first and second gas supply lines 21 and 22 connecting the same, the amount of supply of reducing gas to the preheating furnace (B) and the preliminary reduction reactor (C) side increases, and the spectroscopic discharge is the first flow , The amount of reducing gas rising from the bottom through the second conduit (11, 12) is also rapidly increased.

상기한 제 1,2도관(11)(12)을 통해 상승하는 고온의 환원가스의 양이 급격한 증가에 따른 상기 제 1,2도관(11)(12)내에서의 빠른 가스유속의 형성은 상기 가스류와 교차되어 형성되고 있는 광석흐름의 정체를 유발하게 되며, 과도한 경우에는 광석흐름을 역류시키는 현상까지 초래하게 된다.The rapid formation of the gas flow rate in the first and second conduits 11 and 12 as the amount of the high temperature reducing gas rising through the first and second conduits 11 and 12 is increased Ore flow is formed to intersect with the gas flow, and in excessive cases, the flow of the ore flow is reversed.

또한, 상기한 광석흐름의 정체현상은 상기한 압력피크가 소멸된 후에도 상당한 시간동안 지속되기도 하며, 상기 3단 유동환원로의 원할한 조업을 저해할 뿐만 아니라 심한 경우에는 예열로(B), 예비환원로(C) 및 최종환원로(D)사이에서의 광석흐름을 완전히 차단함으로서 조업을 중단하는 심각한 설비사고를 유발하였다.In addition, the stagnation of the ore flow may continue for a considerable time even after the pressure peak is extinguished, and not only inhibits the smooth operation of the three-stage flow reduction reactor, but also severely preheats (B), preliminary Fully blocking the ore flow between the reduction furnace (C) and the final reduction furnace (D) caused a serious plant accident that would shut down the operation.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해서 안출된 것으로서, 그 목적은, 압력피크발생시 이를 검지하여 환원가스를 배기측으로 분기시킬수 있는 분기라인을 개방시킴으로서 광석이 흐르는 도관내에서의 광석흐름의 정체현상을 사전에 방지할수 있는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치를 제공하고자 한다.Accordingly, the present invention has been made to solve the above problems, the object of which is to detect when the pressure peak occurs, by opening the branch line which can branch the reducing gas to the exhaust side of the ore flow in the conduit through which the ore flows. In the molten iron manufacturing process using ordinary coal and iron ore that can prevent the congestion in advance to provide a device for preventing stagnation of ore flow in the flow reduction furnace.

도 1은 본 발명에 따른 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치를 도시한 전체구성도,1 is an overall configuration diagram showing an ore flow stagnation prevention device of a flow reducing furnace in a molten iron manufacturing process using a coal and a powdered iron ore according to the present invention,

도 2는 압력피크발생시 제 2광석흐름도관내서 광석흐름의 정체 및 역류를 유발하는 차압변화와 시간과의 상관관계를 도시한 그래프,FIG. 2 is a graph showing the correlation between time difference and differential pressure causing congestion and backflow of ore flow in the second ore flow conduit during pressure peak occurrence; FIG.

도 3은 본 발명을 채용하여 압력피크발생시 제 2광석흐름도관내에서의 차압변화와 시간과의 상관관계를 도시한 그래프.Figure 3 is a graph showing the correlation between the differential pressure change and the time in the second ore flow conduit at the time of the pressure peak employing the present invention.

* 도면의 주요부분에 대한 부호의 설명** Explanation of symbols for the main parts of the drawings *

2 ..... 제 1연결관 3 ..... 제 2연결관2 ..... 1st connector 3 ..... 2nd connector

4 ..... 제 1개폐밸브 5 ..... 제 2개폐밸브4 ..... 1st Opening Valve 5 ..... 2nd Opening Valve

6a,6b ... 제 1질소퍼징용 도관 7a,7b ...제 2질소퍼징용 도관6a, 6b ... first nitrogen purging conduit 7a, 7b ... second nitrogen purging conduit

8 ..... 제 1압력계 9 ...... 제 2압력계8 ..... 1st pressure gauge 9 ... 2nd pressure gauge

11 .... 제 1도관 12 ..... 제 2도관11 .... First Conduit 12 ..... Second Conduit

A ..... 용융가스화로 B ...... 예열로A ..... Melt Gasifier B ... Preheating Furnace

C ..... 예비환원로 C ...... 최종환원로C ..... Preliminary Reduction C ...

상기 목적을 달성하기 위한 기술적인 구성으로서 본 발명은,The present invention as a technical configuration for achieving the above object,

용융가스화로와 제 1,2,3가스공급라인을 통해 연결되는 예열로, 예비환원로 및 최종환원로로 이루어진 3단 유동환원로와, 상기 예열로와 배기관을 통해 연결되는 수집진장치와, 상기 예열로와 예비환원로사이를 연결하는 제 1광석흐름도관과 상기 예비환원로와 최종환원로사이를 연결하는 제 2광석흐름도관을 갖추어 용철을 제조하는 설비에 있어서,A preheating furnace connected to the melt gasifier and the first, second and third gas supply lines, a three-stage flow reducing furnace consisting of a preliminary reduction path and a final reduction path, and a collecting device connected to the preheating furnace and an exhaust pipe; In the facility for manufacturing molten iron having a first ore flow conduit connecting between the preheating furnace and the preliminary reduction path and the second ore flow conduit connecting between the preliminary reduction path and the final reduction path,

상기 제 1,2도관과 배기관사이를 각각 연결하는 제 1,2연결관; 상기 제 1,2연결관을 통한 가스흐름을 개폐하는 제 1,2개폐밸브; 상기 제 1,2개폐밸브의 전,후단에 각각 연결구성되는 제 1,2질소퍼징용 도관; 상기 제 1,2도관에 부과되는 압력변동을 수시로 검지할수 있도록 상기 예비환원로, 최종환원로에 근접한 제 1,2도관의 각 말단부에 설치되는 제 1,2압력계; 상기 제 1,2압력계에서 검지된 값을 근거로 하여 상기 제 1,2개폐밸브의 개폐를 제어하는 제어기;를 포함함을 특징으로 하는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치를 마련함에 의한다.First and second connection pipes connecting between the first and second conduits and the exhaust pipe, respectively; First and second open / close valves for opening and closing a gas flow through the first and second connection pipes; First and second nitrogen purging conduits respectively connected to the front and rear ends of the first and second open / close valves; First and second pressure gauges installed at each end of the first and second conduits close to the final reduction path so as to detect pressure fluctuations imposed on the first and second conduits from time to time; And a controller for controlling the opening and closing of the first and second opening / closing valves based on the values detected by the first and second pressure gauges. By providing a device for preventing ore flow stagnation.

이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면에 따라 보다 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치를 도시한 전체구성도로서, 도시한 바와같이, 본 발명의 장치(1)는 압력피크발생시 예열로(B)와 예비환원로(C)사이에 설치되는 제 1도관(11)과, 상기 예비환원로(C)와 최종환원로(D)사이에 설치되는 제 2도관(12)내에서 광석흐름이 정체되거나 역류되는 것을 방지하는 것이다.1 is an overall configuration diagram showing an ore flow stagnation prevention device of a flow reducing furnace in a molten iron manufacturing process using ordinary coal and powdered iron ore according to the present invention, as shown in FIG. The first conduit 11 is installed between the preheating furnace (B) and the preliminary reduction path (C) at the time of peak occurrence, and the second conduit (12) is installed between the preliminary reduction path (C) and the final reduction path (D). It is to prevent ore flow from stagnation or backflow within.

즉, 상기 제 1도관(11)에 일단이 연통연결되는 제 1연결관(2)은 상기 예열로(B)를 거친 환원가스를 수집진장치(E)로 안내하는 배기관(13)과 타단이 연통연결되며, 상기 제 1연결관(2)의 길이중간에는 이를 통한 가스흐름을 적절히 개폐할수 있도록 제 1개폐밸브(4)가 장착되며, 상기 제 1개폐밸브(4)의 전,후단에는 닫힘작동시 상기배기관(13)에 연결된 제 1연결관(2)내부로 질소가스를 분사하는 제 1질소퍼징용 도관(6a)과, 상기 예비환원로(C)측으로 분철광석을 공급하는 제1도관(11)과 연결된 제 1연결관(2)내로 미분광석이 유입되는 것을 방지할 수 있도록 퍼징용 질소가스를 예비환원로(C)측으로 분사하는 또다른 제 1질소퍼징용 도관(6b)을 각각 연결구성하는 한편, 상기 제 1질소퍼징용 도관(6a)(6b)에는 질소가스의 공급을 적절히 제어할 수 있도록 조절밸브(16a)(16b)가 각각 장착된다.That is, the first connecting pipe (2) having one end connected to the first conduit (11) has an exhaust pipe (13) and the other end for guiding the reducing gas passed through the preheating furnace (B) to the collecting device (E). Is connected in communication, the middle of the length of the first connecting pipe (2) is equipped with a first opening and closing valve (4) so as to properly open and close the gas flow therethrough, the front and rear of the first opening and closing valve (4) is closed In operation, a first nitrogen purging conduit 6a for injecting nitrogen gas into the first connecting pipe 2 connected to the exhaust pipe 13 and a first conduit for supplying ferrous iron ore to the preliminary reduction path C. Another first nitrogen purging conduit 6b for injecting purge nitrogen gas to the preliminary reduction path C side to prevent the inflow of fine ore into the first connecting pipe 2 connected to (11), respectively. On the other hand, the first nitrogen purging conduits 6a and 6b are provided with control valves 16a and 16b to properly control the supply of nitrogen gas. Respectively, it is mounted.

그리고, 상기 제 1도관(11)에 부과되는 압력을 수시로 검지하여 관내 압력을 측정하는 제 1압력계(8)는 상기 예비환원로(C)에 근접하는 상기 제 1도관(11)의 말단부근방에 장착되며, 상기 제 1압력계(8)에서 측정된 압력값이 전송되어 수신되는 제어기를 갖추며, 상기 제어기는 상기 제 1도관(11)내에서 압력이 변동하는 상태를 연산하고, 압력피크발생시 이를 근거로 하여 상기 제 1개폐밸브(4)의 개폐여부를 판단하여 이를 제어하는 것이다.The first pressure gauge 8, which detects the pressure applied to the first conduit 11 from time to time and measures the pressure inside the tube, is located near the distal end of the first conduit 11 close to the preliminary reduction path C. And a controller in which the pressure value measured by the first pressure gauge 8 is transmitted and received, and the controller calculates a state in which the pressure fluctuates in the first conduit 11 and based on the occurrence of the pressure peak. By determining whether the first opening and closing valve 4 is opened or closed to control it.

한편, 상기 예비환원로(C)와 최종환원로(D)사이에도 상기와 동일하게 제 2연결관(3)을 구성하는바, 상기 제 2연결관(3)의 일단은 상기 배기관(13)과, 타단은 제 2도관(22)과 각각 연통연결되며, 상기 제 2연결관(3)의 길이중간에도 이를 통한 가스흐름을 개폐하는 제 2개폐밸브(5)가 장착되며, 상기 제 2개폐밸브(5)의 전,후단에도 닫힘작동시 상기 배기관(13)과 연결된 측으로, 상기 최종환원로(D)와 연결된 측으로 퍼징용 질소가스를 각각 분사할 수 있도록 제 2질소퍼징용 도관(7a)(7b)을 각각 연결구성하며, 상기 제 2질소퍼징용 도관(7a)(7b)에도 질소가스의 공급을 제어하는 조절밸브(17a)(17b)가 각각 장착된다.On the other hand, between the preliminary reduction path (C) and the final reduction path (D) to form a second connecting pipe 3 in the same manner as above, one end of the second connecting pipe (3) is the exhaust pipe (13) And, the other end is in communication with the second conduit 22, respectively, and the second opening and closing valve (5) for opening and closing the gas flow through the middle of the length of the second connecting pipe (3) is mounted, the second opening and closing The second nitrogen purging conduit 7a so as to inject purging nitrogen gas to the side connected to the exhaust pipe 13 and to the side connected to the final reduction path D during the closing operation before and after the valve 5, respectively. Each of 7b is connected to each other, and the second nitrogen purging conduits 7a and 7b are respectively provided with control valves 17a and 17b for controlling the supply of nitrogen gas.

그리고, 상기 제 2도관(12)에 부과되는 압력을 수시로 검지하여 관내압력을 측정하는 제 2압력계(9)는 상기 최종환원로(D)에 근접하는 상기 제 2도관(12)의 말단부근방에 장착되며, 상기 제 2압력계(9)에서 측정된 압력값이 전송되어 수신되는 제어기를 갖추며, 상기 제어기는 상기 제 1도관(11)내에서 압력이 변동하는 상태를 연산하고, 압력피크발생시 이를 근거로 하여 상기 제 2개폐밸브(5)의 개폐여부를 판단하여 이를 제어하는 것이다.또한, 상기 제 1,2압력계(8)(9)는 상기 제 1,2개폐밸브(4)(5)와 전기적으로 각각 연결구성되고, 상기 제 1,2개폐밸브(4)(5)의 개폐를 제어하는 제어기와도 각각 전기적으로 연결된다.Then, the second pressure gauge (9) for detecting the pressure applied to the second conduit (12) from time to time to measure the pressure inside the tube near the end of the second conduit (12) close to the final reduction path (D) And a controller in which the pressure value measured by the second pressure gauge 9 is transmitted and received, and the controller calculates a state in which the pressure fluctuates in the first conduit 11 and based on the occurrence of the pressure peak. The first and second pressure gauges (8) and (9) are connected to the first and second open / close valves (4) and (5). It is electrically connected to each other, and is electrically connected to a controller for controlling opening and closing of the first and second open / close valves 4 and 5, respectively.

여기서, 상기 제 1,2연결관(2)(3)과 제 1,2도관(11)(12)이 서로 연통되는 연결부위(T1)(T2)는 압력피크발생시 상기 제 1연결관(2)내로 분철광석이 유입되는 것을 방지할 수 있도록 상기 예비환원로(C)내에서 형성되는 광석유동의 최대높이와 동일하거나 높은 위치에 제공되는 것이 좋다.Here, the first and second connection pipes (2) (3) and the first and second connection pipes (11, 12) are connected to each other (T1) (T2) when the pressure peak occurs in the first connection pipe (2) In order to prevent the introduction of the iron ore into the) it is preferable to be provided at the same position or higher than the maximum height of the ore flow formed in the preliminary reduction path (C).

그리고, 상기 제 1,2연결관(2)(3)은 고온의 환원가스에 충분히 견딜수 있는 내열강으로 구성되며, 상기 제 1,2연결관(2)(3)의 직경은 상기 제 1,2도관(11)(12)의 1/2크기로 갖추어지는 것이 바람직하다.The first and second connection pipes 2 and 3 are made of heat resistant steel that can withstand high temperature reducing gas sufficiently, and the diameters of the first and second connection pipes 2 and 3 are first and second. It is preferred to be provided with a size 1/2 of the conduits 11 and 12.

상술한 바와같은 구성을 갖는 본 발명의 작용 및 효과를 설명하면 다음과 같다.Referring to the operation and effect of the present invention having the configuration as described above are as follows.

예열로(B), 예비환원로(C) 및 최종환원로(D)내에서 정상적인 광석환원공정이 이루어져 압력피크가 발생하지 않을 경우에는 상기 제 1,2연결관(2)(3)에 장착된 제 1,2개폐밸브(4)(5)는 모두 닫힘상태를 유지하고 있기 때문에 용융가스화로(A)로부터 공급되는 고온의 환원가스는 제 1,2가스공급라인(21)(22)을 통하여 최종환원로(C), 예비환원로(C) 및 예열로(B)를 연속적으로 거쳐 배기관(13)으로 흐르는 정상적인 가스흐름을 형성한다.If the pressure peak does not occur due to the normal ore reduction process in the preheating furnace (B), preliminary reduction furnace (C) and final reduction furnace (D), the first and second connection pipes (2) and (3) are mounted. Since the first and second open / close valves 4 and 5 are kept closed, the high-temperature reducing gas supplied from the molten gasifier A is connected to the first and second gas supply lines 21 and 22. Through the final reduction path (C), the preliminary reduction path (C) and the preheating furnace (B) continuously to form a normal gas flow flowing to the exhaust pipe (13).

이러한 정상운전시 제 1,2질소퍼징용 도관(6a)(6b)(7a)(7b)에 연결된 조절밸브(16a)(16b)(17a)(17b)를 각각 개방하여 닫혀진 상기 제 1,2개폐밸브(4)(5)을 경계로 하여 질소가스가 제 1,2연결관(2)(3)내로 각각 공급됨으로서 미분탄을 포함하는 배기가스가 흐르는 배기관(13)과 분철광석이 흐르는 제 1,2도관(11)(12)사이에 연통연결된 제 1,2연결관(2)(3)의 내부로 이물질 및 미분광석이 유입되는 것을 방지한다.In the normal operation, the first and second nitrogen purging conduits 6a, 6b, 7a, and 7b open and close the control valves 16a, 16b, 17a, and 17b, respectively. Nitrogen gas is supplied into the first and second connection pipes (2) and (3) at the boundary between the on / off valves (4) and (5), respectively, so that the exhaust pipe (13) through which the exhaust gas containing pulverized coal flows and the first through which the iron-iron ore flows. The second conduit (11) (12) to prevent the inflow of foreign matter and fine ore into the interior of the first and second connection pipe (2) (3) connected between.

한편, 상기 용융가스화로(A)에서 발생하는 압력피크에 의하여 제 1도관(11)측으로 과다한 고온의 환원가스가 유입되면, 상기 제 1도관(11)의 말단부에 장착된 제 1압력계(8)에서 이를 검지하고, 검지된 압력신호는 제어기측으로 전송되고, 수신된 압력값이 일정시간동안 변동하는 압력변동속도값을 연산하여 이를 근거로 하여 상기 제 1개폐밸브(4)의 개폐여부를 판단하게 된다.On the other hand, when excessive high temperature reducing gas flows into the first conduit 11 due to the pressure peak generated in the melt gasifier A, the first pressure gauge 8 mounted to the distal end of the first conduit 11 Detects this, and the detected pressure signal is transmitted to the controller side, and calculates the pressure fluctuation speed value at which the received pressure value changes for a predetermined time to determine whether the first opening / closing valve 4 is opened or closed. do.

여기서, 상기 제 1개폐밸브(4)는 상기 제 1압력계(8)에서 측정되는 압력변동속도값이 설정된 기준값인 0.05bar/sec 이상일 때 개방작동된다.Here, the first opening / closing valve 4 is opened when the pressure variation speed value measured by the first pressure gauge 8 is 0.05 bar / sec or more, which is a set reference value.

상기와 같이 상기 제 1도관(11)의 말단부에서 검지된 압력변동속도의 값이 설정된 기준값이상으로 형성될 경우, 제 1개폐밸브(4)가 개방되어 배기관(13), 제 1연결관(2) 및 제 1도관(11)이 서로 연통연결됨으로서 상기 제 1도관(11)의 말단부로 다량 유입되어 상승하는 고온 환원가스의 상당부분이 상기 제 1도관(11)으로부터 제 1연결관(2)을 거쳐 배기관(13)으로 분기된다. 이것에 의해서 상기 제 1도관(11)내에서의 광석흐름에 반하는 과도한 유속의 환원가스흐름이 형성되는 것을 방지할 수 있기 때문에 상기 제 1도관(11)내에서 상기 예비환원로(C)측으로 흐르던 광석흐름이 관내에서 정체되거나 예열로(B)측으로 역류되는 것을 방지하여 안정된 조업을 보장할수 있는 것이다.As described above, when the value of the pressure fluctuation velocity detected at the distal end of the first conduit 11 is greater than or equal to the set reference value, the first opening / closing valve 4 is opened to exhaust the exhaust pipe 13 and the first connecting pipe 2. ) And the first conduit 11 are in communication with each other, so that a large portion of the hot reducing gas flowing into the distal end of the first conduit 11 in a large amount is increased from the first conduit 11 to the first conduit 2. Branched to the exhaust pipe 13 through. As a result, it is possible to prevent the formation of an excessive flow velocity reducing gas flow that is opposed to the ore flow in the first conduit 11, so that it has flowed to the preliminary reduction path C in the first conduit 11. Ore flow is prevented from stagnation in the tube or backflow to the preheating furnace (B) side to ensure a stable operation.

상기와 마찬가지로 상기 용융가스화로(A)에서 발생하는 압력피크에 의하여 제 2도관(12)측으로 과다한 양의 고온환원가스가 일시에 유입되면, 상기 제 2도관(12)의 말단부에 장착된 제 2압력계(9)에서 이를 검지하게 되고, 검지된 신호는 제어기측으로 전송되어 연산되고, 상기 제 2개폐밸브(5)의 개폐여부를 판단하게 된다.As described above, when an excessive amount of high temperature reducing gas flows into the second conduit 12 side due to the pressure peak generated in the molten gasifier A, the second end of the second conduit 12 is mounted. The pressure gauge 9 detects this, and the detected signal is transmitted and calculated to the controller side to determine whether the second open / close valve 5 is opened or closed.

여기서, 상기 제 2개폐밸브(5)는 상기 제 2압력계(9)에서 측정되는 압력변동속도값이 설정된 기준값인 0.03bar/sec 이상일 때 개방작동된다.Here, the second open / close valve 5 is opened when the pressure variation speed value measured by the second pressure gauge 9 is 0.03 bar / sec or more, which is a set reference value.

상기와 같이 상기 제 2도관(12)의 말단부에서 검지된 압력변동속도의 값이 설정된 기준값이상으로 형성될 경우, 제 2개폐밸브(5)가 개방되어 배기관(13), 제 2연결관(3) 및 제 2도관(12)이 서로 연통연결됨으로서 상기 제 2도관(12)의 말단부로 다량 유입되는 고온 환원가스의 상당부분이 상기 제 2도관(12)으로부터 제 2연결관(3)을 거쳐 배기관(13)으로 분기된다. 이것에 의해서 상기 제 2도관(12)내에서의 광석흐름에 반하는 과도한 유속의 환원가스흐름이 형성되는 것을 방지할 수 있기 때문에 상기 제 2도관(12)내에서 상기 최종환원로(D)측으로 흐르던 광석흐름이 관내에서 정체되거나 예비환원로(C)측으로 역류되는 것을 방지하여 안정된 조업을 보장할수 있는 것이다.As described above, when the value of the pressure fluctuation speed detected at the distal end of the second conduit 12 is formed to be greater than or equal to the set reference value, the second open / close valve 5 is opened to exhaust the exhaust pipe 13 and the second connection pipe 3. ) And the second conduit 12 are in communication with each other, a substantial portion of the hot reducing gas flowing into the distal end of the second conduit 12 through the second conduit 12 from the second conduit 12 Branched to the exhaust pipe (13). As a result, it is possible to prevent the formation of an excessive flow velocity reducing gas flow that is opposed to the ore flow in the second conduit 12, so that it has flowed to the final reduction path D in the second conduit 12. Ore flow is prevented from stagnation in the pipe or backflow to the preliminary reduction path (C) to ensure a stable operation.

도 2는 압력피크발생시 제 2광석흐름도관내서 광석흐름의 정체 및 역류를 유발하는 차압변화와 시간과의 상관관계를 도시한 그래프로서, 이는 광석흐름의 정체 및 역류에 의해 상기 제2도관(12)이 막힐 때 상단부와 말단부사이에서의 차압값이 급격하게 증가하며 유지되는 것을 보여주고 있다.FIG. 2 is a graph showing the correlation between the time difference and the differential pressure which causes congestion and backflow of ore flow in the second ore flow conduit upon pressure peak occurrence, which is caused by the congestion and backflow of ore flow. Shows that the pressure difference between the top and the end increases rapidly when the c) is blocked.

반면에, 도 3은 본 발명을 채용하여 압력피크발생시 제 2광석흐름도관내에서의 차압변화와 시간과의 상관관계를 도시한 그래프로서, 이는 압력피크발생시 제 2도관(12)내로 다량 유입되는 고온환원가스의 상단부분을 상기 제 2도관(12)으로부터 제 2연결관(3)을 통해 배기관(13)으로 분기, 배출함으로서, 차압값이 어느 정도 증가한 후 다시 감소하는 양상을 보여주고 있다.On the other hand, Figure 3 is a graph showing the relationship between the differential pressure change in the second ore flow conduit and the time when the pressure peak occurs by employing the present invention, which is a high temperature introduced into the second conduit 12 when the pressure peak occurs By branching and discharging the upper portion of the reducing gas from the second conduit 12 to the exhaust pipe 13 through the second connecting pipe 3, the differential pressure value is increased to some extent and then decreased again.

따라서, 이는 일반탄 및 분철광석을 이용하여 용철을 제조하는 3단 유동환원로에서 예열로(B)와 예비환원로(C)사이, 상기 예비환원로(C)와 최종환원로(D)사이에서의 광석흐름 정체 및 역류를 효과적으로 방지하여 상기 제 1,2도관(11)(12)내에 항상 원할한 광석흐름이 형성될 수 있도록 하는 것을 보여주고 있다.Therefore, it is a preheating furnace (B) and a preliminary reduction reactor (C), between the preliminary reduction reactor (C) and the final reduction reactor (D) in a three-stage flow reduction reactor for producing molten iron using ordinary coal and fine iron ore. It has been shown that effective ore flow can always be formed in the first and second conduits 11 and 12 by effectively preventing ore flow congestion and backflow.

상술한 바와같은 본 발명에 의하면, 일반탄 및 분철광석을 이용하여 용철을 제조하는 공정에 있어서 용융가스화로내의 조업상황 변동에 의하여 상기 용용화로에서 배출되어 3단 유동환원로측으로 공급되는 고온의 환원가스 유량의 급격한 변동이 야기되는 상황 즉, 압력피크 발생시 예열로와 예비환원로사이, 예비환원로와 최종환원로사이를 연결하는 제 1,2도관의 압력변동을 검지, 측정하고, 이를 근거로 하여 배기관과 연통되는 제 1,2연결관의 개폐를 제어함으로서, 광석이 흐르는 제 1,2도관내에서의 과도한 환원가스의 흐름에 의한 광서의 정체 및 역류현상을 방지할수 있기 때문에 유동환원로의 원할한 조업을 확보하여 안정적인 유동환원조업을 유지할 수 있는 효과가 얻어진다.According to the present invention as described above, in the process of manufacturing molten iron using ordinary coal and fine iron ore, the high temperature reduction discharged from the smelting furnace by the fluctuation of operating conditions in the molten gasifier and supplied to the three-stage flow reduction reactor side Detects and measures the pressure fluctuations in the first and second conduits connecting the preheating and preliminary reactors and between the preliminary and final reactors when pressure peaks occur. By controlling the opening and closing of the first and second connection pipes in communication with the exhaust pipe, it is possible to prevent congestion and reverse flow of the photosphere due to excessive reducing gas flow in the first and second conduits through which the ore flows. It is possible to secure smooth operation and maintain stable flow reduction operation.

Claims (4)

용융가스화로(A)와 제 1,2,3가스공급라인(21)(22)(23)을 통해 연결되는 예열로(B), 예비환원로(C) 및 최종환원로(D)로 이루어진 3단 유동환원로와, 상기 예열로(B)와 배기관(13)을 통해 연결되는 수집진장치(E)와, 상기 예열로(B)와 예비환원로(C)사이를 연결하는 제 1광석흐름도관(11)과 상기 예비환원로(C)와 최종환원로(D)사이를 연결하는 제 2광석흐름도관(12)을 갖추어 용철을 제조하는 설비에 있어서,It consists of a preheating furnace (B), a preliminary reduction reactor (C) and a final reduction reactor (D) connected through the melt gasifier (A) and the first, second and third gas supply lines (21) (22) and (23). A three-stage flow reduction path, a collecting device (E) connected through the preheating furnace (B) and the exhaust pipe (13), and a first ore connecting between the preheating furnace (B) and the preliminary reduction passage (C) In the facility for manufacturing molten iron having a flow chart tube 11 and the second ore flow conduit 12 connecting between the preliminary reduction path (C) and the final reduction path (D), 상기 제 1,2도관(11)(12)과 배기관(13)사이를 각각 연결하는 제 1,2연결관(2)(3); 상기 제 1,2연결관(2)(3)을 통한 가스흐름을 개폐하는 제 1,2개폐밸브(4)(5); 상기 제 1,2개폐밸브(4)(5)의 전,후단에 각각 연결구성되는 제 1,2질소퍼징용 도관(6a)(6b)(7a)(7b); 상기 제 1,2도관(11)(12)에 부과되는 압력변동을 수시로 검지할수 있도록 상기 예비환원로(C), 최종환원로(D)에 근접한 제 1,2도관(11)(12)의 각 말단부에 설치되는 제 1,2압력계(8)(9); 상기 제 1,2압력계(8)(9)에서 검지된 값을 근거로 하여 상기 제 1,2개폐밸브(4)(5)의 개폐를 제어하는 제어기;를 포함함을 특징으로 하는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치.First and second connection pipes (2) and (3) connecting between the first and second conduits (11, 12) and the exhaust pipe (13), respectively; First and second open / close valves (4) (5) for opening and closing the gas flow through the first and second connection pipes (2) and (3); First and second nitrogen purging conduits (6a) (6b) (7a) (7b) connected to the front and rear ends of the first and second open / close valves (4) and (5), respectively; The first and second conduits 11 and 12 adjacent to the preliminary reduction path C and the final reduction path D so that pressure fluctuations imposed on the first and second conduits 11 and 12 can be detected at any time. First and second pressure gauges 8 and 9 provided at each end portion; And a controller for controlling the opening and closing of the first and second opening / closing valves (4) and (5) based on the values detected by the first and second pressure gauges (8) and (9). Preventing stagnation of ore flow in a fluid reduction furnace in molten iron manufacturing process using iron ore. 제 1항에 있어서,The method of claim 1, 상기 제 1,2연결관(2)(3)과 제 1,2도관(11)(12)이 서로 연통되는연결부위(T1)(T2)는 압력피크발생시 상기 제 1연결관(2)내로 분철광석이 유입되는 것을 방지할 수 있도록 상기 예비환원로(C)내에서 형성되는 광석유동의 최대높이와 동일하거나 높은 위치에 제공됨을 특징으로 하는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치.The first and second connection pipes (2) (3) and the first and second conduits (11, 12) in communication with each other (T1) (T2) into the first connection pipe (2) when the pressure peak occurs Flow in the process of manufacturing molten iron using coal and iron ore, characterized in that provided in the same position or higher than the maximum height of the ore flow formed in the preliminary reduction path (C) to prevent the inflow of the iron ore Preventing ore flow stagnation in the reduction furnace. 제 1항에 있어서,The method of claim 1, 상기 제 1,2연결관(2)(3)은 고온의 환원가스에 충분히 견딜수 있는 내열강으로 구성되며, 상기 제 1,2연결관(2)(3)의 직경은 상기 제 1,2도관(11)(12)의 1/2크기로 갖추어짐을 특징으로 하는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치.The first and second connection pipes (2) and (3) are made of heat-resistant steel that can withstand high temperature reducing gas sufficiently, and the diameter of the first and second connection pipes (2) and (3) is the first and second conduits ( 11) (12) A device for preventing stagnation of ore flow in a flow reducing furnace in a molten iron manufacturing process using plain coal and powdered iron ore, characterized in that the size of 1/2. 제 1항에 있어서,The method of claim 1, 상기 제 1개폐밸브(4)는 상기 제 1압력계(8)에서 측정되는 압력변동속도값이 설정된 기준값인 0.05bar/sec 이상일 때 개방작동되고, 상기 제 2개폐밸브(5)는 상기 제 2압력계(9)에서 측정되는 압력변동속도값이 설정된 기준값인 0.03bar/sec 이상일 때 개방작동됨을 특징으로 하는 일반탄 및 분철광석을 이용한 용철제조공정에 있어서 유동 환원로의 광석흐름 정체 방지장치.The first open / close valve 4 is opened when the pressure change speed value measured by the first pressure gauge 8 is 0.05 bar / sec or more, which is a set reference value, and the second open / close valve 5 is operated by the second pressure gauge. An apparatus for preventing stagnation of ore flow in a flow reducing furnace in a molten iron manufacturing process using ordinary coal and ferrous ore, characterized in that the opening operation is performed when the pressure variation speed value measured in (9) is 0.03 bar / sec or more.
KR1019990059506A 1999-11-04 1999-12-20 Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore KR100362678B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1019990059506A KR100362678B1 (en) 1999-12-20 1999-12-20 Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore
UA2001074557A UA70348C2 (en) 1999-11-04 2000-03-11 Fluidized bed reduction reactor and a method for stabilization of fluidized bed in such reactor
US09/869,725 US6736876B1 (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor and method
PCT/KR2000/001257 WO2001032941A1 (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor
JP2001535619A JP3506690B2 (en) 1999-11-04 2000-11-03 Fluidized bed collapse prevention device for fluidized bed reduction furnace
AT00976417T ATE298806T1 (en) 1999-11-04 2000-11-03 FLUIDIZED BED REDUCTION REACTOR FOR REDUCING FINE IRON ORE AND FEEDING THE REDUCED ORE TO A MELTING GASIFIER
AU14200/01A AU755507B2 (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor
EP00976417A EP1163375B1 (en) 1999-11-04 2000-11-03 Fluidized bed reduction reactor for reducing fine iron ore and supplying the reduced ore to a melter-gasifier
RU2001118469/02A RU2218418C2 (en) 1999-11-04 2000-11-03 Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
BR0007280-0A BR0007280A (en) 1999-11-04 2000-11-03 Fluidized bed reduction reactor and fluidized bed stabilization method for fluidized bed reactor
DE60021064T DE60021064T2 (en) 1999-11-04 2000-11-03 Fluidized bed reduction reactor for reducing fine iron ore and feeding the reduced ore to a melt gasifier
CA002358425A CA2358425C (en) 1999-11-04 2000-11-03 Fluidized bed breakage prevention system for fluidized bed reduction reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990059506A KR100362678B1 (en) 1999-12-20 1999-12-20 Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore

Publications (2)

Publication Number Publication Date
KR20010065007A KR20010065007A (en) 2001-07-11
KR100362678B1 true KR100362678B1 (en) 2002-11-27

Family

ID=19627384

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990059506A KR100362678B1 (en) 1999-11-04 1999-12-20 Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore

Country Status (1)

Country Link
KR (1) KR100362678B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160040823A (en) * 2014-10-06 2016-04-15 주식회사 포스코 Skimmer for removing slag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171516A (en) * 1982-03-31 1983-10-08 Kawasaki Steel Corp Transferring apparatus of preliminarily reduced powdery and particulate ore in melt reduction equipment
US5192486A (en) * 1990-03-30 1993-03-09 Fior De Venezuela Plant and process for fluidized bed reduction of ore
US5531424A (en) * 1993-04-19 1996-07-02 Fior De Venezuela Fluidized bed direct reduction plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171516A (en) * 1982-03-31 1983-10-08 Kawasaki Steel Corp Transferring apparatus of preliminarily reduced powdery and particulate ore in melt reduction equipment
US5192486A (en) * 1990-03-30 1993-03-09 Fior De Venezuela Plant and process for fluidized bed reduction of ore
US5531424A (en) * 1993-04-19 1996-07-02 Fior De Venezuela Fluidized bed direct reduction plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160040823A (en) * 2014-10-06 2016-04-15 주식회사 포스코 Skimmer for removing slag
KR101652416B1 (en) * 2014-10-06 2016-08-30 주식회사 포스코 Skimmer for removing slag

Also Published As

Publication number Publication date
KR20010065007A (en) 2001-07-11

Similar Documents

Publication Publication Date Title
KR100362678B1 (en) Device for preventing material flow blockage of fluidized bed reactor in ironmaking process using non-coking coal and fine ore
JP2010159444A (en) Apparatus for preventing backflow in metallurgical lance having burner function
RU2218418C2 (en) Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
KR100340578B1 (en) Device for preventing collapse of the fluidized bed in the coal and fine ore based ironmaking process
KR100340582B1 (en) device for preventing blockage of burner chamber in coal based ironmaking equipment
KR20020037971A (en) Apparatus for cleaning dispersion plate in fluid-bed reducing furnace
US4045213A (en) Method of injecting a powder containing carbon into a metal bath
CA2031473C (en) Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
CN111690442A (en) Pulverized coal flow control method
JP5724654B2 (en) Apparatus and method for injecting reducing material into blast furnace
KR970002046Y1 (en) Oxygen supplying device of blast furnace
KR100362684B1 (en) device for adjusting the differential pressure of distributor in fluidized bed
KR100406377B1 (en) Device for removing the tar of burner for recompensing deoxidation gas
KR100270104B1 (en) Apparatus for preventing over-heating in the portion of packed bed of packed-bed-tyoe reduction shaft
KR100332927B1 (en) Apparatus for supplying the back-up gas in fluidized bed reactor
KR100391914B1 (en) Process for coal based ironmaking to reduce loss of fine ore
KR100368287B1 (en) apparatus for additionally charging fine bearing materials in non-coking coal and fine ore based ironmaking process
JP3796059B2 (en) Temperature control method in blast furnace raceway
KR200278691Y1 (en) Bending prevention device of blast furnace coal injection lance_
KR101891196B1 (en) Gas detector And Operating method using the same
KR920004089Y1 (en) Facility for injecting the powder coal into the blast furnace
JPS58171516A (en) Transferring apparatus of preliminarily reduced powdery and particulate ore in melt reduction equipment
KR20040056091A (en) A multi-fluidized bed reacor having a emergency standpipe
JPH09157719A (en) Smelting reduction apparatus of iron
KR20110021093A (en) Ironmaking apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131112

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141113

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151113

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161110

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20171110

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20181114

Year of fee payment: 17