KR100349816B1 - Micro Machining Surface Treatment Agent - Google Patents

Micro Machining Surface Treatment Agent Download PDF

Info

Publication number
KR100349816B1
KR100349816B1 KR1019940019157A KR19940019157A KR100349816B1 KR 100349816 B1 KR100349816 B1 KR 100349816B1 KR 1019940019157 A KR1019940019157 A KR 1019940019157A KR 19940019157 A KR19940019157 A KR 19940019157A KR 100349816 B1 KR100349816 B1 KR 100349816B1
Authority
KR
South Korea
Prior art keywords
treatment agent
surfactant
silicon
hydrofluoric acid
oxide film
Prior art date
Application number
KR1019940019157A
Other languages
Korean (ko)
Other versions
KR960007750A (en
Inventor
오미타다히로
마에노마타고로
가꾸야마히로히사
Original Assignee
하시모또가세이가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하시모또가세이가부시끼가이샤 filed Critical 하시모또가세이가부시끼가이샤
Priority to KR1019940019157A priority Critical patent/KR100349816B1/en
Publication of KR960007750A publication Critical patent/KR960007750A/en
Application granted granted Critical
Publication of KR100349816B1 publication Critical patent/KR100349816B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • C11D2111/22

Abstract

1. 청구범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION

반도체 소자를 제조할때 실리콘상의 산화막을 습식으로 제거, 에칭및 실리콘 표면을 세정하기 위해 사용되는 미세가공 표면처리제.A microfabricated surface treatment agent used to wet remove, etch and clean silicon surfaces in silicon during the manufacture of semiconductor devices.

2. 발명이 해결하려고 하는 기술적 과제2. The technical problem to be solved by the invention

처리제의 저입자성, 실리콘 표면에의 젖음성및 미세간격에의 침투성, 실리콘 표면의 평활처리, 실리콘 표면에의 저입자 부착성, 처리제의 안정성, 고순도성, 실리콘 표면의 세정 또는 산화막의 에칭효과 개선.Low particle quality of the treatment agent, wettability to the silicon surface and permeability to fine intervals, smoothing of the silicon surface, low particle adhesion to the silicon surface, stability of the treatment agent, high purity, cleaning the silicon surface or improving the etching effect of the oxide film .

3. 발명의 해결방법의 요지3. Summary of Solution to Invention

불화수소산에 HLB값이 7∼17인 탄화수소계 비이온 계면활성제를 함유시켜 침윤성이 우수한 미세가공 표면처리제.A fine surface treatment agent having excellent infiltration property by containing a hydrofluoric acid containing a hydrocarbon-based nonionic surfactant having an HLB value of 7 to 17.

4. 발명의 중요한 용도4. Important uses of the invention

반도체 소자 제조공정시의 표면처리제.Surface treatment agent in semiconductor device manufacturing process.

Description

미세가공 표면처리제Micro Machining Surface Treatment Agent

본 발명은 미세가공 표면처리제에 관한것이며, 다시더 상세하게는 반도체 자를 제조하는 때에 실리콘상의 산화막을 습식으로 제거, 에칭및 실리콘표면을 세정하기위해 사용되는 미세가공 표면처리제에 관한것이다.The present invention relates to a microfabricated surface treatment agent and, more particularly, to a microfabricated surface treatment agent used for wet removal, etching, and cleaning of the silicon surface of silicon in the manufacture of semiconductor porcelain.

반도체소자 제조에 있어서 불소수소산이 표면처리제(이하 처리액이라 약기한다.)로서 사용되고있고 처리의 목적으로부터 당연히 고순도 또한 고청 정도인것이 필요하지만 반도체의 고집적화, 고성능화, 높은 원료에대한 제품의 생산량을 위해서는 다시또 완전하고 총합적인 표면처리기능이 요구되게 되었다.Although hydrofluoric acid is used as a surface treatment agent (hereinafter abbreviated as treatment liquid) in semiconductor device manufacturing, it is necessary to have high purity and high cleanliness from the purpose of treatment, but for high integration of semiconductors, high performance, and production of products for high raw materials Again, full and comprehensive surface treatment was required.

구체적으로 기술하면 예를들면 실리콘기판상의 산화막을 제거하는 표면처리공정은 그후의 미세회로형성의 사명을 제어하는 중요한 공정이며 화학작용이 실리콘기판표면 전력에 완전 균질로 행해저야하며, 또 출현하는 극히 활성인 표면을 무결함으로 또한 극히 평활한 청정표면으로 완성하는 세정작용이 확실히 행해질 필요가있다.Specifically, for example, a surface treatment process for removing an oxide film on a silicon substrate is an important process for controlling the mission of subsequent microcircuit formation, and the chemical action must be performed completely homogeneously on the surface power of the silicon substrate. It is necessary to ensure that the cleaning action is completed to make the extremely active surface flawless and also to the extremely smooth clean surface.

이 때문에 불화수소산이 표면처리상에서 잘 젖는다는 기능을 중시하지않으면 안된다.For this reason, the importance of hydrofluoric acid wetting well on the surface treatment must be emphasized.

또 LSI 회로를 형성해가는 에칭공정에 있어서 고집적화와 함께 패턴은 미세화 또한 복잡화해있고 이 미세간격(홈)에 불화수소산이 잘 스며들고, 또한 화학작용에의해 홈내의 완전한 세정작용도 수행하지 않으면 홈군전역에 미치는 균질 또한 완벽한 미세가공은 달성될수 없다. 즉 처리액에는 침윤성, 침투성이라는 기능이 극히 중요하다.Also, in the etching process to form the LSI circuit, the pattern is highly integrated and complicated, and the hydrofluoric acid is well infiltrated into the microgap (groove), and if the chemical cleaning does not perform a complete cleaning operation in the groove, Homogeneity and perfect micromachining cannot be achieved. That is, the function of infiltration and permeability is extremely important for the treatment liquid.

또 종래 패턴형성후 그 홈내를 황산-과산화수소수, 염산-과산화수소수, 혹은 암모니아수-과산화수소수로 세정하고 있었으나 그때 생기는 산화막을 제거할 필요가 있다. 그러나 불화수소산은 100%의 상태에서는 저점도성 저 표면장력(8.6dyn/cm)의 액체이지만 희석도가 진행함에 따라 물의 표면장력에 가까워진다. 불화수소산의 실리콘표면에 대한 접촉각은 58∼76도이며, 즉 젖기어려운 액체이다. 또 표면장력도 50∼73dyn/cm이다.In the conventional pattern formation, the grooves were washed with sulfuric acid-hydrogen peroxide water, hydrochloric acid-hydrogen peroxide water, or ammonia water-hydrogen peroxide water, but it is necessary to remove the oxide film formed at that time. Hydrofluoric acid, however, is a low-viscosity low surface tension (8.6 dyn / cm) liquid at 100%, but as the dilution progresses, it approaches the surface tension of water. The contact angle of the hydrofluoric acid to the silicon surface is 58 to 76 degrees, i.e., a liquid that is difficult to get wet. The surface tension is also 50 to 73 dyn / cm.

이와같이 희석불화수소산의 표면장력이나 접촉각이 크면 미세한 홈내로 균일하게 침투하지않고 에칭 크리닝이라고하는 미세가공 표면을 처리하는것이 곤란해진다. 표1에 표면장력 및 접촉각의 데이터를 나타낸다. 또 초 순수의 데이터를 참고를 위해 나타낸다. 단 표1은 초순수와 불화수소산의 표면장력과 접촉각을 나타내고 있다.In this way, when the surface tension or contact angle of dilute hydrofluoric acid is large, it is difficult to treat the micromachined surface called etching cleaning without uniformly penetrating into the fine grooves. Table 1 shows the data of surface tension and contact angle. Super pure data is also shown for reference. However, Table 1 shows the surface tension and contact angle of ultrapure water and hydrofluoric acid.

실리콘표면에의 침윤성을 평가하기 위해 실리콘표면상에 적하시킨 처리제의접촉각을 액적법으로 측정했다. 또 표면장력은 수직판법으로 행했다.In order to evaluate the invasiveness to the silicon surface, the contact angle of the treatment agent dropped on the silicon surface was measured by the droplet method. In addition, surface tension was performed by the vertical plate method.

표면장력은 기-액계면에 동작하는 작용이며, 접촉각은 고-액계면에 동작하는 작용이기 때문에 실리콘면에의 침윤성 평가는 접촉각으로 판단해야하는것은 말할것도없다.It is needless to say that the surface tension is an action that acts on the gas-liquid interface, and the contact angle is an action that acts on the solid-liquid interface.

상술한 바와같이 처리액이 구비해야할 기능으로서 침윤성은 중요하다. 침윤성을 부여하기위해서는 계면활성제를 첨가할 필요가 있으나 계면활성제의 종류에 따라서는 처리표면(실리콘산화막)상에 활성제가 흡착되어 산화막을 제거할수 없는 경우도있다.As described above, infiltration is important as a function of the treatment liquid. In order to impart infiltration, it is necessary to add a surfactant, but depending on the type of the surfactant, the activator may be adsorbed onto the treated surface (silicon oxide film) and thus the oxide film cannot be removed.

처리액의 본질적인 기능에 악영향을 주는일이 없이 유효하게 침윤성을 개량하는 방책은 이제껏 제안된 일도없고 해결되어 있지않다.Measures to effectively improve the invasiveness without adversely affecting the essential function of the treatment liquid have not been proposed or solved.

계면활성제의 화학구조 및 계면작용 기구는 천차만별이며, 어떠한 계면활성제를 첨가한 처리액이 반도체 제조공정에 있어서의 미세가공 표면처리제(이하 처리제라 약칭한다.)로서 적합하고, 또 계면활성제의 존재가 처리제의 제특성에 어떠한영향을 주는가를 총합적으로 검토할필요가있다.The chemical structure and surfactant mechanism of the surfactants vary widely, and the treatment liquid to which any surfactant is added is suitable as a micro-processing surface treatment agent (hereinafter abbreviated as treatment agent) in the semiconductor manufacturing process, and the presence of the surfactant There is a need to look at the overall impact on the properties of the treatment.

본 발명자등은 처리액에 계면활성제를 첨가한때에 일어나는 제현상을 상세히 검토하여 다음과 같은 문제점이 있는것을 발견했다.The present inventors have found out the following problems by examining in detail the phenomenon occurring when the surfactant is added to the treatment liquid.

1. 계면활성제의 첨가에의해 처리제의 표면장력은 용이하게 저하하지만 실리콘 표면에 대한 접촉각은 반드시 적어지지 않는다. 즉 처리제가 실리콘 표면을 잘 침윤시키거나 미세간격에 잘 침투한다고는 할 수가 없다.1. The surface tension of the treatment agent is easily lowered by the addition of the surfactant, but the contact angle to the silicon surface is not necessarily reduced. That is, the treatment agent does not infiltrate the silicon surface well or penetrate the microgap well.

2. 계면활성제가 처리액에 용해되지않고 분산되어있는 처리액을 반도체제조 공정에서 액중의 입자를 제거하기위해 잘사용되고있는 순환여과를 한경우 필터에 계면활성제가 흡착포착되어 활성도가 저하하는 일이많다(표면장력이나 접촉각이 커진다). 또 계면활성제를 첨가한 직후는 처리액에 용해되어 있어도 장시간 경과하면 계면할성제와 처리액이 분리해서 활성도가 저하하는 경우도있다.2. When circulating filtration is used in which the surfactant is not dissolved in the treatment liquid and is well used to remove particles in the liquid in the semiconductor manufacturing process, the surfactant is adsorbed and trapped on the filter, and thus the activity is often lowered. (Surface tension and contact angle increase). Moreover, even if it melt | dissolves in a process liquid immediately after adding a surfactant, when surfactant passes for a long time, surfactant activity and a process liquid may separate and activity may fall.

3. 계면활성제의 첨가에 의해 처리제중의 입자수가 증가하거나, 또 반도체 소자에 악영향을 부여한다고 말하는 알칼리금속 알칼리토류금속이나 중금속등의 불순물이 증가하는 경우도 있다.3. In some cases, the addition of surfactant increases the number of particles in the treatment agent, and an increase in impurities such as alkali metal, alkaline earth metal and heavy metal, which are said to adversely affect the semiconductor element.

이 현상은 실리콘표면이나 미세가공 간격에 입자부착의 위험성이 증가하고 또 불순물에의한 반도체소자의 성능을 손상하는 원인이 되기때문에 바람직하지 않다.This phenomenon is undesirable because it increases the risk of particle adhesion on the silicon surface or micromachining intervals and impairs the performance of the semiconductor device due to impurities.

4. 계면활성제의 과잉첨가는 처리액중에 과잉의 미셀(micelle)이 생기는경우가 많고 미세가공 공정에 하기하는 각종의 장해를 준다.4. Excessive addition of surfactants often results in excessive micelles in the treatment liquid and causes various obstacles to the micromachining process.

(가) 에칭면에 계면활성제의 미셀이 부착하여 에칭얼룩이나 에칭불량을 일으킨다.(A) Micelles of surfactant adhere to the etching surface, causing etching spots and etching failures.

(나) 처리액으로부터 끌어올린 실리콘표면에 미셀이 부착하여 얼룩이 생기거나 웨이퍼 검사기구를 사용해서 웨이퍼표면을 관측한때 레이저광을 산란시키는 것과같은 헤이즈의 원인이 된다.(B) Micelles may adhere to the silicon surface drawn from the processing liquid and cause stains, or may cause haze such as scattering of laser light when the wafer surface is observed using a wafer inspection apparatus.

(다) 계면활성제의 과잉의 첨가에의해 처리제의 배수처리공정에서 발포등의 지장을 준다.(C) Excessive addition of surfactants interferes with foaming in the treatment of wastewater.

이상과 같이 계면활성제의 첨가에의해 처리제의 침윤성을 개량하는 것은 필요하지만 동시에 처리제의 중요한 제기능에 악영향을 줄 위험성도 동시에 발생한다.As mentioned above, although it is necessary to improve the invasiveness of a treatment agent by addition of surfactant, the risk which adversely affects the important function of a treatment agent also arises simultaneously.

반도체 제조공정에 있어서 불화수소산을 사용하는 세정공정은 대단히 중요하며, 특히 세정표면의 평활성은 서브미크론디바이스에 있어서 극히 중요한 인자로서 주목되고있다.The cleaning process using hydrofluoric acid is very important in the semiconductor manufacturing process, and in particular, the smoothness of the cleaning surface is attracting attention as an extremely important factor for the submicron device.

그러나 불화수소산에의한 실리콘웨이퍼의 세정표면을 원자간력 현미경(AFM)을 사용해서 원자레벨로 관측한결과 그 평활성이 손상되어 있는것이 판명되었다.However, the surface of silicon wafers cleaned with hydrofluoric acid was observed at atomic level using atomic force microscopy (AFM), indicating that the smoothness was impaired.

또 버퍼드불산(불화수소산과 불화암모늄을 적당한 비율로 혼합한 혼합산)을 사용해서 실리콘웨이퍼를 에칭하는때도 표면에 거칠음이 발생하지만 적절한 계면활성제를 배합하므로서 평활성을 유지하는 기술은 예를들면 일본국 특개소63-283028호나 특개평 3-179737호에의해 개발되어있다.In addition, when the silicon wafer is etched using buffered hydrofluoric acid (a mixed acid obtained by mixing hydrofluoric acid and ammonium fluoride in an appropriate ratio), roughness occurs on the surface, but a technique for maintaining smoothness by blending an appropriate surfactant is, for example, Japan. It is developed by Japanese Patent Laid-Open No. 63-283028 or Japanese Patent Laid-Open No. 3-179737.

그러나 버퍼드불산에 첨가되어있는 계면활성제를 불화수소산에 첨가해도 그 효과는 얻어지지 않고 역으로 실리콘웨이퍼에 따라서는 예를들면 P형(100)웨이퍼의경우 30분이상 침지하면 실리콘표면이 거칠어짐이 생기는것이 AFM에의해 확인되고있다.However, even if the surfactant added to the buffered hydrofluoric acid is added to hydrofluoric acid, the effect is not obtained. On the contrary, depending on the silicon wafer, for example, in the case of P-type (100) wafer, the surface of the silicon becomes rough after 30 minutes. This occurrence has been confirmed by AFM.

이와같은 표면결함은 고집적회로에 있어서 예를들면 샤로정숀의 형성시에 중대한 장애가된다. 따라서 불화수소산을 사용하는 세정에 있어서도 침윤성을 부여해서 표면평활성을 얻는수단의 개발은 대단히 중요한것이다.Such surface defects are a serious obstacle in the formation of shallow junctions, for example, in highly integrated circuits. Therefore, in the cleaning using hydrofluoric acid, it is very important to develop a means for imparting infiltration to obtain surface smoothness.

계면활성제는 극히 종류가 많고 대별하면 탄화수소계 계면활성제, 불소계 계면활성제가 있고 그 각각의 계면활성제에 양이온성, 음이온성, 양성 및 비이온성의 것이있고 일본국 특개평1-183824호와 같이 탄화수소계의 계면활성제이면 어느 계면활성제라도 된다는것은 아니다.There are very many kinds of surfactants, and there are hydrocarbon-based surfactants and fluorine-based surfactants. The surfactants are cationic, anionic, amphoteric and nonionic, and they are hydrocarbon-based like Japanese Patent Application Laid-Open No. 1-1183824. It does not mean that any surfactant may be sufficient as it.

또 일본국 특개소 58-55323호나 특개소58-42019호에서 사용되고있는 활성제중에는 실리콘표면에 부착하는 입자수를 증가시키거나 실리콘표면을 거칠게하는 계면활성제 예를들면 제1급아민염, 제2급아민염, 제3급아민염, 제4급암모늄염등이 포함되어있고 실리콘 및 실리콘산화막의 에칭 세정제로서 사용하는데에 적당하지않은 것이있다.Among the active agents used in Japanese Patent Application Laid-Open Nos. 58-55323 and 58-42019, surfactants that increase the number of particles adhering to the silicon surface or roughen the silicon surface, such as primary amine salts and secondary grades Amine salts, tertiary amine salts, quaternary ammonium salts and the like are contained and are not suitable for use as an etching cleaner for silicon and silicon oxide films.

또 일본국특개소 63-230800호에서 사용되는 도데실벤젠술폰산은 대단히 기포력이 높고 반도체 제조공정에 있어서 에칭불량등의 문제가 발생하기쉬운 결점을 갖고있다.In addition, dodecylbenzenesulfonic acid used in Japanese Patent Application Laid-Open No. 63-230800 has a high bubble and a problem that is likely to cause an etching defect in the semiconductor manufacturing process.

또 일본국 특공평4-16011호에 불화수소산에 비이온계면 활성제를 첨가하여 1∼5μm각의 미세공의 저면에 형성된 실리콘산화막을 에칭하는 방법이 기재되어 있다. 비이온계면 활성제로서 폴리에틸렌글리콜라우릴에테르, 폴리에틸렌글리콜알킬페닐에테르, 폴리에틸렌글리콜지방산에스테르를 예시하고 있으나 1:20의 희석불화수소산에 0.1용량%의 폴리에틸렌글리콜라우릴에테르를 첨가한 예밖에 예시되어 있지않다.In addition, Japanese Patent Application Laid-Open No. Hei 4-16011 describes a method of etching a silicon oxide film formed on the bottom surface of micropores of 1 to 5 탆 by adding a nonionic surfactant to hydrofluoric acid. Examples of nonionic surfactants include polyethylene glycol lauryl ether, polyethylene glycol alkyl phenyl ether, and polyethylene glycol fatty acid esters, but only one example of adding 0.1% by volume of polyethylene glycol lauryl ether to 1:20 dilute hydrofluoric acid is illustrated. not.

현재는 고집적화가 진행되어 미세공이나 에칭해야할 선폭은 1μm 이하로 되어있다. 일본국 특공평4-16011호에서는 고집적화가 진행된 현단계에서는 처리제로서 대응할수없고 더욱 엄밀하게 표면장력이나 접촉각 및 본 발명에서 기술하는 각 특성에 합치하는것을 선택할 필요가있고 상기한 일본국 특공평4-160115호에서는 고집적화가 진행된 반도체 제조에 적합한 계면활성제를 선택할 수가 없고 에칭제및 세정제로서 아주적당한 것이라고는 할수가없다.Currently, high integration has progressed, and the line width to be etched or etched is less than 1 μm. In Japanese Patent Application No. 4-16011, it is not possible to cope with the treatment agent in the present stage of high integration, and it is necessary to select more precisely the surface tension, the contact angle, and the characteristics described in the present invention. In -160115, it is not possible to select a surfactant suitable for the manufacture of highly integrated semiconductors, and is not very suitable as an etchant and cleaning agent.

또 IPA(이소프로필알코올)등은 10%정도 첨가시키므로서 표면장력을 저하시켜서 사용하는 경우가있으나 이경우에는 배수처리시에 문제가 생기기때문에 소량으로 효과가있는 계면활성제가 아니면 본목적에 합치하지않는다.In addition, IPA (isopropyl alcohol), etc., may be used to reduce the surface tension by adding about 10%, but in this case, it may cause problems during drainage, so it is not suitable for this purpose unless the surfactant is effective in small amounts. .

다시또 사용시는 예를들면 불화수소농도가 0.5중량%나 5중량%라고하는 불화수소산으로 사용하는 경우가많다.When used again, for example, the hydrogen fluoride concentration is often used as hydrofluoric acid of 0.5% by weight or 5% by weight.

그러나 이와같은 불화수소산을 제조하여 판매하는것은 경제성이 나쁘기때문에 제조는 50중량% 농도의 불화수소산으로 행하고 사용시에 희석시켜도 활성도가 변화하지 않는것이 바람직하다.However, manufacturing and selling such hydrofluoric acid is not economical, and therefore, it is preferable that the production does not change even if the hydrofluoric acid is produced at a concentration of 50% by weight and diluted at the time of use.

본 발명자등은 처리제의 문제를 해결하기 위해 극히 신중한 기술적 탐색과 그린테크노로지의 관점에서 면밀한 배려를해서 실험을 행해왔다. 그러나 계면활성제는 극히 폭넓은 용도와 다양한 조건으로 사용되고 대별하면 탄화수소계 계면활성제 및 불소계 계면활성제가 있고 다시또 양이온성, 음 이온성, 양성및 비이온성으로 나눌수가 있다.MEANS TO SOLVE THE PROBLEM In order to solve the problem of a processing agent, this inventor carried out the experiment by careful consideration from the viewpoint of extremely careful technical search and green technology. However, surfactants are used for an extremely wide range of uses and various conditions, and they are classified into hydrocarbon-based surfactants and fluorine-based surfactants, and can be further divided into cationic, anionic, amphoteric and nonionic.

그러나 각각의 종류에는 수많은 화합물군이 존재하고 그 계면작용에 각각 특징이있다. 그중에서 본 발명의 목적에 적합한 계면활성제를 선택하기 위해 조사를 행하고 하기하는 (1)∼(6)의 각항을 모두 만족시키는 계면활성제를 선택했다. 다시또 이들 계면활성제를 첨가한 처리제가 사용되는 주된목적은 실리콘 산화막의 에칭 혹은 황산-과산화수소수, 염산-과산화수소수 혹은 암모니아-과산화수소수로 세정하는 때에 다시또 초순수세정시의 실리콘 웨이퍼전면 혹은 에칭으로 형성한 홈중에 생긴 산화막의 제거이다.However, there are many groups of compounds in each class, and their interfacial behavior is characteristic. In order to select the surfactant suitable for the objective of this invention, the surfactant which irradiated and satisfy | fills each item of following (1)-(6) was selected. Again, the main purpose of using these surfactant-added treatment agents is to etch the silicon oxide film, or to wash the silicon wafer with sulfuric acid-hydrogen peroxide, hydrochloric acid-hydrogen peroxide or ammonia-hydrogen peroxide water, and then again on the front or etching of the silicon wafer during ultrapure water cleaning. Removal of the oxide film formed in the formed grooves.

이때문예 표면처리제가 첨가되므로서 (7)의 본래의 목적을 손상하는 일이 없는가 어떤가를 웨이퍼상의 발수성으로 확인했다.At this time, the water-repellent property on the wafer confirmed whether or not the original purpose of (7) was impaired due to the addition of the surface treating agent.

(1)처리제의 저입자성(1) low particulateness of the treatment agent

(2)처리제의 실리콘표면에의 침윤성및 미세간격에의 침투성(2) Infiltration into the silicon surface of the treatment agent and permeability into the fine gap

(3)실리콘표면의 평활처리(3) Smoothing of silicon surface

(4)실리콘표면에의 저입자부착성(4) Low particle adhesion to silicon surface

(5)처리제의 안정성(5) Stability of treatment agent

(6)처리제의 고순도성(6) high purity of treatment agent

(7)실리콘표면의 세정또는 산화막의 에칭효과(7) cleaning of silicon surface or etching effect of oxide film

상기한 7가지 조건을 만족시키는 처리제에 대해 그 처리액에 첨가시키는 계면활성제의 적성을 정량적으로 평가하기위해 다음의 검토수단을 사용했다. 시험에사용한 처리액은 불화수소산농도0.5중량%, 5중량% 및 50중량%의 것이다.The following examination means was used to quantitatively evaluate the adequacy of the surfactant added to the treatment liquid for the treatment agent satisfying the above seven conditions. The treatment liquid used for the test was 0.5% by weight, 5% by weight and 50% by weight hydrofluoric acid.

(1)처리제의 저입자성(1) low particulateness of the treatment agent

미세가공 표면처리 공정에서 사용되는 처리제로서 요구되는 중요한 요점의 하나에 저입자성이있다.One of the important points required as a treatment agent used in the micromachining surface treatment process is low particle size.

이것은 입자에의한 에칭의 불량이 반도체제조에 있어서의 원료에 대한 제품의 양의 저하에 주는 커다란 요인이 되기때문이다. 처리액에 계면활성제를 첨가하여 순환여과 시키므로서 제1도에 나타낸 바와같이 입자수를 저감시킬수가있는 계면활성제가 존재한다. 그러나 이입자저감의 기구는 잘알수가 없다. 단 제1도는 계면활성제 농도와 액중입자의 관계를나타내는 도면이며 HF농도는 0.5%이다.This is because the defect of etching by the particle becomes a big factor in the reduction of the quantity of the product with respect to the raw material in semiconductor manufacturing. As shown in FIG. 1, there is a surfactant that can reduce the number of particles by adding a surfactant to the treatment liquid and circulating filtration. However, the mechanism of abatement reduction is unknown. 1 is a diagram showing the relationship between the surfactant concentration and the liquid particles, the HF concentration is 0.5%.

또 계면활성제를 첨가하여 순환여과를 행해도 처리액중의 입자가 감소하지않고 역으로 증가하는 경우가 극히많고 이와같은 계면활성제는 본목적에 적합하지 않다.In addition, even when circulating filtration with the addition of a surfactant, the particles in the treatment liquid do not decrease and increase inversely. Such a surfactant is not suitable for this purpose.

본목적에 적합한 계면활성제를 알아내기 위해 각종계면활성제[탄화수소계, 불소계및 각 이온종류(비이온,양이온, 음이온, 양성이온)]을 조사했다.Various surfactants (hydrocarbon-based, fluorine-based and each ion type (non-ion, cation, anion, zwitterion)) were investigated to find a suitable surfactant for this purpose.

또 동일 화합물류라도 분자량이 다른것에 대해서는 A,B,C.....로 표기했다. 그결과를 표2∼표14에 나타낸다. 단 표2∼표14에 있어서의 하기하는 기호는 각각 다음의것을 나타낸다.Moreover, about the same compound, about the molecular weight differs, it was described as A, B, C .... The results are shown in Tables 2 to 14. However, the following symbols in Tables 2 to 14 each indicate the following.

A : 탄화수소계 비이온 계면활성제A: hydrocarbon-based nonionic surfactant

B : 탄화수소계 음이온 계면활성제B: hydrocarbon anionic surfactant

C : 탄화수소계 양이온 계면활성제C: hydrocarbon-based cationic surfactant

D : 탄화수소계 양성 계면활성제D: hydrocarbon type amphoteric surfactant

E : 불소계 비이온 계면활성제E: fluorine-based nonionic surfactant

F : 불소계 음이온 계면활성제F: fluorine-based anionic surfactant

G : 불소계 양이온 계면활성제G: fluorine-based cationic surfactant

H : 불소계 양성 계면활성제H: fluorine-based amphoteric surfactant

입자수는 0.5μm 이상의 입자가 10개/m 이하가되는 처리제가 본목적을 만족시키는 계면활성제인 것으로 했다. 제1도에 계면활성제 농도와 액중입자의 관계를 나타낸다.The number of particles was assumed to be a surfactant in which 0.5 μm or more of particles became 10 particles / m or less, satisfying this purpose. 1 shows the relationship between the surfactant concentration and the liquid particles.

또한 처리액중의 입자는 0.1μm 구멍직경의 불소수지필터를 사용해서 750kg/m2·hr의 유속으로 24사이클의 순환여과를 행한때의 처리제중의 입자 수를 레이저광산란방식 액중미립자카운터를 사용해서 측정했다.In addition, the particles in the treatment liquid were laser-scattered liquid fine particles counter using the fluorine resin filter with a 0.1 μm pore diameter to determine the number of particles in the treatment agent when 24 cycles of filtration were performed at a flow rate of 750 kg / m 2 · hr. Was measured.

(2)처리제의 실리콘표면에의 침윤성및 미세간격에의 침투성(2) Infiltration into the silicon surface of the treatment agent and permeability into the fine gap

실리콘 표면상의 침윤성 및 실리콘표면에 형성된 미세패턴중의 침투성을 검토한결과 처리제의 실리콘표면에 대한 접촉각이 50도이하 표면장력이 45dyn/cm 이하가 아니면 처리제 중에 실리콘웨이퍼를 침지한때의 실리콘 표면의 침윤성이 나쁘다.Invasiveness of the silicon surface when the silicon wafer was immersed in the treatment agent when the contact angle to the silicon surface of the treatment agent was 50 degrees or less, and the surface tension was 45 dyn / cm or less. This is bad.

또 10μm 이하의 미세한 패턴에의 침투성이 나쁘고 실리콘산화막의 에칭불량이 생기는것을 전자현미경을 사용한 단면사진 및 원자간력현미경(AMF)로 확인했다.In addition, the cross-sectional photograph using an electron microscope and the atomic force microscope (AMF) confirmed that the permeability to fine patterns of 10 micrometers or less is bad and the etching defect of a silicon oxide film arises.

처리액에 계면활성제를 첨가해서 접촉각이 50도이하 또한 표면장력이 5dyn/cm 이하로되는 계면활성제는 탄화수소계 불소계의 계면활성제군 중 에는 상당히 다수 존재하지만 순환여과를하고 또한 과잉첨가에 의한 폐해가 생기지않는 농도인 1000ppm이하에서 이 조건을 만족시키는것을 본목적에 적합한 계면활성제로 한다.Surfactants added to the treatment liquid with a contact angle of 50 degrees or less and a surface tension of 5 dyn / cm or less are present in a large number of surfactants in the hydrocarbon-based fluorine group, but circulating filtration and damage caused by excessive addition A surfactant suitable for this purpose is satisfied to satisfy this condition at a concentration not exceeding 1000 ppm.

여기서 (1)의 항목에 합격한 계면활성제에 대해 이 항목을 조사하여 그 결과를 표15∼표23에 나타낸다. 단 표15∼표23의 A∼H의 기호는 상기한 바와같다.This item is investigated about the surfactant which passed the item of (1) here, and the result is shown to Table 15-23. The symbols A to H of Tables 15 to 23 are as described above.

(3) 실리콘표면의 평활성(3) smoothness of silicon surface

반도체디바이스에 있어서 실리콘웨이퍼의 표면의 서브나노미터의 요철 즉 마이크로라프네스가 적을수록 디바이스의 신뢰성이 높게되고 또 특성도 높게된다고 말하고 있다. 여기서 실리콘표면의 거칠음성의 측정은 처리제중에 실리콘웨이퍼를 100분간 침지한후 원자간력현미경(AFM)을 사용해서 실리콘표면의 중심선평균거칠음(Ra)가 0.3nm(3Å) 이하의 처리제가 본목적을 만족시키는 것으로 했다.It is said that the smaller the unevenness of the sub-nanome on the surface of the silicon wafer, i.e., the smaller the micro raffnes, the higher the reliability and the higher the device. The roughness of the silicon surface was measured by immersing the silicon wafer in the treatment agent for 100 minutes and then using an atomic force microscope (AFM) to treat the silicon surface with a centerline average roughness (Ra) of 0.3 nm (3 Å) or less. I was satisfied.

여기서 (1)(2)의 항목을 만족시킨 계면활성제에 대해 이 항목을 조사한 결과를 표24∼표30에 나타낸다.Table 24-Table 30 show the result of having investigated this item about surfactant which satisfy | fills the item of (1) (2) here.

단 상기한 표중의 A∼H의 기호는 상기한 바와같다.However, symbols of A to H in the above tables are as described above.

(4) 실리콘표면에의 저입자부착성(4) Low particle adhesion to silicon surface

(2)에서 기술한 바와같이 웨이퍼상의 입자는 반도체 공정에 있어서 치명적인 타격을 준다. 웨이퍼상에의 입자의 부착은 웨이퍼 검사시스템에서 실리콘표면에 부착하는 입자수를 측정했다.As described in (2), the particles on the wafer have a fatal blow in the semiconductor process. The deposition of particles on the wafer was measured by the number of particles adhering to the silicon surface in the wafer inspection system.

계면활성제를 첨가하지 않은 불화수소산과 첨가한 불화수소산으로 처리한 웨이퍼표면상의 입자수를 비교했다. 불화수소산 처리는 에칭및 세정에 있어서의 최종공정이기 때문에 처리제로 처리주는 초순수세정밖에 남아있지 않다. 이 때문에 저입자 부착성은 대단히 중요한 항목이다. 본 목적을 만족시키는 부착입자의수는 5인치 베어실리콘상에 0.3∼0.5μm의 입자수가 100개 이하의것으로 했다.The number of particles on the wafer surface treated with hydrofluoric acid without a surfactant and hydrofluoric acid added was compared. Hydrofluoric acid treatment is the final step in etching and cleaning, so the treatment liquor with the treatment agent remains ultrapure water cleaning. For this reason, low particle adhesion is a very important item. The number of adhered particles satisfying this object was set to 100 or less particles having a particle size of 0.3 to 0.5 탆 on 5 inch bare silicon.

제2도에 계면활성제 농도와 부착입자의 관계를 나타낸다. 또 제1도의 게면활성제 농도와 입자의 관계로부터 계면활성제 농도는 극히 소량으로부터 효과가 있지만 농도가 높아지면 (1000ppm을 초과하면) 급격히 처리제중의 입자및 실리콘표면에 부착하는 입자가 함께 증가하는것을 알수있다. 이와 같이 계면활성제의 첨가량은 1000ppm이하가 바람직하다.2 shows the relationship between the surfactant concentration and the attached particles. Also, from the relationship between the surfactant concentration and the particle of FIG. 1, the surfactant concentration is effective from a very small amount, but when the concentration is increased (over 1000 ppm), the particles in the treatment agent and the particles adhering to the silicon surface increase rapidly. have. As such, the amount of the surfactant added is preferably 1000 ppm or less.

여기서 (1)∼(3)의 항목에서 만족한 계면활성제에 대해 이 항목을 조사한 결과를 표31 ∼표33에 나타낸다.Table 31-Table 33 show the result of having investigated this item about surfactant satisfied in the item of (1)-(3) here.

단 표중의 A∼H의 기호는 상기한 바와같다.However, symbols of A to H in the table are as described above.

(5)처리제의 안정성(5) Stability of treatment agent

상기한 4가지 조건을 만족시킨 처리제를 조정후 6개월 경과한 시점에서 재차 4가지 조건을 측정하여 변화가 생기지 않았나 어떤가를 확인했다.Six months after the adjustment of the treatment agent that satisfies the above four conditions, four conditions were measured again to confirm whether or not a change occurred.

(4)의 항목을 만족시키는 계면활성제에 대해 입자수, 표면장력, 접촉각, 웨이퍼부착입자수 및 웨이퍼표면 거칠음을 측정했으나 조정시화 변하지않은 결과가 얻어졌다.Particle number, surface tension, contact angle, wafer attached particle number, and wafer surface roughness were measured for the surfactant satisfying the item (4), but the results were unchanged upon adjustment.

(6) 처리제의 고순도성(6) high purity of treatment agent

고순도성은 계면활성제 첨가후 그 성분을 분석해서 반도체공정에 있어서 악영향을 미치는 알칼리금속이나 알칼리토류금속 다시또 중금속류가 증가해 있지않은가로 판정했다. (5)의 항목을 만족시키는 계면활성제를 조정후 6개월 경과한 시점에서 불순물 분석을 행한결과 모든 계면활성제가 반도체 공정에있어서 악영향을 미치는 알칼리금속이나 알칼리토류금속 다시또 중금속류가 증가하지 않은것을 확인했다.The high purity was analyzed by adding the surfactant and analyzing its components to determine whether there was an increase in alkali metals or alkaline earth metals and heavy metals that adversely affect the semiconductor process. Impurity analysis was carried out 6 months after the adjustment of the surfactant satisfying the item (5), and it was confirmed that all the surfactants did not increase the alkali metals or alkaline earth metals and heavy metals which adversely affect the semiconductor process. .

이상의 6가지 조건[(1)∼(6)]을 모두만족시키는 계면활성제에 대해 반도체공정에있어서 만족시키지 않으면안되는 최후의조건 즉 (7)불화수소산이 본용도에 사용되는 주된목적인 실리콘산화막의 에칭 혹은 황산-과산화수소수, 염산-과산화수소수 혹은 암모니아-과산화수소수로 세정한때에 다시또 초순수세정시의 실리콘웨이퍼전면 혹은 에칭으로 형성한 홈중에생긴 산화막의 제거를 만족할수있는 계면활성제의 조사를 행했다.The final condition that must be satisfied in the semiconductor process for a surfactant that satisfies all of the above six conditions [(1) to (6)], namely (7) etching of the main purpose silicon oxide film in which hydrofluoric acid is used for this application. Alternatively, a surfactant was irradiated to remove the oxide film formed on the front surface of the silicon wafer during the ultrapure water cleaning or the groove formed by etching again when washed with sulfuric acid-hydrogen peroxide water, hydrochloric acid-hydrogen peroxide water or ammonia-hydrogen peroxide water.

(7)실리콘표면의 세정 또는 산화막의 에칭효과(7) cleaning the silicon surface or etching the oxide film

본처리제의 제1의 목적은 실리콘표면의 자연산화막의 제거이다. 자연산 화학의 성장은 대기중에서 만이아니고 초순수 린스시 다시또 반도체공정에서 사용되는 황산-과산화수소수, 염산-과산화수소수 혹은 암모니아수-과산화수소수 세정시에도 생긴다.The primary purpose of this treatment agent is to remove the native oxide film on the silicon surface. The growth of natural chemistry occurs not only in the air, but also in the cleaning of ultrapure water rinsing, again in sulfuric acid-hydrogen peroxide, hydrochloric acid-hydrogen peroxide or ammonia-hydrogen peroxide.

이때생긴 산화막을 본처리제로 제거하지 않으면 안되지만 계면활성제중에는 실리콘산화막 표면에 강고히 흡착한 산화막의 제거를 저해하는것이있다. 실리콘표면의 자연산화막이 제거되었는가 어떤가는 습식법으로 성장시킨 실리콘산화막을 처리제에 1분간 침지시킨후 초순수로 1분간 린스하고 기판상에 적하시킨 초순수의 접촉각을 측정하므로서 자연산화막이 제거되었는가 어떤가를 확인할 수가 있다.The oxide film produced at this time must be removed with this treatment agent, but some surfactants inhibit the removal of the oxide film strongly adsorbed on the silicon oxide film surface. Whether or not the natural oxide film on the silicon surface was removed can be confirmed by immersing the silicon oxide film grown by the wet method in the treatment agent for 1 minute, rinsing with ultrapure water for 1 minute, and measuring the contact angle of the ultrapure water dropped on the substrate. have.

결국 침지 초순수린스한 기판상의 초순수의 접촉각이 실리콘기판상에서의 물의 접촉각인 72°로 복귀해있는가 아닌가에의해 확인할 수가 있다. 그 결과를 표34∼표36에 나타낸다.As a result, the contact angle of the ultrapure water on the submerged ultrapure rinsed substrate can be confirmed by returning to 72 °, which is the contact angle of water on the silicon substrate. The results are shown in Tables 34 to 36.

단 상기한 표중의 A∼H의 기호는 상기한 바와같다.However, symbols of A to H in the above tables are as described above.

습식법으로 형성한 실리콘산화막상에 적하한 초순수의 접촉각은 12도이며 초순수는 실리콘산화막상에 얇게 퍼진다.The contact angle of ultrapure water dropped on the silicon oxide film formed by the wet method is 12 degrees, and the ultrapure water spreads thinly on the silicon oxide film.

그러나 처리제로 산화막을 제거한 실리콘면상에서의 초순수는 둥근액적을 형성하고 접촉각이 72도가되고 처리제로 실리콘산화막이 제거되어있는것을 알수있다.However, it can be seen that the ultrapure water on the silicon plane from which the oxide film was removed with the treatment agent formed round droplets, the contact angle was 72 degrees, and the silicon oxide film was removed with the treatment agent.

그러나 계면활성제의 몇가지인가는 실리콘산화막상을 덮고 불화수소산으로의 산화막의 제거를 저해한다. 그때문에 처리제에 1분간 침지해도 초순수의 접촉각이 72도 전후로 되지않는 경우가 있다.However, some of the surfactants cover the silicon oxide film and inhibit the removal of the oxide film to hydrofluoric acid. Therefore, the contact angle of ultrapure water may not be around 72 degrees even if it immerses for 1 minute in a processing agent.

산화막표면에 계면화성제가 흡착되어 산화막의 에칭을 저해하는것이 아니고 불소계계면활성제 특유의 발수성 표면이되고 초순수로 접촉각을 측정하면 85도 이상의 값이되어있다. 탄화수소제의 계면활성제의 경우는 친수성이 극히 강하고 웨이퍼표면의 자연산화막과 강고히 흡착되어 HF 용액으로 완전히 제거할수없고 산화막이 남아있기 때문에 접촉각이 50도 정도까지 적게되어있다. 또한 건식법으로 성장시킨 자연산화막의 경우 산화막상의 물의 접촉각이 크고 (36도) 산화막이 제거되었는가 어떤가의 판별이 곤란하기 때문에 습식법으로 성장시킨 막을 상용했다.The surfactant is adsorbed on the surface of the oxide film to prevent etching of the oxide film. Instead, it becomes a water-repellent surface peculiar to the fluorine-based surfactant. When the contact angle is measured by ultrapure water, the value is more than 85 degrees. Hydrocarbon surfactants have extremely high hydrophilicity, are strongly adsorbed with the native oxide film on the wafer surface, cannot be completely removed by HF solution, and the contact angle is reduced to about 50 degrees because the oxide film remains. In the case of the natural oxide film grown by the dry method, the wet grown film was commercially available because the contact angle of water on the oxide film was large (36 degrees) and it was difficult to determine whether the oxide film had been removed.

이상의 7가지조건을 모두 만족시키기 위한 계면활성제의 검토를 행한결과 비이온계의 계면활성제의 어느종류의것 및 그 혼잡계의 것만이 목적에 적합하다는 것을 알아냈다.As a result of studying a surfactant for satisfying all the above seven conditions, it was found that only one kind of nonionic surfactant and its congestion type were suitable for the purpose.

이들 수많은 새로운 발견에 기초하여 본 발명을 완성한 것이다. 이 목적에 적합한 계면활성제의 특성을 조사한바 HLB가 7∼17의 범위에있는것이라는것이 판명되었다.The present invention has been completed based on these numerous new discoveries. Investigation of the properties of the surfactant suitable for this purpose revealed that HLB was in the range of 7 to 17.

계면활성제의 HLB값이란 그 화학구조의 Hydrophile∼Lipophile Balance 이며, 계면활성제의 친수성과 친유성의 균형을 나타낸 수치인것은 잘 알려져 있다. 그러나 실리콘 표면에 대한 접촉각이 HLB 값에 의존하고있다는 발견은 아직 알려지지 않고있으며 본 발명에서 처음으로 발견된것이다.It is well known that the HLB value of a surfactant is Hydrophile-Lipophile Balance of the chemical structure, and the numerical value which showed the balance of the hydrophilicity and lipophilic property of surfactant. However, the discovery that the contact angle with respect to the silicon surface depends on the HLB value is still unknown and was the first to be discovered in the present invention.

본 발명의 미세가공 표면처리제는 불화수소산에 비이온 계면활성제중의 상기한 특정의 계면활성제를 1종 또는 2종이상 혼합해서 또한 하기하는 HLB가 7∼17의 범위가 되도록 함유시켜서 된 것이다. 불화수소산이란 불화수소를 0.01∼55중량% 함유시킨 불화수소산수용액을 말한다.The microfabricated surface treating agent of the present invention is prepared by mixing hydrofluoric acid with one or two or more of the above-described specific surfactants in nonionic surfactants such that the following HLB is in the range of 7 to 17. Hydrofluoric acid refers to an aqueous hydrofluoric acid solution containing 0.01 to 55% by weight of hydrogen fluoride.

비이온 계면활성제는 폴리옥시알킬을 기간구조로하고 에테르형, 에스테르형 또는 글리콜형등의 화학구조군으로 되지만 세부구조는 극히 변화가 풍부하고 분자구조 즉 분자량, 탄소수, 치환기등이 다른것인데도 불구하고 일반적 화학명으로 표시되는 것이 보통이다. 따라서 각각의 계면활성제를 처리제중에서 나타내는 특성이나 거동을 화학구조식을 갖고 특징지울 수가없다.Nonionic surfactants have a polyoxyalkyl as the main structure and a group of chemical structures such as ether type, ester type, or glycol type, but the detailed structure is extremely rich and the molecular structure, that is, molecular weight, carbon number, substituents, etc. It is usually represented by a common chemical name. Therefore, the characteristics and behavior of each surfactant in the treatment agent cannot be characterized with chemical structures.

그러나 효과의 특징을 지우는것은 극히 중요한 일이기때문에 이점을 모든 각도로부터 탐색을 거듭했다.However, it is extremely important to characterize the effect, so we searched for it from all angles.

그 결과 극히 확연한 화학구조 규칙성이 있는것을 알아냈다. 그것은 계면활성제 첨가처리제의 실리콘면에 대한 접촉각과 계면활성제의 HLB값과의 관계이다.As a result, it was found that there was extremely obvious chemical structure regularity. It is the relationship between the contact angle with respect to the silicone surface of surfactant addition agent, and the HLB value of surfactant.

실리콘표면에 대한 접촉각을 일련의 HLB값을 갖는 계면활성제에 대해 측정한 결과를 표37에 나타낸다.Table 37 shows the results of measuring contact angles with respect to the silicon surface for surfactants having a series of HLB values.

이 결과로부터 어떤 HLB값의 범위에 접촉각의 극소영역이 존재하는것을 알아냈다. 그결과 상기한 화합물군에서도 접촉각이 50도 이하가되는 HLB 값의 범위는 7∼17의 범위가되며 HLB값이 7미만이나 18이상이되면 접촉각이 50도를 초과하여 실리콘표면이 젖지않게된다.From these results, it was found that a very small area of contact angle exists in a range of HLB values. As a result, even in the compound group described above, the HLB value in which the contact angle is 50 degrees or less is in the range of 7 to 17. When the HLB value is less than 7 or 18 or more, the contact angle exceeds 50 degrees and the silicon surface does not get wet.

단 표 37은 HLB값과 접촉각과의 관계를 나타내는것이며 표중 ※표시는 혼합계를 나타낸다.However, Table 37 shows the relationship between the HLB value and the contact angle, and * in the table indicates the mixing system.

또 HLB 값에는 가성성이 성립하고 HLBA인 계면활성제 WA(g)와 HLBB인 계면활성제 WB(g)를 혼합한경우 혼합계의 HLBAB는 화학식 (1),In addition, the HLB value hangyeongwoo caustic property is established by mixing the HLB of the surfactant A W A (g) B and HLB surfactants W B (g) AB HLB of the mixed system of the formula (1),

HLBAB- (HLBAX WA+ HLBBX WB) / (WA+ WB)HLB AB- (HLB A XW A + HLB B XW B ) / (W A + W B )

의 식이 성립되는것이 알려저 있다.It is known that consciousness is established.

혼합계에 있어서도 접촉각과 HLB의 의존성이 검증되고 접촉각의 극소영역이 존재하는것을 알아냈다.In the mixed system, the dependence of the contact angle and the HLB was verified, and it was found that there was a very small area of the contact angle.

HLB 값과 입자수를 구한 실험결과를 표38에 나타낸다. 이 결과로부터 HLB값을 7 이상으로하면 입자수를 감소시킬 수가있고 HLB값이 7 미만의 계면활성제 첨가처리제는 순환여과를 행해도 처리제의 입자수를 감소시킬수가 없다는것도 발견한 것이다.Table 38 shows the test results obtained by calculating the HLB value and the number of particles. From these results, it was also found that when the HLB value is 7 or more, the number of particles can be reduced, and the surfactant addition treatment agent having an HLB value of less than 7 cannot reduce the particle number of the treatment agent even by performing circulating filtration.

단 표 38은 순환여과후의 입자수를 조사할것이며 ※표시는 혼합계를 나타낸다.However, Table 38 will investigate the number of particles after circulating filtration.

계면활성제의 존재로 극히 미세한 입자가 여과제거되는 기구는 계면활성제 분자의 미셀형성과 관련되어 있다고 생각되지만 계면활성제의 HLB값에도 의존하고 있는것이 여기서 처음으로 발견된 것이다.The mechanism by which the very fine particles are filtered out in the presence of surfactants is thought to be related to the micelle formation of the surfactant molecules, but this was the first time that they were also dependent on the HLB value of the surfactants.

이상과같이 새로운 발견사실을 총합해서 처리제로 적당한 계면활성제의 HLB 값의 범위가 구해진다. 즉 비이온계면활성제의 1종 또는 2종이상을 혼합하므로서 그 HLB값이 7∼17의 범위 바람직하게는 10∼15의 범위에 있게된다.As mentioned above, the new discovery facts are summed and the range of HLB value of surfactant suitable as a processing agent is calculated | required. That is, the HLB value is in the range of 7 to 17, preferably in the range of 10 to 15, by mixing one or two or more kinds of nonionic surfactants.

본 발명에서 사용되는 비이온계면활성제를 예시하면 글리콜의 에스테르 고급알코올 축합물, 고급지방산 축합물 및 알킬페놀 축합물 이다. 구체적으로는 예를들면 다음과같다.Illustrative nonionic surfactants used in the present invention are ester higher alcohol condensates, higher fatty acid condensates and alkylphenol condensates of glycols. Specifically, for example:

폴리옥시에틸렌고급알코올에테르(HLB값 10.5, 12.1, 13.3의것)Polyoxyethylene higher alcohol ether (HLB value 10.5, 12.1, 13.3)

C12H25∼C14H29O(CH2CH2O)nHC 12 H 25- C 14 H 29 O (CH 2 CH 2 O) n H

폴리옥시에틸렌올레산에스테르 (HLB 값 9, 12, 14, 16의것)Polyoxyethylene Oleic Acid Ester (HLB Value 9, 12, 14, 16)

C17H33OO(CH2CH2O)nHC 17 H 33 OO (CH 2 CH 2 O) n H

폴리옥시에틸렌라우릴에테르(HLB값 8, 9.7, 10, 10.5, 12.1, 13.8, 13. 9, 14, 15.3, 16, 16.3, 17, 17.3, 19, 20의것)Polyoxyethylene lauryl ether (HLB value 8, 9.7, 10, 10.5, 12.1, 13.8, 13. 9, 14, 15.3, 16, 16.3, 17, 17.3, 19, 20)

C12H25O(CH2CH2O)nHC 12 H 25 O (CH 2 CH 2 O) n H

폴리옥시에틸렌노닐페닐에테르(HLB값 7.8, 9.2, 10.8, 12.2, 12.4, 13.7,14.5, 15.1, 15.5, 17, 17.5, 18.2, 18.9의것)Polyoxyethylene nonylphenyl ether (HLB value 7.8, 9.2, 10.8, 12.2, 12.4, 13.7, 14.5, 15.1, 15.5, 17, 17.5, 18.2, 18.9)

화학식2.Formula 2.

폴리옥시에틸렌옥틸페닐에테르(HLB값 9, 11, 12, 13.1, 14, 15, 18, 19, 20 의것)Polyoxyethylene octylphenyl ether (HLB value 9, 11, 12, 13.1, 14, 15, 18, 19, 20's)

화학식3.Formula 3.

폴리옥시에틸렌알킬알릴에테르(HLB값 8, 8.8, 10.0, 12, 13, 13.6, 14, 15, 16, 16.2, 17 의것)Polyoxyethylene alkylallyl ether (HLB value 8, 8.8, 10.0, 12, 13, 13.6, 14, 15, 16, 16.2, 17)

등이 바람직하다. 여기서 R은 알킬기를 나타낸다.Etc. are preferable. R represents an alkyl group here.

이들 계면활성제는 1종또는 2종이상의 혼합계로 사용되고 그 형태로서도 고체인체로 또는 액상으로 사용된다. 그 첨가량은 전체조성물에 대해 10∼1000ppm이다.These surfactants are used in one kind or in a mixture of two or more kinds, and are also used in solid form or in liquid form. The addition amount is 10-1000 ppm with respect to the whole composition.

본 발명의 처리제의 불화수소산은 희석불화수소산계 예를들면 5중량%나 0.5중량%의 농도로 사용되는 경우가 많기때문에 미리 목적하는 불화수소산 농도에 10∼1000ppm첨가해도되고, 또 계면활성제의 첨가농도를 예를들면 250ppm으로 사용하는경우 50중량%의 불화수소산에 2500ppm 또는 25000ppm의 농도가되도록 본 발명의계면활성제를 첨가하여 순환여과해서 제조하고 이 제품을 각각 5중량%및 0.5중량%의 불화수소산에 희석시켜도된다. 이 경우에도 본 발명의 계면활성제를 250ppm첨가해서 제조된것과 같은 활성도를 나타내고 또 실리콘표면상의 자연산화막 및 패턴형성후의 홈내의 자연산화막은 완전히 제거되어 있었다. 다시또 처리제는 미세가공표면처리를 하는때에 유해하게되는 금속불순물을 분석한결가 이들불순물이 처리액에비해서 증가되어 있지않고 고순도성이 유지되어있는것이 확인되었다.Since hydrofluoric acid of the treatment agent of the present invention is often used at a concentration of 5% by weight or 0.5% by weight of dilute hydrofluoric acid, 10 to 1000 ppm may be added to the desired hydrofluoric acid concentration in advance, and the addition of a surfactant For example, when the concentration is used at 250 ppm, the surfactant of the present invention is added to 50 ppm by weight of hydrofluoric acid to have a concentration of 2500 ppm or 25000 ppm, and the present invention is prepared by circulating filtration, and the product is 5% by weight and 0.5% by weight of fluoride, respectively. You may dilute in hydrochloric acid. In this case, the same activity as that prepared by adding 250 ppm of the surfactant of the present invention was obtained, and the native oxide film on the silicon surface and the native oxide film in the grooves after the pattern formation were completely removed. Again, the treatment agent analyzed the metal impurities that are harmful during the micro-processing surface treatment, it was confirmed that these impurities are not increased compared to the treatment liquid and high purity is maintained.

본 발명의 처리제를 사용해서 실리콘면을 에칭한때의 에칭면상에의 입자의 부착수는 적었다.When the silicon surface was etched using the treatment agent of the present invention, the number of particles deposited on the etching surface was small.

또 실리콘웨이퍼를 본 발명의 처리제에 100분간 침지한때의 에칭면의 거칠음성은 본 발명의 계면활성제를 첨가하지 않은 불화수소산에비해 비약적으로 개선되었다.In addition, the roughness of the etching surface when the silicon wafer was immersed in the treatment agent of the present invention for 100 minutes was significantly improved compared to hydrofluoric acid without addition of the surfactant of the present invention.

본 발명의 처리제를 3개월 보존한후 표면장력, 접촉각및 입자수를 측정했으나 조제시와 변하지않았다. 또 이들을 순환여과를 행해도 상기한 7가지 조건을 만족시키고 있었다.The surface tension, the contact angle and the number of particles were measured after 3 months of storage of the treatment agent of the present invention, but did not change with the preparation. In addition, the above seven conditions were satisfied even if they were subjected to circular filtration.

이것으로부터 이 처리제가 장기안정성을 갖고있는것이 확인되었다.From this, it was confirmed that this treatment agent has long term stability.

본 발명의 미세가공표면처리제는 실리콘면에의 침윤성이 향상되고 집적도의 증대에 대응해서 보다 미세한 에칭가공과 보다 균일한 에칭을 가능하게 하고 다시또 실리콘표면의 세정을 하는것이다.The microfabricated surface treatment agent of the present invention is capable of finer etching processing and more uniform etching in order to improve the infiltration to the silicon surface and to increase the degree of integration, and to clean the silicon surface again.

장기보존해도 그성능은 전혀 변화하지않고 여과시켜도 그 성능이 변화하지 않는다고하는 특성을 갖고있기 때문에 미세가공의 고도의 균일성이 확보된다.Even if it is stored for a long time, its performance does not change at all, and its performance does not change even if it is filtered. Therefore, high uniformity of micromachining is ensured.

특히 이 처리제중의 미립자가 적고 다시또 에칭면에의 침윤성이 양호하기 때문에 실리콘면을 에칭한경우 에칭면상에의 입자의 부착을 적게할수있고 다시또 에칭면을 평활하게 완성할수있는 효과가있다.In particular, since there are few fine particles in the treatment agent and the infiltration into the etching surface is good again, when the silicon surface is etched, the adhesion of the particles on the etching surface can be reduced and the etching surface can be smoothly completed again.

[실시예]EXAMPLE

다음에 실시예를 들어서 본 발명을 다시 상세히 설명한다.Next, an Example is given and this invention is demonstrated in detail again.

(실시예1.)(Example 1.)

0.5, 5.0,및 50중량% 불화수소산에 계면활성제를 200ppm첨가하고 그 표면장력, 실리콘에 대한 접촉각 및 입자수(0.5μm 이상의 입자) 다시또 0.5, 5.0,및 50중량%의 불화수소산에 계면활성제를 200ppm 첨가한 용액에 5인치 실리콘웨이퍼를 침지시키고 그후 웨이퍼검사기구로 웨이퍼표면에 부착한 입자수(0.3μm∼1.0μm) 및 그 처리제중에 실리콘웨이퍼를 100분간 침지시킨때의 웨이퍼표면의 거칠음성을 AMF로 측정한 결과를 표 39∼표44에 나타낸다.Add 200 ppm of surfactant to 0.5, 5.0, and 50% by weight hydrofluoric acid and its surface tension, contact angle to silicon and number of particles (particles of 0.5 μm or more) and again 0.5, 5.0, and 50% by weight of hydrofluoric acid 5 inch silicon wafer was immersed in the solution to which 200 ppm was added, and then the surface roughness of the wafer surface when the silicon wafer was immersed in the processing agent for 100 minutes in the number of particles (0.3 μm to 1.0 μm) attached to the wafer surface by the wafer inspection mechanism. The result measured by AMF is shown to Tables 39-44.

단 표39및 표40은 미세가공 표면처리제의 농도가 0.5중량%HF의, 표41 및 표42는 마찬가지로 5.0중량%HF의, 표43및 표44는 50중량%HF 의 특성측정 결과이며 표중 POE는 폴리옥시에틸렌을 나타낸다.However, Table 39 and Table 40 show the results of the characterization of the microfabricated surface treatment agent concentration of 0.5% by weight HF, Tables 41 and 42 likewise 5.0% by weight HF, Tables 43 and 44 are 50% by weight HF. Represents polyoxyethylene.

(실시예2.)(Example 2.)

50중량%의 불화수소산에 계면활성제를 2000ppm첨가한 처리제를 5.0중량%에, 또 2000ppm 첨가한 처리제를 0.5중량%로 희석시킨때의 각 특성을 측정한 결과를 표45∼표48에 나타낸다.Tables 45 to 48 show the results of measuring the respective properties when diluting the treatment agent added with 2000 ppm of surfactant to 50 wt% hydrofluoric acid to 5.0 wt% and the treatment agent added 2000 ppm to 0.5 wt%.

단 표45및 표46은 미세가공 표면처리제(50.0중량%HF)를 10배로 희석시킨 때의, 또 표47및 표48은 100배로 희석시킨때의 결과를 나타낸다. 이들 표중 POE는 폴리옥시에틸렌을 나타낸다.However, Tables 45 and 46 show the results when the microfabricated surface treatment agent (50.0% by weight HF) was diluted 10-fold and Tables 47 and 48 were diluted 100-fold. POE in these tables represents polyoxyethylene.

제1도는 계면활성제 농도와 액중입자의 관계를 나타내는 도면.1 is a diagram showing the relationship between surfactant concentration and liquid particles.

제2도는 계면활성제 농도와 부착입자수와의 관계를 나타내는 도면.2 is a diagram showing the relationship between the surfactant concentration and the number of attached particles.

Claims (3)

불화 수소산에 폴리옥시에틸렌 고급알콜에테르, 폴리옥시에틸렌 올레산에스테르, 폴리옥시에틸렌 라우릴에테르, 폴리옥시에틸렌 노닐페닐에테르, 폴리옥시에틸렌 옥틸페닐에테르 및 폴리옥시에틸렌 알킬알릴에테르로 이루어진 그룹에서 선택된 하나 이상의 물질로써, 7 내지 17의 HLB 값을 가지는 탄화 수소계 비이온 계면활성제를 혼합하여 제조되는 미세 가공 표면 처리제.At least one selected from the group consisting of polyoxyethylene higher alcohol ether, polyoxyethylene oleic acid ester, polyoxyethylene lauryl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene octylphenyl ether and polyoxyethylene alkylallyl ether in hydrofluoric acid As a material, a fine surface treatment agent prepared by mixing a hydrocarbon-based nonionic surfactant having an HLB value of 7 to 17. 제 1 항에 있어서, 탄화수소계 비이온 계면활성제가 10∼1000ppm 함유되어 있는 것을 특징으로 하는 미세가공 표면처리제.2. The microfabricated surface treatment agent according to claim 1, wherein 10 to 1000 ppm of a hydrocarbon-based nonionic surfactant is contained. 제 1 항에 있어서, 탄화수소계 비이온 계면활성제의 HLB 값이 10∼15인 것을 특징으로 하는 미세 가공 표면 처리제.The HLB value of a hydrocarbon type nonionic surfactant is 10-15, The micro-processing surface treating agent of Claim 1 characterized by the above-mentioned.
KR1019940019157A 1994-08-03 1994-08-03 Micro Machining Surface Treatment Agent KR100349816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940019157A KR100349816B1 (en) 1994-08-03 1994-08-03 Micro Machining Surface Treatment Agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940019157A KR100349816B1 (en) 1994-08-03 1994-08-03 Micro Machining Surface Treatment Agent

Publications (2)

Publication Number Publication Date
KR960007750A KR960007750A (en) 1996-03-22
KR100349816B1 true KR100349816B1 (en) 2002-10-31

Family

ID=66698101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940019157A KR100349816B1 (en) 1994-08-03 1994-08-03 Micro Machining Surface Treatment Agent

Country Status (1)

Country Link
KR (1) KR100349816B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427759B1 (en) * 2001-11-13 2004-04-28 주식회사 아담스테크놀로지 Microemulsion typed detergent aqueous composition for liquid crystal display panel

Also Published As

Publication number Publication date
KR960007750A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
DE60317124T2 (en) Washing liquid composition for a semiconductor substrate
JP6999603B2 (en) Post chemical mechanical flattening (CMP) cleaning
KR100746056B1 (en) Substrate surface cleaning liquid mediums and cleaning method
DE60319132T2 (en) CLEANING, CLEANING AND MANUFACTURING METHOD FOR SEMICONDUCTED WASHERS
KR960013146B1 (en) Surface treatment material for micro processing
US8110534B2 (en) Cleaning solution for substrate for semiconductor device and process for producing substrate for semiconductor device
US4711256A (en) Method and apparatus for removal of small particles from a surface
JP2003536258A (en) Cleaning composition after chemical mechanical planarization (CMP)
EP1389496A1 (en) Method for cleaning surface of substrate
KR100250002B1 (en) Cleaning composition of low surface tension for semiconductor substrates
KR0177568B1 (en) Cleaning agent and method
KR101774843B1 (en) Method for cleaning semiconductor wafer
US5803956A (en) Surface treating composition for micro processing
KR100225147B1 (en) Cleaning solution for semiconductor substrate
DE19833257C1 (en) Semiconductor wafer production process especially to produce a silicon wafer for fabricating sub-micron line width electronic devices
JP2005194294A (en) Cleaning liquid and method for producing semiconductor device
JP3377938B2 (en) Cleaning composition and cleaning method
CN115160934A (en) Super-hydrophilic large-size silicon fine polishing solution and preparation and application methods thereof
JP2005154558A (en) Detergent
JP3169024B2 (en) Cleaning liquid for silicon wafers and semiconductor devices
JP4817887B2 (en) Semiconductor substrate cleaning method
JP3957264B2 (en) Semiconductor substrate cleaning method
KR100349816B1 (en) Micro Machining Surface Treatment Agent
DE69635427T2 (en) Method for drying substrates
JPH11181494A (en) Detergent composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120724

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130719

Year of fee payment: 12

EXPY Expiration of term