KR100345695B1 - A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein - Google Patents

A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein Download PDF

Info

Publication number
KR100345695B1
KR100345695B1 KR1019970036499A KR19970036499A KR100345695B1 KR 100345695 B1 KR100345695 B1 KR 100345695B1 KR 1019970036499 A KR1019970036499 A KR 1019970036499A KR 19970036499 A KR19970036499 A KR 19970036499A KR 100345695 B1 KR100345695 B1 KR 100345695B1
Authority
KR
South Korea
Prior art keywords
magnetic flux
annealing
steel sheet
electrical steel
heat treatment
Prior art date
Application number
KR1019970036499A
Other languages
Korean (ko)
Other versions
KR19990012920A (en
Inventor
차상윤
우종수
장삼규
추다코프이반보르셰비치
김병구
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019970036499A priority Critical patent/KR100345695B1/en
Publication of KR19990012920A publication Critical patent/KR19990012920A/en
Application granted granted Critical
Publication of KR100345695B1 publication Critical patent/KR100345695B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

PURPOSE: A method of manufacturing grain oriented electrical steel having low noise and magnetic flux, and a heating treatment apparatus used therefor are provided. CONSTITUTION: In a method of manufacturing a grain oriented electrical steel where a steel slab comprising Si 0.4 to 4.8 wt.%, C 0.02 to 0.07 wt.%, Mn 0.05 to 0.2 wt.%, S 0.02 to 0.03 wt.%, Cu 0.05 to 0.3 wt.%, Ce, a balance of Fe and incidental impurities is subject to reheating at 1250 to 1400 deg.C, hot rolling, annealing, pickling, two times cold rolling including process annealing, decarburization annealing, final hot annealing and tension coating, the method is characterized in that Ce is added in the steel slab in an amount of 0.006 to 0.09 wt.%; the steel sheet after final hot annealing is magnetic heat-treated at 300 to 600°C for more than 10 sec, wherein the magnetic heat treatment is conducted at 400 to 550 deg.C for more than 2 min under direct current saturation magnetic field. The apparatus used for the manufacture of grain oriented electrical steel comprises a furnace(4) for heating a specimen(1); a solenoid(5) which is installed inside the furnace with spaced apart from the inner surface of the furnace in a fixed distance to excite the specimen; a steel strip(6) which is connected to both ends of a specimen and forms a closed circuit passing through the solenoid; and a power supply to impress voltage to the solenoid.

Description

저소음 방향성 전기강판의 제조방법 및 이에 사용되는 자속열처리 장치{A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein}A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein}

본 발명은 변압기등 전기기기의 철심으로 사용되는 저소음을 갖는 방향성 전기강판을 제조하는 방법 및 이에 사용되는 자속열처리장치에 관한 것이다.The present invention relates to a method for manufacturing a low-noise oriented electrical steel sheet used as an iron core of an electrical apparatus such as a transformer and a magnetic flux heat treatment apparatus used therein.

방향성 전기강판은 압연방향으로 (110)[001] 방위의 집합조직을 갖는 것으로, 그 제조방법이 미국특허 1,965,559에 고스(N.P. Goss)에 의해 처음으로 제시된이래, 많은 연구자들에 의해 새로운 제조방법의 발명과 특성향상이 이루어져 왔다.A grain-oriented electrical steel sheet has an aggregate structure of (110) [001] orientation in the rolling direction, and since its manufacturing method was first proposed by NP Goss in US Patent 1,965,559, many researchers have proposed a new manufacturing method. Invention and property improvement have been made.

현재 공업적으로 주로 이용되고 있는 일반 방향성 전기강판(Conventional grain oriented sliicon steel)의 제조방법은 리틀맨( M.F.Littmann)에 의해 일본특허 공보(소)30-5651호에 제시되어 있다. 이 방법에 의하면 규소강을 열간압연, 예비소둔, 산세, 중간소둔을 포함한 2회의 냉간압연, 탈탄소둔, MgO도포 및 억제제로 MnS를 이용하여 2차 재결정 조직을 얻고 있다. 이와 같이 일련의 공정으로 제조되는 방향성 전기강판은 특성향상을 위해 여러 가지 작업조건들이 변경되어 왔으나, 주된 것은 변화 없이 사용되고 있다.A method for producing conventional grain oriented sliicon steel, which is currently mainly used industrially, is disclosed in Japanese Patent Publication No. 30-5651 by M. F. Littmann. According to this method, the secondary recrystallized structure is obtained by using MnS as two cold rolling, de-carbon annealing, MgO coating and inhibitor including silicon steel hot rolling, pre-annealing, pickling, intermediate annealing. As described above, various types of working conditions have been changed for the improvement of characteristics of oriented electrical steel sheet manufactured by a series of processes, but the main one is used without change.

방향성전기강판은 전압과 전류를 원하는 양 또는 상(phase)으로 변환시켜주기 위한 변압기 또는 변류기의 내부에 수십에서 수백장까지 적층된 철심으로 들어가 있다. 그 철심주위는 코일이 감싸고 있으며, 이 코일에 전류를 흘려 철심을 동작시키면 철심내부에서 자속방향의 변화로 인해 철심의 길이변화가 일어나게 된다.A grain-oriented electrical steel sheet is enclosed by tens to hundreds of iron cores stacked inside a transformer or current transformer to convert voltage and current into the desired amount or phase. The coil is wrapped around the core, and when the iron core is operated by applying current to the coil, the length of the core is caused by the change of magnetic flux direction inside the core.

이러한 현상을 '자왜'라 하며, 그 길이변화는 공급되는 전압 또는 전류의 주파수에 배수로 발생된다. 이와 같이 생기는 길이변화로 인해 철심의 끝단이 공기를 때리게 되며, 이 소리는 사람의 귀로 들을 수 있을 정도이다.This phenomenon is called magnetostriction, and the change in length occurs in multiples of the frequency of the supplied voltage or current. This change in length causes the ends of the iron core to hit the air, which is audible to the human ear.

일반적으로 강판의 자왜크기는 "길이변화량÷원래시편길이"로 표시되며, 통상의 일반 방향성 전기강판의 경우 1.7Tesla에서 3x10-6정도 된다. 이 양은 시편에 응력이 전혀 가해지지 않은 상태에서의 자왜크기이다. 만일, 시편에 강판의 길이방향으로 압축응력을 가하게 되면 이 값은 크게 달라진다.In general, the magnetostrictive size of the steel sheet is expressed as "length variation ÷ original specimen length", and in the case of a general general oriented electrical steel sheet, about 1.7xes to 3x10 -6 . This amount is the magnetostrictive size without any stress applied to the specimen. If the specimen is subjected to compressive stress in the longitudinal direction of the steel sheet, this value will vary greatly.

즉, 실제 전기강판을 변압기의 철심으로 이용하는 경우, 강판을 적층하고 강판사이의 틈을 없애기 위하여 볼트를 죄거나 용접을 하므로 강판에 압축응력이 가해져 자왜크기는 커진다.In other words, when the actual electrical steel sheet is used as the iron core of the transformer, the compressive stress is applied to the steel sheet to increase the magnetostrictive size because the bolt is tightened or welded in order to laminate the steel sheets and eliminate the gap between the steel sheets.

또한, 자왜크기에 대한 값은 측정기기와 시편의 형상에 따라 조금씩 차이가 난다. 이는 자왜값이 미소한 응력에도 민감하며, 그 양이 매우 적어 시편과 자왜측정장치 사이에 마찰이 측정기기마다 서로 다르기 때문이다. 이러한 이유로 자왜크기는 보고되는 문헌의 측정치마다 차이를 나타낸다.In addition, the value for the magnetostriction size is slightly different depending on the shape of the measuring instrument and the specimen. This is because the magnetostrictive value is sensitive to the microscopic stress, and the amount is so small that the friction between the specimen and the magnetostrictive measuring device is different for each measuring device. For this reason, the magnetostrictive size differs between the measurements of the reported literature.

일반 방향성 전기강판의 경우, 자왜크기가 무응력하 1.7Tesla에서는 상술한 바와 같이 3x10-6정도 되며, 3MPa의 압축응력하에서는 10x10-6정도 된다.In the case of general oriented electrical steel sheet, the magnetostriction size is about 3x10 -6 at 1.7Tesla under no stress, and about 10x10 -6 under compressive stress of 3MPa.

그런데, 이 수준의 자왜크기를 가진 일반방향성 전기강판으로 변압기를 만드는 경우 자왜에 의한 소음문제가 심각하게 대두되고 있다. 따라서, 자왜크기를 최대한 낮추어서 소음을 줄이기 위해 가능한 낮은 자속밀도에서 사용하고 있으며, 이런 점을 고려하여 통상의 변압기는 1.70-1.75Tesla 수준에서 설계되고 있다.However, when the transformer is made of a general oriented electrical steel sheet having a magnetostriction size of this level, the noise problem due to the magnetostriction is seriously raised. Therefore, in order to reduce the magnetostriction size as much as possible to reduce the noise, it is used at the lowest magnetic flux density. In view of this, the conventional transformer is designed at 1.70-1.75 Tesla level.

그러나, 이러한 방법은 변압기의 효율을 떨어뜨리는 문제가 생기므로, 방향성 전기강판의 자왜를 지금보다도 더 낮출수 있는 방법이 강구된다면, 더 높은 자속밀도에서 변압기를 사용할 수 있게 되고, 그러면 이에 비례하여 변압기의 효율을 높이거나 크기를 줄일수 있으므로 자왜크기가 작은 방향성전기강판의 필요성이 커지고 있다.However, this method has a problem of decreasing the efficiency of the transformer, so if a method can be used to reduce the magnetostriction of the oriented electrical steel sheet more than now, the transformer can be used at a higher magnetic flux density, and then the transformer in proportion In order to increase the efficiency or to reduce the size, the need for directional electrical steel sheet having a small magnetostrictive size is increasing.

이에, 본 발명은 상기 요구에 부응하기 위해 안출된 것으로써, 변압기 또는변류기가 동작할 때 생기는 소음을 최대한 줄일 수 있는 저자왜 방향성전기 강판의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the present invention has been made to meet the above requirements, to provide a method for producing a low distortion directional electrical steel sheet that can reduce the noise generated when the transformer or the current transformer operating as possible, the object thereof.

나아가, 본 발명의 다른 목적은, 방향성 전기강판의 자속열처리시 자왜를 효과적으로 줄일 수 있는 자속열처리장치를 제공함에 있다.Furthermore, another object of the present invention is to provide a magnetic flux heat treatment apparatus that can effectively reduce magnetic distortion during magnetic flux heat treatment of a grain-oriented electrical steel sheet.

도 1은 본 발명을 위해 고안된 자속열처리 장치의 구조를 나타내는 개략도Figure 1 is a schematic diagram showing the structure of the magnetic flux heat treatment apparatus designed for the present invention

도 2는 자속열처리 온도에 따른 자왜크기의 변화를 나타내는 그래프Figure 2 is a graph showing the change in magnetostrictive size according to the magnetic flux heat treatment temperature

도 3은 자속열처리 시간에 따른 자왜크기의 변화를 나타내는 그래프이다3 is a graph showing a change in magnetostriction size according to magnetic flux heat treatment time.

*도면의 주요부호에 대한 설명** Description of the major symbols in the drawings *

1.시편 2. 발열체 3. 튜브 4. 가열로 5. 솔레노이드 6. 강대1. Specimen 2. Heating element 3. Tube 4. Heating furnace 5. Solenoid 6. Steel strip

7. 롤 8. 자속검출코일 9. 검출기7. Roll 8. Magnetic flux detection coil 9. Detector

10.파형합성 및 입력전압-전류를 조절하는 전압-전류 조절기10.Voltage-to-current regulator to control waveform synthesis and input voltage-current

상기 목적을 달성하기 위한 본 발명은, 중량%로 Si:0.4-4.8%, C:0.02-0.07%, Mn:0.05-0.2%, S:0.02-0.03%, Cu:0.05-0.3%, 및 Ce를 포함하고, 잔부는 Fe 및 불가피한 불순물로 이루어지는 강 슬라브를 1250-1400℃의 온도로 재가열한 후 열간압연하고, 열연판 소둔, 산세, 중간소둔을 포함한 2회의 냉간압연, 탈탄소둔, 소둔분리제를 도포한 다음, 강의 2차재결정과 순화를 위하여 최종고온소둔하고, 이어 장력코팅하여 이루어지는 방향성 전기강판의 제조방법에 있어서,The present invention for achieving the above object, Si: 0.4-4.8%, C: 0.02-0.07%, Mn: 0.05-0.2%, S: 0.02-0.03%, Cu: 0.05-0.3%, and Ce by weight% Wherein the remainder is reheated to a steel slab consisting of Fe and unavoidable impurities at a temperature of 1250-1400 ° C., followed by hot rolling, and two cold rolling, annealing, annealing, annealing separators, including hot rolled sheet annealing, pickling and intermediate annealing. In the method for producing a grain-oriented electrical steel sheet, which is formed by applying, followed by final high temperature annealing for secondary recrystallization and purification of steel, and then tension coating,

상기 강 슬라브에 Ce을 0.006-0.09% 첨가하고, 최종고온소둔된 강판 또는 상기 장력코팅된 강판을 300-600℃의 온도에서 자속열처리하는 것을 포함하여 구성된다.0.006-0.09% of Ce is added to the steel slab, and the final high temperature annealed steel sheet or the tension-coated steel sheet is configured to include magnetic flux heat treatment at a temperature of 300-600 ° C.

상기 다른 목적을 달성하기 위한 본 발명은, 시편이 내장된 튜브를 감싸고, 상기 시편을 가열하는 가열로,The present invention for achieving the above another object is a heating furnace for enclosing the tube in which the specimen is embedded and heating the specimen,

상기 가열로부터 일정거리를 두고 설치되어 그 내부에 위치하는 것을 여자시키는 솔레노이드,Solenoids are installed at a certain distance from the heating to excite the position located therein,

상기 가열로내의 시편의 양단에 접하여 연결되고, 솔레노이드 내부를 통과하여 폐회로를 형성하는 강대 및A steel strip connected to both ends of the specimen in the heating furnace and passing through the solenoid to form a closed circuit;

상기 솔레노이드에 전류를 인가하기 위한 전원부를 포함하여 구성된다.It comprises a power supply for applying a current to the solenoid.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

일반적으로 자왜는 재료내부의 원자를 둘러싸고 있는 전자의 스핀과 궤도결합(spin-orbit coupling)에 의하여 결정되어 진다.In general, magnetostriction is determined by the spin-orbit coupling of the electrons surrounding the atoms in the material.

본 발명은 이 결합을 변화시켜 저자왜의 특성을 확보하기 위해 일반방향성 전기강판의 용강내에 Ce(Cerium, 세륨)을 미량 첨가 시켜서 슬라브를 제조하는데, 그 특징이 있다.The present invention is to produce a slab by adding a small amount of Ce (Cerium, cerium) in the molten steel of the general grain-oriented electrical steel sheet in order to change the bond to secure the properties of the low distortion.

이와 더불어 , 상기와 같이 제공되는 강판의 자왜를 더욱 줄이기 위한 자속열처리장치를 제공하는데도 그 특징이 있다.In addition, there is also a feature to provide a magnetic flux heat treatment apparatus for further reducing the magnetostriction of the steel sheet provided as described above.

우선 본 발명에 따라 제조되는 강슬라브 성분의 한정이유에 대하여 설명한다.First, the reason for limitation of the steel slab component manufactured according to the present invention will be described.

Si은 강이 비저항을 높여 주어 철손특성을 현저하게 개선하는 원소로 전기강판의 제조에 반드시 들어가는 원소이다. 그 첨가량은 여러 가지 제한요소에 의해 결정되며, 방향성의 경우 실제로는 약 2.95-3.5%정도가 함유되어 있고, 무방향성인 경우 통상 0.4-3.5% 함유되고 있으나, 이는 공업적으로 냉간압연을 안정적으로 할 수 있느냐에 따라 그 첨가량이 정해지고 있다. 즉, 특수하고 엄밀히 제어된 압연법에서는 약 4.8%의 Si가 함유된 강의 압연도 가능한 것으로 알려지고 있어 그 첨가량이 점점 높아지고 있다. 본 발명은 이런 점을 고려하여 4.8%까지 첨가하는데, 만일 Si가 0.4%이하인 경우에는 그 첨가 효과가 미비하여 큰 의미가 없으므로, 상기한 Si함량은 0.4-4.8%로 설정하는 것이 바람직하다.Si is an element in which steel increases resistivity and significantly improves iron loss characteristics. The amount of addition is determined by various limiting factors, and in the case of aromaticity, it actually contains about 2.95-3.5%, and in the case of non-orientation, which generally contains 0.4-3.5%, but it is industrially stable for cold rolling. The amount of addition is determined by whether it can be done. That is, it is known that the rolling of steel containing about 4.8% of Si is also possible in the special and strictly controlled rolling method, and the addition amount thereof is increasing. The present invention adds up to 4.8% in consideration of this point. If Si is 0.4% or less, the addition effect is insignificant and does not have a significant meaning. Therefore, the Si content is preferably set to 0.4-4.8%.

C은 열간압연 조직을 미세화 시키기 위하여 첨가하는 원소로, 열간압연시 제 기능을 한후에는 불순물로 되어 자기적 특성에 악영향을 미치므로 제거되어야 한다. 3%의 Si가 함유된 경우 약 0.018%의 C을 함유하면 열간압연시 페라이트-오스테나이트 변태가 일어나 열간압연 조직을 미세화시키는 기능을 할 수 있다. 따라서 Si양이 증가하면 이보다 약간 높은 C의 양이 요구되므로 본 발명은 0.02% 이상의 C를 첨가한다. 한편, C은 최종제품에 남아 있게 되면 자기시효를 일으켜 변압기의 특성을 열화시키는 원소이므로, 탈탄소둔을 하여 최종제품에서는 반드시 0.003%이하로 엄격히 관리되고 있다. 그러나, 그 함량이 너무 많으면 탈탄공정에서도 제거가 어려워지므로 본 발명에서는 이런 점을 고려하여 0.07%이하로 첨가한다.C is an element that is added to refine the hot rolled structure. After performing the function of hot rolling, it becomes an impurity and has to be removed because it adversely affects the magnetic properties. When 3% of Si is contained, when about 0.018% of C is contained, ferrite-austenite transformation may occur during hot rolling, thereby miniaturizing the hot rolled tissue. Therefore, when the amount of Si increases, a slightly higher amount of C is required, so the present invention adds 0.02% or more of C. On the other hand, C is an element that deteriorates the characteristics of the transformer by causing magnetic aging when it remains in the final product, so it is strictly managed to be less than 0.003% in the final product by decarbonization annealing. However, if the content is too large, it is difficult to remove even in the decarburization process, so the present invention is added in an amount of 0.07% or less in consideration of this.

Mn은 전기저항을 높여주고 철손을 낮추는 효과가 있는 성분으로써, 그 효과를 확보하기 위해서 0.05%이상 첨가하나 그 함량이 0.2% 보다 너무 많은 경우에는 자속밀도의 저하를 초래하므로 Mn 함량은 0.05-0.2%로 선정하는 것이 바람직하다.Mn is an ingredient that increases the electrical resistance and lowers the iron loss. To secure the effect, Mn is added at 0.05% or more, but when the content is more than 0.2%, the Mn content is 0.05-0.2. It is preferable to select in%.

Cu의 경우 억제제(Inhibitor)인 MnS 석출물을 미세하고 균일하게 하는 효과가 있어, 입성장억제력을 증대시켜 자성을 향상시키는 역할을 한다. 그 함량이0.05%미만으로 적으면 효과가 미비하고, 함량이 0.3% 보다 많은 경우에는 열연판의 표면에 바람직하지 못한 산화물이 생겨 산세가 곤란하므로 적정한 양은 0.05-0.3%로 선정하는 것이 바람직하다.In the case of Cu, MnS precipitates, which are inhibitors, have an effect of making the fine and uniform particles, thereby increasing magnetism by increasing grain growth inhibition. If the content is less than 0.05%, the effect is insignificant, and if the content is more than 0.3%, an undesirable oxide is formed on the surface of the hot-rolled sheet, which is difficult to pickle, so it is preferable to select an appropriate amount of 0.05-0.3%.

S은 Cu나 Mn에 의해 유화물이 석출물을 형성하여 억제제의 역할을 하나 0.03%를 초과하면 최종고온소둔시 충분한 탈튜가 이루어지지 않아 자기특성의 열화를 초래하며, 0.02%미만의 경우에는 충분한 양의 유화물 형태의 석출물을 얻을 수 없게 되어 바람직하지 않다.S is formed as a precipitate by Cu or Mn, which acts as an inhibitor, but if it exceeds 0.03%, sufficient de-tutu is not made during final high-temperature annealing, resulting in deterioration of magnetic properties. It is not desirable to obtain an emulsion in the form of an emulsion.

Ce은 자왜를 감소시키기 위해 본 발명에서 특별히 첨가하는 원소로, 그 원자번호는 58번으로 외각전자의 배열이 4f1,5S2 5P6 5d1 6S2로 구성되어 있다. 이와 같은 원자배열을 갖는 Ce과 3d6 4S2의 원자배열을 갖는 Fe이 만나면, 전자들의 배열에 변화를 주어서 자왜에 영향을 미치는 스핀-궤도결합이 바뀌게 된다. 그 함량이 0.006%이하에서는 상술한 효과가 미비하며, 0.09% 보다 많은 경우에는 원자 반경이 Fe의 1.5배 정도되므로 기계적 성질에 심각한 악영향을 미치게 되므로 Ce 함량은 0.006-0.09%로 선정하는 것이 바람직하다.Ce is an element specifically added in the present invention to reduce magnetostriction. The atomic number thereof is 58, and the arrangement of the outer electrons is 4f1, 5S2 5P6 5d1 6S2. When Ce having such an atomic arrangement and Fe having an atomic arrangement of 3d6 4S2 meet, the spin-orbital bond affecting magnetostriction is changed by changing the arrangement of electrons. If the content is less than 0.006%, the above-mentioned effect is insignificant, and if the content is more than 0.09%, the atomic radius is about 1.5 times that of Fe, which seriously affects the mechanical properties. Therefore, the Ce content is preferably set to 0.006-0.09%. .

이와 같이, 스핀-궤도결합을 바뀌게 하여 자왜를 줄이는 Ce은 그 첨가량이 미량이므로 고온소둔을 통하여 형성되는 2차 재결정 조직에 영향을 미치지 않는다. 따라서, 전기강판의 자기적특성은 동등수준을 유지하면서 자왜의 크기를 효과적으로 줄일 수 있다.As described above, Ce, which reduces the magnetostriction by changing the spin-orbital bond, has a small amount of addition and thus does not affect the secondary recrystallized structure formed through high temperature annealing. Therefore, the magnetic properties of the electrical steel sheet can effectively reduce the size of the magnetostriction while maintaining the same level.

상기와 같이 조성되는 강에는 N2 등이 불가피한 불순물이 함유될 수 있다. 방향성 전기강의 N2함량은 제강공정에서 통상 60ppm 이하로 관리되는데, 이 정도의 함량에서는 별다른 영향을 미치지 않는다.The steel formed as described above may contain impurities inevitable to N2. The N2 content of the oriented electrical steel is usually controlled to 60 ppm or less in the steelmaking process, but this content does not have much effect.

이하, 본 발명에 따라 전기강판을 제조하는 방법에 대해 설명한다.Hereinafter, a method of manufacturing electrical steel sheet according to the present invention will be described.

상기와 같이 조성되는 전기강판 슬라브는 열간압연하기 전에 가열하는데, 이때의 가열온도는 1250-1400℃로 선정하는 것이 바람직하다. 그 이유는 가열온도가1250℃이하인 경우에는 인히비터의 재고용이 어려워지고, 1400℃이상에서는 강판의 표면이 심하게 녹아내리므로 열간압연 작업이 어려워 진다. 이와 같이 슬라브를 재가열하면, 억제제인 MnS가 재고용되어 열간압연 공정시 재석출된다. 이때 석출되는 인히비터의 분포는 최종제품의 자기적 특성을 좌우한다.The electrical steel sheet slab formed as described above is heated before hot rolling, and the heating temperature at this time is preferably set to 1250-1400 ° C. The reason for this is that when the heating temperature is 1250 ° C or lower, it is difficult to reinvent the inhibitor, and above 1400 ° C, the surface of the steel sheet melts so much that hot rolling becomes difficult. When the slab is reheated in this way, the inhibitor MnS is re-used and re-precipitated during the hot rolling process. At this time, the distribution of the inhibitor precipitated determines the magnetic properties of the final product.

상기와 같이 재가열된 슬라브는 열간압연하고, 이어 열간압연된 판의 열연조직이 균일화 및 석출물제어와 산세성 향상을 위하여 900-1150℃의 범위에서 열연판 소둔을 하고, 공기중에서 냉각한다.The slab reheated as described above is hot rolled, followed by hot rolled sheet annealing in the range of 900-1150 ° C. for uniformity, control of precipitates and improvement of pickling properties, and cooling in air.

상기와 같이 소둔된 판은 산세하여 2회 냉간압연을 행한다. 이 2회냉간압연 사이에 통상 900-1000℃의 온도범위에서 중간소둔을 행하는데, 이는 2차 압연을 위한 연성을 부여하는데 그 목적이 있다. 그리고, 2차압연시 압하율은 통상 55-65%가 되는 것이 안정한 2차 재결정을 얻을 수 있다.The plate annealed as above is pickled and cold rolled twice. Intermediate annealing is usually performed between these two cold rollings in the temperature range of 900-1000 ° C., which aims to give ductility for secondary rolling. In addition, it is possible to obtain a secondary recrystallization in which the reduction ratio during secondary rolling is usually 55-65%.

상기와 같이 2회냉간압연으로 최종제품두께로 된 냉연판은 탈탄과 내부산화층을 형성하기 위하여 소둔을 실시한다. 이때 소둔로의 분위기는 통상 습한 수소질소의 혼합분위기에서 행한다. 이 과정에서 강판 내부의 탄소가 제거되고, 고온소둔시 우수한 그래스(glass) 피막형성을 위한 내부산화층이 형성된다. 이 공정에서 탄소량은 20-30ppm이하로 낮아진다.As described above, the cold rolled sheet having the final product thickness by cold rolling twice is annealed to form a decarburization and an internal oxide layer. At this time, the atmosphere of the annealing furnace is usually performed in a mixed atmosphere of wet hydrogen nitrogen. In this process, the carbon inside the steel sheet is removed, and an internal oxide layer is formed to form an excellent glass film during high temperature annealing. In this process, the amount of carbon is lowered below 20-30 ppm.

상기와 같이 탈탄소둔한 다음, 강판의 표면에 MgO를 주성분으로 하는 소둔분리제를 도포하고, 이어 최종고온소둔을 행한다. 이때의 최종고온소둔은 2차재결정 조직을 발달시키는 승온구간과 불순물을 제거하는 순화소둔 구간으로 이루어지는데, 상기 승온구간의 승온속도는 석출물의 재배열이 일어나기 때문에 중요하다.After decarbonization annealing as described above, an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, followed by final high temperature annealing. In this case, the final high temperature annealing is composed of a temperature rising section for developing a secondary recrystallization structure and a quenching annealing section for removing impurities. The temperature rising rate of the temperature rising section is important because rearrangements of precipitates occur.

만약, 승온속도가 빠를 경우 2차 재결정이 불안정해지는 반면, 승온속도가 너무 느리면 소둔시간이 길어져 비경제적이다. 따라서, 바람직한 승온속도는 10-40℃/hr이다. 그리고, 순화소둔은 환원분위기에서 유지하여 강중의 유해원소를 제거하는 과정이므로 100% 수소분위기에서 행하는 것이 바람직하다.If the rate of temperature rises fast, the second recrystallization becomes unstable, while if the rate of temperature rises too slow, the annealing time is long, which is uneconomical. Therefore, the preferable temperature increase rate is 10-40 degreeC / hr. In addition, since the purified annealing is a process of removing harmful elements in the steel by maintaining in a reducing atmosphere, it is preferable to carry out in a 100% hydrogen atmosphere.

상기와 같이 최종소둔된 전기강판은 안정한 2차재결정이 얻어져 자속밀도가 1.80Tesla이상이고, 철손이 1.50watt/kg이하로 나타난다.As described above, the final annealed electrical steel sheet has a stable secondary recrystallization, and has a magnetic flux density of 1.80 Tesla or more and an iron loss of 1.50 watt / kg or less.

이러한 자기특성을 가지는 전기강판을 최종소둔한 다음 또는 장력코팅한 다음 자속열처리를 행한다.After the final annealing or tension coating of the electrical steel sheet having such magnetic properties, the magnetic flux heat treatment is performed.

자속열처리는 강판내부의 자구를 자왜가 적은 방향으로 재배열하기 위하여 실시하는데, 자구를 재배열하기 위해서는 결정내의 자기이방성에너지를 낮게 하는 것이 유리하다. 전기강판의 자기이방성에너지는 온도가 높을수록 급격히 낮아지기 때문에 높은 온도에서 자속열처리를 행하는 것이 좋다. 그러나, 자속열처리 온도가 전기강판의 자기변태점(약 720℃)에 가까이 갈수록 전기강판의 투자율이 낮아져서 자속이 약해지므로 너무 온도가 높은 것도 좋지 않다. 본 발명은 이를 고려하여 실시예에서 나타낸 바와같이, 저자왜가 확보되는 300-600℃범위에서 행하는 것이 바람직하다. 자장열처리 온도가 300℃미만의 경우에는 자왜 감소효과가 작으며, 600℃초과의 경우에도 자왜감소효과가 적다. 자장열처리시간은 도 3에서 알 수 있듯이, 시간이 길어질수록 효과가 커지는데 10초이상은 되어야 자왜감소효과가 의미가 있다. 이때, 보다 바람직한 자속열처리 조건은 도 2 및 도 3에 나타난 바와 같이 온도가 400-550℃ 범위에서 2분이상 행하는 것이 자왜의 크기를 크게 줄일 수 있다.The magnetic flux heat treatment is performed to rearrange the magnetic domains in the steel sheet in a direction less magnetostrictive. In order to rearrange the magnetic domains, it is advantageous to lower the magnetic anisotropy energy in the crystal. The magnetic anisotropy energy of the electrical steel sheet is rapidly lowered as the temperature increases, so it is preferable to perform the magnetic flux heat treatment at a high temperature. However, as the magnetic flux heat treatment temperature approaches the magnetic transformation point (approximately 720 ° C.) of the electrical steel sheet, the magnetic permeability of the electrical steel sheet is lowered, so that the magnetic flux is weakened. In consideration of this, the present invention is preferably carried out in the range of 300-600 ° C. in which hypoallergenic distortion is ensured. The magnetostrictive reduction effect is small when the magnetic field heat treatment temperature is less than 300 ℃, and the magnetostrictive reduction effect is less even when the temperature exceeds 600 ℃. As the magnetic field heat treatment time can be seen in Figure 3, the longer the time, the greater the effect, the more than 10 seconds the magnetostrictive effect is significant. At this time, the more preferable magnetic flux heat treatment conditions, as shown in Figure 2 and 3, the temperature is performed for more than 2 minutes in the 400-550 ℃ range can significantly reduce the size of the magnetostrictive.

그리고, 자속열처리는 강판에 자장을 걸어서 자기장 모멘트가 한 방향으로 정렬되도록 함으로써 자왜를 줄이는 것으로 자장만 걸어주도록 자속열처리 하면 그 특성이 향상된다, 그런데, 이때 강판의 자속이 포화되도록 하면 자기장 모멘트가 거의 완전히 한 방향으로 정렬되어 더욱 자왜가 감소되므로 직류포화자속에서 열처리하는 것이 보다 바람직하다.In the magnetic flux heat treatment, the magnetic field moment is aligned by aligning the magnetic field moment in one direction to reduce the magnetic distortion, and the magnetic flux heat treatment improves the magnetic field moment when the magnetic flux of the steel sheet is saturated. It is more preferable to heat-treat at the direct current saturation flux since the magnetostriction is further reduced because it is completely aligned in one direction.

한편, 상술한 자속열처리는 도 1에 도시된 것과 같이 본 발명에 따라 고안된 자속열처리 장치를 이용하는 것이 재료내부의 자속양을 강하게 또한 쉽게 조절할 수 있어 유용하다.On the other hand, the above-described magnetic flux heat treatment is useful to use the magnetic flux heat treatment apparatus designed according to the present invention as shown in Figure 1 can be strongly and easily control the amount of magnetic flux inside the material.

구체적으로 본 발명의 자속열처리 장치는 도 1에 도시된 바와 같이,Specifically, the magnetic flux heat treatment apparatus of the present invention, as shown in Figure 1,

시편(1)이 내장된 튜브(3)를 감싸고, 상기 시편(1)을 가열하는 가열로(4)가 마련되어 있는데, 이때 가열로에는 통상의 가열로와 같이 발열체(2)가 마련되어 있다.A heating furnace 4 is provided to surround the tube 3 in which the specimen 1 is embedded and to heat the specimen 1, wherein the heating element is provided with a heating element 2 like a normal heating furnace.

상기 솔레노이드(5)는 가열로(4)부터 일정거리를 두고 설치되어 그 내부에 위치하는 것을 여자시키도록 구성되어 있다. 그리고, 이 솔레노이드(5)에는 파형합성 및 입력전압,전류를 조절하는 전압-전류조절기(10)가 연결되어 있는 것이 바람직하다.The solenoid 5 is configured to excite what is located therein and is installed at a predetermined distance from the heating furnace 4. In addition, the solenoid 5 is preferably connected to a voltage-current regulator 10 for regulating waveform synthesis, input voltage and current.

상기 강대(6)는 가열로(4)내에 있는 시편(1)의 양단에 연결되어 접하고, 솔레노이드(5) 내부를 통과하여 폐회로를 형성하도록 구성되어 있어 솔레노이드(5)내에서 자화되어 시편(1)을 자화시킨다. 이때, 강대(6)가 일정한 텐센을 갖도록 하는 롤(7)이 마련되어 있으면 시편의 자속열처리 효과가 더욱 좋다.The steel strip 6 is connected to and connected to both ends of the specimen 1 in the heating furnace 4, and is configured to pass through the solenoid 5 to form a closed circuit, which is magnetized in the solenoid 5 so that the specimen 1 Magnetize At this time, if the roll 7 is provided so that the steel strip 6 has a constant tencene, the magnetic flux heat treatment effect of a test piece will be more favorable.

그리고, 상기 솔레노이드에 전류를 인가하기 위한 전원부(도면에 표시안됨)가 마련되어 있다.In addition, a power supply unit (not shown) for applying a current to the solenoid is provided.

이외에도, 상기 가열로(4)와 솔레노이드(5) 사이에는 강대(6)의 자속을 검출하는 코일 및 검출된 자속밀도를 읽는 오실로스코프가 구비된 검출기(9)를 포함하여 구성된다.In addition, between the heating furnace 4 and the solenoid 5, a coil 9 for detecting the magnetic flux of the steel strip 6 and a detector 9 having an oscilloscope for reading the detected magnetic flux density are included.

본 발명의 자속(magnetic flux) 열처리장치는 기존이 자장(magnetic field)열처리 장치에 비해 솔레노이드가 소형이면서도 가열로 내부로 들어가지 않고 외부에 설치하며, 실제 재료내부의 자속양을 강하게 또 쉽게 조절할 수 있어 전기강판의 자속열처리에 매우 유효하다.The magnetic flux heat treatment apparatus of the present invention has a small solenoid compared to a magnetic field heat treatment apparatus, but is installed outside the furnace without entering the heating furnace, and the amount of magnetic flux inside the actual material can be strongly and easily adjusted. It is very effective for magnetic flux heat treatment of electrical steel sheets.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

중량%로 C:0.048%, Si:3.15%, Mn:0.065, S:0.024%, Cu:0.17%, N2:0.0050%, Ce 이 하기표 1과 같이 (a)0.005, (b)0.01%, (c)0.03%, (d)0.05%, (d)0.1%를 함유하고, 잔부 Fe 및 불가피한 원소로 이루어진 슬라브를 1350℃로 가열한 후, 열간압연하여 판두께가 2.0mm인 열연판을 얻었다. 이 열연판을 950℃에서 5분간 소둔한 후 공기중에서 냉각하여, 0.75mm인 두께로 1차 냉간압연 하고, 950℃x2분 중간소둔하여, 두께 0.3mm로의 2차냉간압연을 하였다.By weight% C: 0.048%, Si: 3.15%, Mn: 0.065, S: 0.024%, Cu: 0.17%, N 2 : 0.0050%, Ce is as shown in Table 1 (a) 0.005, (b) 0.01% , (c) 0.03%, (d) 0.05%, (d) 0.1%, and the slab composed of the balance Fe and the unavoidable element is heated to 1350 ° C., followed by hot rolling to obtain a hot rolled sheet having a thickness of 2.0 mm. Got it. The hot rolled sheet was annealed at 950 ° C. for 5 minutes, cooled in air, first cold rolled to a thickness of 0.75 mm, annealed at 950 ° C. for 2 minutes, and subjected to secondary cold rolling to a thickness of 0.3 mm.

냉간압연된 판은 850℃로 유지된 로에 노점 51℃인 25%H2+75N2의 혼합가스를 2분동안 탈탄을 행하였다. 다음에 강판의 표면에 소둔분리제인 MgO를 도포하여 최종 고온소둔을 행하였다. 고온소둔은 25%H2+75N2분위기에서 15℃/hr의 승온속도로1200℃까지 가열하고, 1200℃ 도달 후 100%H2분위기에서 10시간 유지하였다.The cold rolled plate was decarburized for 2 minutes with a mixed gas of 25% H 2 + 75N 2 having a dew point of 51 ° C. in a furnace maintained at 850 ° C. Next, MgO, an annealing separator, was applied to the surface of the steel sheet to perform final high temperature annealing. The high temperature annealing was heated to 1200 ° C. at an elevated temperature rate of 15 ° C./hr in an atmosphere of 25% H 2 + 75N 2 , and maintained at 100% H 2 for 10 hours after reaching 1200 ° C.

이상과 같이 하여 안정된 2차 재결정이 끝난 방향성전기강판을 얻었고,As described above, a stable secondary recrystallized oriented electrical steel sheet was obtained.

이 강판을 도1에 나타낸 장치로 온도 400℃에서 2분동안 자속열처리를 행하였다. 이때 강판의 자속은 직류전류를 이용하여 거의 포화자속에서 행한 후 자기특성 및 자왜특성을 측정하고, 그 결과를 하기표 1에 나타내었다.The steel sheet was subjected to magnetic flux heat treatment at a temperature of 400 ° C. for 2 minutes with the apparatus shown in FIG. 1. At this time, the magnetic flux of the steel sheet was performed at almost saturation magnetic flux using a DC current, and then the magnetic and magnetostrictive properties were measured, and the results are shown in Table 1 below.

이때, 자기특성은 1000A/m의 자장하에서 시편에 유기되는 자속밀도(B10)와 1.7Tesla에서의 철손(watt/kg)을 측정하였다. 그리고, 자왜는 1.7Tesla에서의 시편에 가해지는 외부응력에 따른 자왜를 자속열처리 전후와 비교하여 나타내었다.At this time, the magnetic properties measured the magnetic flux density (B 10 ) and the iron loss (watt / kg) at 1.7 Tesla induced in the specimen under a magnetic field of 1000A / m. And, the magnetostriction is shown by comparing the magnetostriction according to the external stress applied to the specimen at 1.7Tesla with before and after the magnetic flux heat treatment.

이때, 시편에 가해지는 인위적인 응력에서는 '-'가 압축응력을 '+'가 인장응력을 나타낸다.At this time, in the artificial stress applied to the specimen, '-' represents the compressive stress and '+' represents the tensile stress.

Ce의첨가량(%)Addition amount of Ce (%) B10(Tesla)B 10 (Tesla) W17/50(watt/kg)W 17/50 (watt / kg) 자속열처리전의 자왜크기(x10-6)Magnetostrictive size before magnetic flux heat treatment (x10 -6 ) 자속열처리후의 자왜크기(x10-6)Magnetostrictive magnitude after flux heat treatment (x10 -6 ) 비고Remarks -4MPa-4 MPa -3MPa-3 MPa -1MPa-1 MPa 0MPa0 MPa +3MPa+3 MPa -4MPa-4 MPa -3MPa-3 MPa -1MPa-1 MPa OMPaOMPa +3MPa+3 MPa 00 1.8531.853 1.211.21 22.022.0 15.515.5 8.08.0 2.52.5 0.50.5 18.218.2 11.311.3 6.06.0 2.02.0 0.40.4 비교재Comparative material 0.0050.005 1.8531.853 1.211.21 21.521.5 15.315.3 8.08.0 2.52.5 0.50.5 18.018.0 11.111.1 5.95.9 2.12.1 0.40.4 비교재Comparative material 0.010.01 1.8611.861 1.201.20 21.021.0 15.315.3 7.97.9 2.42.4 0.50.5 8.58.5 5.25.2 2.72.7 1.21.2 0.20.2 발명재Invention 0.030.03 1.8621.862 1.231.23 21.321.3 15.215.2 7.87.8 2.42.4 0.60.6 8.38.3 4.84.8 2.12.1 1.01.0 0.20.2 발명재Invention 0.050.05 1.8631.863 1.221.22 21.321.3 17.117.1 7.87.8 2.52.5 0.50.5 7.97.9 5.05.0 2.52.5 1.21.2 0.30.3 발명재Invention 0.080.08 1.8601.860 1.191.19 22.222.2 16.816.8 9.19.1 2.92.9 0.60.6 1414 8.58.5 5.15.1 1.91.9 0.40.4 발명재Invention 0.10.1 1.8101.810 1.251.25 22.222.2 1919 11.111.1 4.24.2 0.70.7 20.120.1 12.112.1 8.98.9 2.32.3 0.70.7 비교재Comparative material

상기 표1에 나타난 바와 같이, Ce 첨가된 강판을 자속열처리 하면 압축응력하에서 자왜가 낮은 저자왜방향성 전기강판을 얻을 수 있는 것과 이때 적절한 Ce의 범위가 존재함을 알 수 있었다.As shown in Table 1 above, when the Ce-added steel sheet was subjected to magnetic flux heat treatment, it was found that a low-distortion, low-distortion electrical steel sheet could be obtained under compressive stress, and there was an appropriate range of Ce.

[실시예 2]Example 2

중량%로 C:0.048%, Si:3.15%, Mn:0.065, S:0.024%, Cu:0.17%, N2:0.0050%, Ce:0.03% 함유하고, 잔부 Fe 및 불가피한 원소로 이루어진 전기강판 슬라브를 1350℃로 가열한 후, 열간압연하여 판두게가 2.0mm인 열연판을 얻었다. 이 열연판을 950℃에서 5분간 소둔한 후 공기중에서 냉각하여, 0.75mm의 두께로 1차 냉간압연 하고, 950℃x2분 중간소둔하여, 두께 0.3mm로의 2차냉간압연을 하였다. 냉간압연된 판은 850℃로 유지된 노점 인 25%H2+75N2의 혼합가스를 2분동안 탈탄을 행하였다. 다음에 강판의 표면에 소둔분리제인 MgO를 도포하여 최종 고온소둔을 행하였다. 고온소둔은 25%H2+75N2분위기에서 15℃/hr의 승온속도로 1200℃까지 가열하고, 1200℃ 도달후 100%H2분위기에서 10시간 유지하였다. 이상과 같이 하여 안정된 2차 재결정이 끝난 방향성 전기강판을 얻었다.Electrical steel slab containing C: 0.048%, Si: 3.15%, Mn: 0.065, S: 0.024%, Cu: 0.17%, N 2 : 0.0050%, Ce: 0.03% by weight, balance Fe and inevitable elements Was heated to 1350 ° C. and then hot rolled to obtain a hot rolled sheet having a plate thickness of 2.0 mm. The hot rolled sheet was annealed at 950 ° C. for 5 minutes, cooled in air, first cold rolled to a thickness of 0.75 mm, annealed at 950 ° C. for 2 minutes, and subjected to secondary cold rolling to a thickness of 0.3 mm. The cold rolled plate was decarburized for 2 minutes with a mixed gas of 25% H 2 + 75N 2 , which is a dew point maintained at 850 ° C. Next, MgO, an annealing separator, was applied to the surface of the steel sheet to perform final high temperature annealing. The high temperature annealing was heated to 1200 ° C. at a temperature rising rate of 15 ° C./hr in an atmosphere of 25% H 2 + 75N 2 , and maintained at 100% H 2 for 10 hours after reaching 1200 ° C. As described above, a stable grain-oriented electrical steel sheet was obtained.

이 강판을 이용하여 임의의 온도에서 직류전류를 이용하여 강판을 포화자화시켜 자구를 재배열 시킨후 자속열처리에 따른 자왜를 압축응력 4MPa하에서 측정하고, 그 결과를 도 2에 나타내었다.After using the steel sheet to saturate the steel plate by using a direct current at an arbitrary temperature to rearrange the magnetic domains, the magnetostriction according to the magnetic flux heat treatment was measured under a compressive stress of 4 MPa, and the results are shown in FIG. 2.

도2에 나타난 바와 같이, 자왜를 줄이기 위한 자속열처리 온도는 400-550℃가 가장 좋다. 400℃이하의 온도에서는 자기이방성 에너지가 큰 관계로 자속열처리를 통한 자구의 재배열이 불가능하며, 550℃이상에서는 강판내부의 열에너지가 클 뿐 아니라 강판의 투자율이 낮아지기 때문에 자구의 정렬이 어려워진다.As shown in Figure 2, the magnetic flux heat treatment temperature for reducing the magnetostriction is best 400-550 ℃. At temperatures below 400 ° C, the magnetic anisotropy is so large that rearrangement of the domains through magnetic flux heat treatment is not possible. Above 550 ° C, the heat energy inside the steel sheet is large and the magnetic permeability of the steel sheet becomes low, making the alignment of the domains difficult.

한편, 도 3은 2차재결정이 끝난 강판을 이용하여 자속열처리 온도 450℃에서자속열처리 시간에 따른 자왜를 압축응력 4MPa하에서 측정하고, 그 결과를 나타낸 것이다. 도 3에 나타난 바와 같이, 자구가 정렬되기 위한 자속열처리 시간이 길어질수록 자왜 감소정도가 커지다가 2분이상에서부터 매우 큰 효과를 얻을 수 있으며 4분이상에서 점차 둔화되는 것을 알 수 있다.On the other hand, Figure 3 shows the result of measuring the magnetostriction according to the magnetic flux heat treatment time at a magnetic flux heat treatment temperature of 450 ℃ using a secondary recrystallized steel sheet under a compression stress of 4MPa. As shown in FIG. 3, as the magnetic flux heat treatment time for the magnetic domains is aligned, the magnetostrictive decrease becomes larger, but a very large effect can be obtained from 2 minutes or more and gradually decreases from 4 minutes or more.

상술한 바와 같이, Ce를 미량첨가하면, 통상의 일반방향성 전기강판의 자기적 특성을 만족하면서도 전자의 스핀-궤도결합을 변화시켜 저자왜특성을 가지는 전기강판을 공급할 수 있으며, 이와 더불어 이 강판의 자속열처리시 본발명에 따라 제공되는 자속열처리장치를 이용하면, 압축응력하에서 자왜가 낮은 방향성전기강판을 제조할 수 있는 효과가 있는 것이다.As described above, when a small amount of Ce is added, it is possible to supply an electrical steel sheet having a low distortion property by changing the spin-orbit coupling of electrons while satisfying the magnetic characteristics of a general general oriented electrical steel sheet. When using the magnetic flux heat treatment apparatus provided in accordance with the present invention in the magnetic flux heat treatment, there is an effect that can produce a directional electrical steel sheet with low magnetostriction under compressive stress.

Claims (4)

중량%로 Si:0.4-4.8%, C:0.02-0.07%, Mn:0.05-0.2%, S:0.02-0.03%, Cu:0.05-0.3%, 및 Ce를 포함하고, 잔부는 Fe 및 불가피한 불순물로 이루어지는 강 슬라브를 1250-1400℃의 온도로 재가열한 후 열간압연하고, 열연판 소둔, 산세, 중간소둔을 포함한 2회의 냉간압연, 탈탄소둔, 소둔분리제를 도포한 다음, 강의 2차재결정과 순화를 위하여 최종고온소둔하고, 이어 장력코팅하여 이루어지는 방향성 전기강판의 제조방법에 있어서,% By weight Si: 0.4-4.8%, C: 0.02-0.07%, Mn: 0.05-0.2%, S: 0.02-0.03%, Cu: 0.05-0.3%, and Ce, the balance being Fe and unavoidable impurities After reheating the steel slab to a temperature of 1250-1400 ° C., it is hot rolled, and applied two times of cold rolling, including annealing, pickling, and annealing, followed by applying a cold-breaking, de-carbon annealing, and annealing separator. In the method of manufacturing a grain-oriented electrical steel sheet which is subjected to the final high temperature annealing for purification and then tension coated, 상기 강 슬라브에 Ce을 0.006-0.09% 첨가하고, 상기 최종고온소둔된 강판 또는 상기 장력코팅된 강판을 300-600℃의 온도에서 10초 이상 자속열처리하는 것을 특징으로 하는 저소음 방향성 전기강판의 제조방법.0.006-0.09% of Ce is added to the steel slab, and the final high temperature annealed steel sheet or the tension-coated steel sheet is characterized in that the magnetic flux heat treatment for 10 seconds or more at a temperature of 300-600 ° C. . 제1항에 있어서, 상기 자속열처리는 직류포화자속에서 400-550℃의 온도로 2분이상 행함을 특징으로 하는 저소음 방향성 전기강판의 제조방법.The method of claim 1, wherein the magnetic flux heat treatment is performed at a temperature of 400-550 ° C. for at least 2 minutes in a direct current saturation flux. 시편(1)이 내장된 튜브(3)를 감싸고, 상기 시편(1)을 가열하는 가열로(4);A heating furnace (4) surrounding the tube (3) in which the specimen (1) is embedded and heating the specimen (1); 상기 가열로(4)부터 일정거리를 두고 설치되어 그 내부에 위치하는 것을 여자시키는 솔레노이드(5);A solenoid (5) installed at a predetermined distance from the heating furnace (4) and excited to be located therein; 상기 가열로(4)내의 시편(1)의 양단에 접하여 연결되고, 솔레노이드(5) 내부를 통과하여 폐회로를 형성하는 강대(6); 및A steel strip (6) connected to both ends of the specimen (1) in the heating furnace (4) and passing through the solenoid (5) to form a closed circuit; And 상기 솔레노이드에 전류를 인가하기 위한 전원부;를A power supply unit for applying current to the solenoid; 포함하여 구성되는 방향성 전기강판 제조용 자속열처리 장치.Magnetic flux heat treatment apparatus for producing a grain-oriented electrical steel sheet comprising a. 제 3항에 있어서, 상기 가열로(4)와 솔레노이드(5) 사이에는 강대(6)의 자속을 검출하는 코일 및 검출된 자속밀도를 읽는 오실로스코프가 구비된 검출기(9)가 마련됨을 특징으로 하는 방향성 전기강판 제조용 자속열처리 장치.4. A detector (9) according to claim 3, characterized in that between the furnace (4) and the solenoid (5) a detector (9) is provided with a coil for detecting the magnetic flux of the steel strip (6) and an oscilloscope for reading the detected magnetic flux density. Magnetic flux heat treatment apparatus for producing oriented electrical steel sheet.
KR1019970036499A 1997-07-31 1997-07-31 A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein KR100345695B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970036499A KR100345695B1 (en) 1997-07-31 1997-07-31 A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970036499A KR100345695B1 (en) 1997-07-31 1997-07-31 A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein

Publications (2)

Publication Number Publication Date
KR19990012920A KR19990012920A (en) 1999-02-25
KR100345695B1 true KR100345695B1 (en) 2002-09-18

Family

ID=37488602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970036499A KR100345695B1 (en) 1997-07-31 1997-07-31 A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein

Country Status (1)

Country Link
KR (1) KR100345695B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399429B1 (en) * 2012-11-08 2014-05-27 이상민 Appratus for processing a strip made of soft magnetic materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941276B (en) * 2021-01-26 2022-06-10 安泰科技股份有限公司 Constant-temperature constant-tension magnetic field annealing device for amorphous nanocrystalline alloy strip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089521A (en) * 1983-10-21 1985-05-20 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPS60141830A (en) * 1983-12-29 1985-07-26 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
US4795872A (en) * 1985-10-25 1989-01-03 Nippon Light Metal Company Limited Electromagnetic induction heating apparatus including a magnetic flux diverting assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089521A (en) * 1983-10-21 1985-05-20 Kawasaki Steel Corp Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPS60141830A (en) * 1983-12-29 1985-07-26 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
US4795872A (en) * 1985-10-25 1989-01-03 Nippon Light Metal Company Limited Electromagnetic induction heating apparatus including a magnetic flux diverting assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399429B1 (en) * 2012-11-08 2014-05-27 이상민 Appratus for processing a strip made of soft magnetic materials

Also Published As

Publication number Publication date
KR19990012920A (en) 1999-02-25

Similar Documents

Publication Publication Date Title
KR100345744B1 (en) A manufacturing method of a grain oriented electrical steel having a low magnetostriction and a magnetic flux-heating treat-ment apparaturs used therein
EP0539858A1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
KR19980063732A (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
KR100345722B1 (en) Method for manufacturing a grain oriented electrical steel sheet having a low magnetostriction and manufacturing apparaturs used therein
KR100345695B1 (en) A manufacturing method of a grain oriented electrical steel having a low noise and a magnetic flux-heating treatment apparaturs used therein
KR100349146B1 (en) A Method of Grain Oriented Electrical Steel Sheet with Low Magnetostriction
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100544584B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Low Iron Loss
JP2011063829A (en) Method for manufacturing grain-oriented magnetic steel sheet
KR100516458B1 (en) A non-oriented silicon steel with excellent magnetic property and a method for producing it
KR100276341B1 (en) The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating
JP2826903B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with good glass coating
KR101130724B1 (en) A method for grain-oriented electrical steel sheet with uniform magnetic properties
KR102305718B1 (en) Grain oriented electrical steel sheet and method of manufacturing the same
KR100530069B1 (en) Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
KR100701195B1 (en) A grain-oriented electrical steel sheet manufacturing method without hot band annealing
KR100544612B1 (en) Method for Manufacturing Non-Oriented Electrical Steel Sheet with Superior Magnetic Property
KR102468076B1 (en) Grain oriented electrical steel sheet and manufacturing method of the same
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP7188459B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102020276B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR100273095B1 (en) The manufacturing method of oriented electric steelsheet with low temperature slab heating
KR100345697B1 (en) A Method of Manufacturing Hight Permability Oriented Electrical Steel Sheet by Heating its Slab at Low Tempreatures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140710

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150703

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160707

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee