KR100341186B1 - Microencapsulation of Xenorhabdus nematophilus and its preparation and composition - Google Patents

Microencapsulation of Xenorhabdus nematophilus and its preparation and composition Download PDF

Info

Publication number
KR100341186B1
KR100341186B1 KR1020010002028A KR20010002028A KR100341186B1 KR 100341186 B1 KR100341186 B1 KR 100341186B1 KR 1020010002028 A KR1020010002028 A KR 1020010002028A KR 20010002028 A KR20010002028 A KR 20010002028A KR 100341186 B1 KR100341186 B1 KR 100341186B1
Authority
KR
South Korea
Prior art keywords
microencapsulation
agent
present
composition
microencapsulated
Prior art date
Application number
KR1020010002028A
Other languages
Korean (ko)
Other versions
KR20010035200A (en
Inventor
정종상
문선주
황창일
김용욱
이정숙
이수희
김판경
장희수
김용균
Original Assignee
정종상
주식회사 비아이지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정종상, 주식회사 비아이지 filed Critical 정종상
Priority to KR1020010002028A priority Critical patent/KR100341186B1/en
Publication of KR20010035200A publication Critical patent/KR20010035200A/en
Application granted granted Critical
Publication of KR100341186B1 publication Critical patent/KR100341186B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/075Bacillus thuringiensis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 제노랍두스 네마토필러스(Xenorhabdus nematophilus: Xn) 미생물제제의 마이크로캡슐화(microencapsulation) 방법 및 그 제제와 이를 이용한 생물농약 조성물에 관한 것이다. 본 발명에서는 Xn을 각종 폴리머로 마이크로캡슐화 (microencapsulation)하여 균주의 생존을 유지시키면서도 외부환경에 대해 저장안정성을 향상시키는 마이크로캡슐화 방법과 그 제제가 제공된다. 또한 본 발명에서는 마이크로캡슐화된 분말 Xn제의 살충효과를 상승시키고 지속화시키기 위하여 비티(Bacillus thuringinesis: Bt)제와 혼합한 살충제 조성물이 제공된다. 본 발명에 따른 마이크로캡슐화는 Xn의 저장안정성을 향상시키고, 비티와의 혼합 조성물은 기존의 생물농약에 대해 감수성이 낮았던 곤충에 대해서도 상승된 살충효과 및 보다 지속적인 약효를 나타낸다.The present invention relates to a method for microencapsulation of a Xenorhabdus nematophilus (Xn) microbial agent, a preparation thereof, and a biopesticide composition using the same. In the present invention, microencapsulation of Xn with various polymers (microencapsulation) is provided a microencapsulation method and its preparation for improving the storage stability to the external environment while maintaining the survival of the strain. In addition, the present invention provides a pesticide composition mixed with a Bacillus thuringinesis (Bt) agent in order to increase and sustain the pesticidal effect of the microencapsulated powder Xn agent. The microencapsulation according to the present invention improves the storage stability of Xn, and the mixed composition with BIT exhibits an increased pesticidal effect and more sustained efficacy even for insects which have been low sensitivity to existing biopesticides.

Description

제노랍두스 네마토필러스 미생물제제의 마이크로캡슐화 방법 및 그 제제와 이를 이용한 생물농약 조성물 {Microencapsulation of Xenorhabdus nematophilus and its preparation and composition}Microencapsulation method of Xenorabdu nematophilus microorganism preparation and its preparation and biopesticide composition using the same {Microencapsulation of Xenorhabdus nematophilus and its preparation and composition}

본 발명은 제노랍두스 네마토필러스(Xenorhabdus nematophilus: Xn) 미생물제제의 마이크로캡슐화(microencapsulation) 방법 및 그 제제와 이를 이용한 생물농약 조성물에 관한 것이다.The present invention relates to a method for microencapsulation of a Xenorhabdus nematophilus (Xn) microbial agent, a preparation thereof, and a biopesticide composition using the same.

농작물에 심각한 경제적 피해를 주는 곤충류를 해충이라 하며 이러한 해충을 방제할 목적으로 사용하는 것이 농약 중 살충제이다. 현재 사용되는 살충제는 대부분 유기합성 화학농약으로, 이는 지난 50년간 해충 방제에 중요 역할을 담당하였다. 그러나 이러한 화학농약의 과다사용과 연용은 해충의 저항성 발현, 2차 해충의 주요 해충화, 잔류농약의 문제, 환경파괴 등의 문제들을 낳았다. 이에 따라 세계각국은 수출입 농산물뿐만 아니라 각 작물별로 농약잔류검사, 살포총량규제 등의 사용제한을 점차 강화하고 있으며, 국제간에도 특정한 농약의 생산금지 내지는 총 생산량을 규제하는 협상들이 속속 맺어지고 있다.Insects that cause serious economic damage to crops are called pests, and pesticides are used to control these pests. Most pesticides in use today are organic synthetic chemical pesticides, which have played an important role in pest control over the last 50 years. However, the overuse and use of chemical pesticides have led to problems such as resistance of pests, major pests of secondary pests, residual pesticides, and environmental destruction. As a result, countries around the world are gradually tightening restrictions on the use of pesticide residue inspection and total spraying regulations for each crop, as well as import and export agricultural products. Negotiations are under way to regulate the prohibition or total production of certain pesticides.

이와 같은 화학농약의 폐단을 보완하고자 생물농약 (biopesticide)의 개발이 진행되어 왔으며, 특히 최근에는 세계적인 농약 회사들의 생물농약 분야로의 전환과 미생물 살충제의 개발이 두드러지고 있는 실정이다.The development of biopesticides has been progressed to complement the chemical pesticides, and in particular, the conversion of biopesticides and the development of microbial pesticides of global pesticide companies have been outstanding recently.

미생물 살충제는 해충의 천적미생물인 곤충병원성 세균, 진균, 바이러스, 선충 등을 이용하는 것으로 사람이나 가축, 식물에는 해가 없으면서 대상해충을 효과적으로 방제할 수 있으므로, 미국을 비롯한 농업 선진국에서는 비교적 오래 전부터 자국 환경에 적합한 곤충병원성 미생물을 분리, 대량생산, 및 제제화하여 실용화하여 오고 있다.Microbial pesticides use insect pathogenic bacteria, fungi, viruses, and nematodes, which are natural enemies of pests, and can effectively control target pests without harm to humans, livestock, and plants. Insect pathogenic microorganisms suitable for the separation, mass production, and formulation have been commercialized.

미생물 살충제 중 특히 많이 연구되고 실용화되고 있는 것은, 곤충병원성 세균인 비티(Bacillus thuringinesis: Bt)제로 목적해충에 대해 살충력이 강하고 생산비가 저렴한 장점이 있다. 그러나 비티는 대상 해충의 종류가 제한적이고, 화학농약과 비교하여 살충속도가 느리고, 최근에는 야외에서의 저항성이 보고되고 있으며, 특히 파밤나방과 같이 다양한 약제에 대해 저항성을 보유하는 해충들에 대해서는 매우 낮은 감수성을 보여주고 있다.Among the microbial insecticides, which have been studied and put into practical use, Bacillus thuringinesis (Bt), an insect pathogenic bacterium, has a strong insecticide resistance and low production cost. However, Beatty has a limited number of pests, has a slower pesticide rate than chemical pesticides, and has recently been reported to be resistant to the outdoors, especially against pests that are resistant to various drugs, such as beech moths. It shows low sensitivity.

따라서 새로운 생물적 방제 인자가 필요한데 최근에는 생물적 방제 인자로 곤충병원성 선충이 많이 연구되고 있다. 곤충병원성 선충은 곤충에 기생하면서 병원성이 발현되어 숙주 해충을 사멸시키고, 넓은 기주 범위와 뛰어난 해충 탐색능력으로 해충사멸 속도가 빠른 특징을 가지고 있다. 이러한 곤충병원성 선충 중 스타이너네마 카르포캅사에(Steinernema carpocapsae)의 살충력은, 장내에 공생하는 공생세균인 제노랍두스 네마토필러스(Xenorhabdus nematophilus: 이하, 'Xn'이라 한다)가 살충작용을 담당하는 살충인자인 것으로 증명되었다 (Park and Kim, 2000). 이 세균의 중요한 살충기작은 기주 곤충의 면역 저하를 유도하여 혈액의 패혈증을 유발시켜 혈액 침투 후 20시간 내에 기주를 치사시키는 것으로 알려져 있다.Therefore, new biological control factors are needed. Recently, many insect pathogenic nematodes have been studied as biological control factors. Insect pathogenic nematodes are parasitic to insects, which cause host pests to be killed, and have a broad host range and excellent pest detection ability. The insecticidal power of Steinernema carpocapsae among the entomopathogenic nematodes is Xenorhabdus nematophilus (hereinafter referred to as 'Xn'), which is a symbiotic bacteria in the intestine. Proven as a pesticide (Park and Kim, 2000). An important insecticidal mechanism of this bacterium is known to induce immune deterioration of host insects, causing sepsis of blood and kill host within 20 hours after blood penetration.

Xn은 곤충의 체내로 침투되어야 그 효과를 발휘할 수 있는데, 자연계에서는 이일을 이 세균의 공생선충인 스타이너네마 카르포캅사에(Steinernema carpocapsae)가 담당하고 있다. 그러나 이 공생선충은 야외조건에 약하여 파밤나방과 같은 지상부 해충의 방제에 직접 사용하기에는 해결하여야 할 문제가 많이 있으므로, 높은 살충력에도 불구하고 Xn을 이용한 생물농약은 아직 제대로 실용화되지 못하고 있는 실정이다.Xn must be penetrated into insect bodies to achieve its effects. In nature, this is the responsibility of Steinernema carpocapsae , a symbiotic nematode of the bacterium. However, since the symbiotic nematodes are weak in outdoor conditions, there are many problems to be solved in order to use them directly for the control of above-ground pests such as Pabam moths. Despite the high insecticidal properties, biopesticides using Xn have not been put to practical use.

따라서, 종래에 제노랍두스 네마토필러스를 이용한 살충제들은 이 세균으로부터 살충작용이 있는 단백질 독소를 분리하여 곤충이나 식물에 적용하거나, 유전공학적으로 처리하는 방법을 사용하여 왔다 (한국공개특허 10-1998-701244).Therefore, conventionally, pesticides using Xenorabdus nematophilus have been used to isolate insecticidal protein toxins from insects, apply them to insects or plants, or process them genetically (Korea Patent Publication No. 10-1998). -701244).

이에 배양된 Xn 미생물제제를 그대로 적용할 수 있는 방법이 연구되었고, 그 결과 Xn을 곤충체내로 운반해주는 운반체로 곤충의 세포 및 조직을 손상시키는 생물농약, 특히 비티를 함께 사용하는 살충방법이 본 발명자에 의해 특허출원된 바 있다 (한국특허출원 제10-2000-068944호).In this regard, a method of applying the cultured Xn microorganism as it has been studied. As a result, a pesticide method using a biopesticide, in particular, a bite, which damages cells and tissues of an insect as a carrier for transporting Xn into an insect body, It has been patented by (Korean Patent Application No. 10-2000-068944).

그러나, 상기와 같은 방법으로 Xn을 곤충체내로 운반해주는 문제를 해결한다 해도, Xn은 저장안정성 및 야외조건에서 약하여 지상부 해충방제에 직접 사용하기에는 아직 많은 문제점이 남아 있다. 본 발명은 이러한 문제점을 해결하기 위한 제형 개발에 관한 것이다.However, even if the problem of transporting the Xn into the insect body in the same way as described above, Xn is weak in storage stability and outdoor conditions, there are still many problems to use directly in the ground pest control. The present invention relates to formulation development to solve this problem.

제형 개발과 관련하여 종래 농약의 독성과 위험성을 줄이고 환경과 인체에 대한 안전성을 향상시키기 위한 여러 시도가 있었다. 이러한 시도 중 특히 마이크로캡슐화는 약물의 방출속도를 제어하고 효과를 지속화시킬 수 있으며, 약물의 안정성 향상과 외부환경에의 노출에 의한 약물감소 방지 및 냄새에 대한 마스킹 효과, 나아가 농약물질의 고형화가 가능하여 적용이 용이해 진다는 여러 장점을 지니고 있으며, 특히 화학농약의 경우 인체와 환경에 대한 안전성이 좋아지고 독성이 감소된다는 장점이 있어 많은 화학합성 농약에 적용되어 왔다. 미국의 렌왈트 (RENNWALT)사에 의해 유기인계 살충제인 메틸 파라치온을 캡슐화하여 펜캡(PENNCAP™)으로 개발한 것이 농약분야 마이크로캡슐 제제의 효시로, 현재까지 농약분야에서는 살충제 중심으로 약 40여종의 마이크로캡슐 제제가 개발되었다.Several attempts have been made in the development of formulations to reduce the toxicity and risk of conventional pesticides and to improve the safety of the environment and the human body. Among these attempts, microencapsulation, in particular, can control the rate of drug release and sustain the effects, improve drug stability, prevent drug reduction due to exposure to the external environment, masking the odor, and solidifying pesticide substances. It has many advantages that it is easy to apply, and in particular, chemical pesticides have been applied to many chemical synthetic pesticides because they have an advantage of improving safety for humans and the environment and reducing toxicity. Developed by RENNWALT in the United States, methyl parathion, an encapsulated organophosphorus insecticide, was developed as PENNCAP ™. Capsule formulations have been developed.

그러나, 미생물제제의 경우는 균 자체가 온도에 민감하여 마이크로캡슐화 과정에서 균이 사멸하거나 변성을 일으키게 되는 문제점이 있으므로, 거의 마이크로캡슐화 제형 개발이 이루어지지 않았다. 일부 균주의 생존과 관계없이 배양배지에 함유된 물질을 살충물질로 이용하는 경우(예를 들어, 비티제)에는 마이크로캡슐화가 시도되었으나, 이는 생존을 유지시키면서 균 자체를 마이크로캡슐화하는 미생물제제의 마이크로캡슐화와는 다른 것이었다. 본 발명은 균주의 생존을 유지시키면서 미생물제제, 특히 제노랍두스 네마토필러스를 마이크로캡슐화하는 방법에 관한 것이다.However, in the case of microbial preparations, the microorganisms are sensitive to temperature, and thus, microorganisms have a problem in that the microorganisms are killed or denatured during microencapsulation. Regardless of the survival of some strains, microencapsulation was attempted when a substance contained in the culture medium was used as a pesticide (e.g., a bite agent), but this was a microencapsulation of a microorganism that microencapsulates the bacteria itself while maintaining survival. It was different from. The present invention relates to a method of microencapsulating a microbial agent, in particular Xenorabdu nematophilus, while maintaining the survival of the strain.

제노랍두스 네마토필러스가 제대로 살충효과를 나타내기 위해서는 비티와 달리 균주 자체가 사멸하지 않고 제제내에서 생존이 유지되어야 한다. 그러나, Xn은 선충 장내에 공생하는 세균으로서 자외선, 온도, 습도 등의 외부 환경에 민감하여 안정성 및 저장성이 없고, 야외에 살포시 생존력이 없어 살충효과를 발휘하지 못하게 된다. 이를 해결하기 위한 방안으로 Xn의 생존을 유지시키면서 Xn을 외부의 환경으로부터 보호할 수 있는 제형의 개발이 필요하다.In order for Xenorabdu nematophilus to properly exhibit an insecticidal effect, unlike viti, the strain itself must not be killed and survival must be maintained in the formulation. However, Xn is a symbiotic bacterium in the nematode intestine, which is sensitive to external environment such as ultraviolet rays, temperature, humidity, etc., and thus does not exhibit stability and storage properties, and has no viability when spraying outdoors. As a solution to this problem, it is necessary to develop a formulation capable of protecting Xn from the external environment while maintaining the survival of Xn.

본 발명의 목적은 Xn을 각종 폴리머로 마이크로캡슐화 (microencapsulation)하여 균주의 생존을 유지시키면서도 외부환경에 대한 저장안정성을 향상시키는 마이크로캡슐화 방법과 그 제제를 제공하는 것이다.It is an object of the present invention to provide a microencapsulation method and a preparation thereof which microencapsulates Xn with various polymers to improve storage stability to the external environment while maintaining the survival of the strain.

이를 위해 본 발명에서는 Xn의 생존과 생존지속기간에 유리한 마이크로캡슐화 조건, 즉 피막물질과 스프레이 건조조건, 특히 노즐부분의 온도와 노즐의 분무속도를 제공한다.To this end, the present invention provides microencapsulation conditions, namely coating material and spray drying conditions, in particular, the temperature of the nozzle portion and the spray rate of the nozzle, which are advantageous for Xn survival and survival duration.

본 발명에 따른 Xn의 마이크로캡슐화 방법은, 고분자 물질의 10∼50% 수용액 100 중량부에 제노랍두스 네마토필러스(Xn) 배양액 1∼30 중량부를 혼합하여 유화·분산시키는 단계와; 상기 유화·분산된 혼합액을 계면반응 또는 인 시튜(in situ) 중합법으로 반응시켜 마이크로캡슐 슬러리를 얻는 단계와; 상기 마이크로캡슐 슬러리를 노즐부분의 온도 50∼100℃, 노즐의 분무속도 1∼30㎖/min의 조건으로 스프레이 건조하여 분말화하는 단계를 포함하며, 최종적으로 마이크로캡슐화된 분말 Xn제를 얻게 된다.Microencapsulation method of Xn according to the present invention comprises the steps of emulsifying and dispersing by mixing 1 to 30 parts by weight of Xenorabdus nematophilus (Xn) culture solution to 100 parts by weight of 10 to 50% aqueous solution of the polymer material; Reacting the emulsified and dispersed liquid mixture by an interfacial reaction or an in situ polymerization method to obtain a microcapsule slurry; Spray drying the microcapsule slurry at a condition of a nozzle portion temperature of 50 to 100 ° C. and a spray rate of 1 to 30 ml / min, thereby finally obtaining a microencapsulated powder Xn.

상기 고분자 물질로는 다양한 합성 및 천연고분자가 사용될 수 있으며, 바람직하게는 전분, 젤라틴, 메타크릴릭(methacrilic) 폴리머, 에틸셀룰로오스 (ethylcellullose) 및 사이크로덱스트린으로 이루어진 군으로부터 선택된 고분자 물질이 사용될 수 있다.Various synthetic and natural polymers may be used as the polymer material, and preferably, a polymer material selected from the group consisting of starch, gelatin, methacrylic polymer, ethylcellullose and cyclodextrin may be used. .

본 발명의 또 다른 목적은 살충효과의 상승 및 효과 지속성의 향상을 위해 상기 Xn의 마이크로캡슐화제와 비티(Bacillus thuringinesis: Bt)제를 혼합한 조성물을 제공하는 것이다.Still another object of the present invention is to provide a composition in which the microencapsulating agent of Xn is mixed with a Bacillus thuringinesis (Bt) agent in order to increase the insecticidal effect and improve the effect persistence.

마이크로캡슐화된 Xn을 단독으로 곤충이나 식물체에 살포할 경우에는 곤충체내의 혈액으로 운반되지 못하여 충분한 살충효과를 발휘하지 못하게 되는데, 운반체로 곤충의 세포와 조직을 손상시키는 생물농약, 특히 비티를 함께 사용하면 살충효과를 상승시키고 지속화시킬 수 있다.When the microencapsulated Xn is sprayed on insects or plants by itself, it cannot be transported to the blood in the insects and thus does not exhibit sufficient insecticidal effect. As a carrier, biopesticides that damage the cells and tissues of insects, especially bites, are used together. This can increase and sustain the pesticidal effect.

살충효과는 조성비에 따라 차이가 날 수 있는데, 바람직하게는 본 발명의 마이크로캡슐화된 Xn제와 비티제의 혼합비율은 1:99 내지 50:50이다.The insecticidal effect may vary depending on the composition ratio. Preferably, the mixing ratio of the microencapsulated Xn agent and the beaten agent of the present invention is 1:99 to 50:50.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시에 의해 더 잘 알게 될 것이다.Other objects and advantages of the invention will be described below, and will be better understood by practice of the invention.

도 1은 본 발명에 따른 마이크로캡슐의 제조공정을 나타낸 블록도이다.1 is a block diagram showing a manufacturing process of the microcapsules according to the present invention.

도 2는 저장기간별 안정성시험 결과를 나타낸 그래프이다.2 is a graph showing the stability test results by storage period.

도 3은 저장온도별 안정성시험 결과를 나타낸 그래프이다.3 is a graph showing the stability test results for each storage temperature.

도 4는 야외조건에서의 살충력 지속시험 결과를 나타낸 그래프이다.Figure 4 is a graph showing the sustained insecticidal test results in outdoor conditions.

제노랍두스 네마토필러스의 배양Cultivation of Xenorabdu nematophilus

곤충병원성 선충(Steinernema carpocapsae) 감염태 약 400마리를 파밤나방 5령충에 국부처리했다. 처리 10시간 후 파밤나방의 혈액을 채취하고 이를 제노랍두스 네마토필러스의 선택 배지인 Xem 배지를 이용하여 28℃에서 배양했다. Xem 배지의 조성은 다음 표 1과 같다.About 400 insect pathogenic nematode (Steinernema carpocapsae) infections were localized to the 5th insects. After 10 hours of treatment, the blood of Pabam moth was collected and incubated at 28 ° C. using Xem medium, which is a selective medium of Genodildus nematophilus. The composition of the Xem medium is shown in Table 1 below.

화 합 물Compound 조 성Furtherance Bacto beef extractBacto beef extract 3g3 g Bacto peptoneBacto peptone 5g5 g Bacto agarBacto agar 15g15 g Bromothymol blueBromothymol blue 0.025g0.025 g Triphenyltetrazolium chlorideTriphenyltetrazolium chloride 0.04g0.04g Penicillin GPenicillin g 0.0625g0.0625g StreptomycinStreptomycin 4g4 g 증류수Distilled water 1L1L

배양 24시간 후 형성된 콜로니 중 가운데가 붉은 색을 띠며 주위에 하얀 테두리를 지닌 콜로니를 제노랍두스 네마토필러스(Xenorhabdus nematophilus)로 판정하고 이 콜로니를 TSB 배지를 이용하여 액체 배양하였다.Among colonies formed after 24 hours of cultivation, the colonies having a reddish center and white borders were determined as Xenorhabdus nematophilus , and the colonies were liquid cultured using TSB medium.

TSB 배지의 조성은 다음 표 2와 같다.The composition of the TSB medium is shown in Table 2 below.

화 합 물Compound 조 성Furtherance Bacto tryptoneBacto tryptone 17g17 g Bacto soytoneBacto soytone 3g3 g Bacto dextroseBacto dextrose 2.5g2.5g Sodium chlorideSodium chloride 5g5 g Dipotassium phosphateDipotassium phosphate 2.5g2.5g 증류수Distilled water 1L1L

Xn의 마이크로캡슐 제조Microcapsule Preparation of Xn

마이크로캡슐을 구성하는 피막물질로는 다양한 합성고분자 또는 천연고분자가 사용될 수 있다. 사용가능한 고분자의 예로는, 폴리(젖산), 폴리(글리콜산), 및 폴리(젖산-코-글리콜산)과 같은 폴리(히드록시 산), 폴리글리콜리드, 폴리락티드, 폴리락티드-코-글리콜리드 공중합체 및 혼합물, 폴리언하이드라이드, 폴리오르토에스테르, 폴리아미드, 폴리카보네이트, 폴리에틸렌 및 폴리프로필렌과 같은 폴리알킬렌, 폴리(에틸렌 글리콜)과 같은 폴리알킬렌 글리콜, 폴리(에틸렌 옥사이드)와 같은 폴리알킬렌 옥사이드, 폴리(에틸렌 테레프탈레이트)와 같은 폴리알킬렌 테레프탈레이트, 폴리비닐 알코올, 폴리비닐 에테르, 폴리비닐 에스테르, 폴리(비닐 클로라이드)와 같은 폴리비닐 할로겐화물, 폴리비닐피롤리돈, 폴리실록산, 폴리(비닐 알코올), 폴리(비닐 아세테이트), 폴리스티렌, 폴리우레탄, 및 알킬 셀룰로오스, 히드록시알킬 셀룰로오스, 셀룰로오스 에테르, 셀룰로오스 에스테르, 니트로 셀룰로오스, 메틸 셀룰로오스, 에틸 셀룰로오스, 히드록시프로필 셀룰로오스, 히드록시-프로필 메틸 셀룰로오스, 히드록시부틸 메틸 셀룰로오스, 셀룰로오스 아세테이트, 셀룰로오스 프로피네이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프탈레이트, 카복시에틸 셀룰로오스, 셀룰로오스 트리아세테이트, 및 셀룰로오스 설페이트 소듐 염과 같은 셀룰로오스로부터 유도된 그들의 공중합체, 아크릴산과 메타크릴산의 고분자 또는 공중합체, 또는 에스테르를 포함하는 그들의 유도체인 폴리(메틸 메타크릴레이트), 폴리(에틸 메타크릴레이트), 폴리(부틸 메타크릴레이트), 폴리(이소부틸 메타크릴레이트), 폴리(헥실 메타크릴레이트), 폴리(이소데실 메타크릴레이트), 폴리(라우릴 메타크릴레이트), 폴리(페닐 메타크릴레이트), 폴리(메틸 아크릴레이트), 폴리(이소프로필 아크릴레이트), 폴리(이소부틸 아크릴레이트) 및 폴리(옥타데실 아크릴레이트), 폴리(부틸산), 폴리(발레르 산), 및 폴리(락티드-코-카프로락톤), 그들의 공중합체 및 혼합물, 전분, 젤라틴, 셀룰로오스 등의 천연고분자가 포함된다. 여기서 사용되는 '유도체'라는 용어는 화학기, 예를 들어 알킬, 알킬렌의 치환, 부가, 수산화, 산화 및 당업자에 의해 통상적으로 행해질 수 있는 다른 변형을 갖는 고분자를 포함한다.As a coating material constituting the microcapsules, various synthetic polymers or natural polymers may be used. Examples of polymers that can be used include poly (lactic acid), poly (glycolic acid), and poly (hydroxy acids) such as poly (lactic acid-co-glycolic acid), polyglycolide, polylactide, polylactide-co Glycolide copolymers and mixtures, polyanhydrides, polyorthoesters, polyamides, polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly (ethylene glycol), poly (ethylene oxide) Polyalkylene oxides such as, polyalkylene terephthalates such as poly (ethylene terephthalate), polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, polyvinyl halides such as poly (vinyl chloride), polyvinylpyrrolidone , Polysiloxane, poly (vinyl alcohol), poly (vinyl acetate), polystyrene, polyurethane, and alkyl cellulose, hydroxyalkyl cellulose, cellulose Ether, cellulose ester, nitro cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxy-propyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propinate, cellulose acetate butyrate, cellulose acetate phthalate, carboxyethyl Poly (methyl methacrylate), poly (), which is a derivative thereof comprising copolymers derived from cellulose such as cellulose, cellulose triacetate, and cellulose sulfate sodium salt, polymers or copolymers of acrylic acid and methacrylic acid, or esters Ethyl methacrylate), poly (butyl methacrylate), poly (isobutyl methacrylate), poly (hexyl methacrylate), poly (isodecyl methacrylate), poly (lauryl methacrylate) ), Poly (phenyl methacrylate), poly (methyl acrylate), poly (isopropyl acrylate), poly (isobutyl acrylate) and poly (octadecyl acrylate), poly (butyl acid), poly ( Valeric acid), and poly (lactide-co-caprolactone), copolymers and mixtures thereof, natural polymers such as starch, gelatin, cellulose and the like. The term 'derivative' as used herein includes polymers having chemical groups such as alkyl, alkylene substitution, addition, hydroxylation, oxidation, and other modifications that may be conventionally made by those skilled in the art.

같은 조건의 스프레이 건조에서는 피막물질로 사용되는 고분자의 종류에 따라 캡슐내의 잔류 수분함량 및 삼투성이 결정되므로, 고분자의 선정은 미생물의 생존 및 생존지속기간에 영향을 미치는 중요한 요인이 된다.In the spray drying under the same conditions, the residual moisture content and osmoticity in the capsule are determined by the type of polymer used as the coating material, so the selection of the polymer is an important factor affecting the survival and survival time of the microorganisms.

본 발명에서는 특히 한정되는 것은 아니나, 바람직하게는 전분, 젤라틴, 메타크릴릭(methacrilic) 폴리머, 에틸셀룰로오스(ethylcellullose), 사이크로덱스트린 등의 고분자물질을 사용한다.In the present invention, although not particularly limited, a polymer material such as starch, gelatin, methacrylic polymer, ethyl cellulose (ethylcellullose) and cyclodextrin is preferably used.

바람직하게는 상기 고분자에 NaCl, 글루타르디알데히드 등 고분자 중합반응에 통상적으로 사용되는 첨가제를 부가하여 폴리머의 작용 및 스프레이 건조조건을 용이하게 해줄 수 있다.Preferably, additives commonly used in polymer polymerization such as NaCl and glutaraldehyde may be added to the polymer to facilitate the action of the polymer and spray drying conditions.

마이크로캡슐의 전체적인 제조공정은 도 1과 같다. 이하, 이를 구체적으로 설명한다.The overall manufacturing process of the microcapsules is shown in FIG. This will be described in detail below.

먼저, 고분자 물질의 10∼50% 수용액 100 중량부에 Xn 배양액 1∼30 중량부를 혼합하고, 유화·분산시킨다. 이 유화·분산된 혼합액을 계면반응 및 인 시튜(in situ) 중합법으로 반응시켜 마이크로캡슐 슬러리를 얻는다. 이때 바람직하게는 첨가제가 부가될 수 있는데, 첨가제로는 상기한 바와 같이 NaCl, 글루타르디알데히드 등이 사용될 수 있다.First, 1-30 parts by weight of an Xn culture solution is mixed with 100 parts by weight of a 10-50% aqueous solution of a high molecular material and emulsified and dispersed. The emulsified and dispersed liquid mixture is reacted by an interfacial reaction and an in situ polymerization method to obtain a microcapsule slurry. At this time, an additive may be preferably added. As the additive, NaCl, glutaraldehyde, or the like may be used.

얻어진 마이크로캡슐 슬러리를 스프레이 건조하여 분말형태의 마이크로캡슐화된 Xn을 얻는다. 이때 스프레이 건조조건은 노즐부분의 온도를 50∼100℃로 유지하고 노즐의 분무속도는 1∼30㎖/min 정도로 한다.The obtained microcapsule slurry is spray dried to obtain powdered microencapsulated Xn. At this time, the spray drying condition is to maintain the temperature of the nozzle portion at 50 ~ 100 ℃ and the spray rate of the nozzle is about 1 ~ 30ml / min.

스프레이 건조기술은 화학, 식품, 의약분야에서 많이 사용되고 있는데, 높은 온도에 민감한 물질에 적용하기에 유리하다. 스프레이 건조시에는 캡슐물질, 첨가제 외에 노즐부분의 온도 및 노즐의 분무속도에 따라 생성물량과 캡슐내의 잔류수분함량 및 캡슐의 삼투성이 결정되므로, 이는 중요한 제형조건이 된다. 특히, 본 발명에서와 같이 마이크로캡슐화되는 약물이 미생물일 경우 스프레이 건조조건은 미생물의 생존에 중요한 영향을 미치게 된다.Spray drying technology is widely used in the chemical, food, and pharmaceutical fields, and is advantageous for application to high temperature sensitive materials. In spray drying, the amount of product, the residual moisture content in the capsule, and the osmoticity of the capsule are determined by the temperature of the nozzle portion and the spray rate of the nozzle in addition to the capsule material and additives, which is an important formulation condition. In particular, when the microencapsulated drug is a microorganism as in the present invention, the spray drying condition has an important effect on the survival of the microorganism.

노즐부분의 온도가 높으면 생성물량은 증가하지만 미생물의 생존 및 캡슐의 잔류수분함량에는 불리한 작용을 하게 된다. 또한, 노즐의 분무속도는 생성물량 및 캡슐의 잔류수분함량에 영향을 주는데, 분무속도가 빠르면 생성물량은 감소하고 캡슐의 잔류수분함량은 높아지게 된다.If the temperature of the nozzle portion is high, the amount of the product increases but adversely affects the survival of the microorganisms and the residual moisture content of the capsule. In addition, the spray rate of the nozzle affects the amount of product and the residual moisture content of the capsule, the faster the spray rate is reduced the product amount and the higher the residual moisture content of the capsule.

상기와 같이 제조된 본 발명의 마이크로캡슐화ㅗ딘 Xn 분말제는 저장안정성이 크게 향상된다. 그러나, 이를 단독으로 곤충이나 식물체에 살포하면 곤충체내의 혈액으로 운반되지 못하여 충분한 살충효과를 발휘하지 못하게 된다.The microencapsulated quildine Xn powder of the present invention prepared as described above greatly improves the storage stability. However, when it is sprayed on insects or plants alone, it is not transported to the blood in the insects and thus does not exhibit sufficient insecticidal effect.

따라서, 본 발명에서는 살충효과를 상승시키고 지속화시키기 위하여 본 발명의 Xn제제와 곤충의 세포와 조직을 손상시키는 생물농약, 특히 비티를 혼합한 살충조성물을 제공한다.Accordingly, the present invention provides a pesticidal composition in which the Xn agent of the present invention is mixed with a biopesticide that damages cells and tissues of an insect, in particular, in order to increase and sustain an insecticidal effect.

조성물의 살충효과는 조성비에 따라 달라질 수 있다. 바람직하게는 본 발명의 마이크로캡슐화된 Xn제와 비티제의 혼합비율은 1:99 내지 50:50이다.The pesticidal effect of the composition may vary depending on the composition ratio. Preferably, the mixing ratio of the microencapsulated Xn agent and the beaten agent of the present invention is 1:99 to 50:50.

이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위내에서 다양한 수정 및 변형이 가능한 것은 물론이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples, and those of ordinary skill in the art to which the present invention pertains should be within the equivalent scope of the technical concept of the present invention and the claims to be described below. Of course, various modifications and variations are possible.

실시예 1Example 1

Xn의 마이크로캡슐화하는 피막물질로 생분해성 전분을 사용하였다. 생분해성 전분(Suncap™, 삼양사) 30% 수용액 100g에 Xn 배양액 10g을 넣고 호모게나아저로 7000rpm에서 10분간 교반하여 마이크로캡슐 슬러리액을 만들었다. 이 슬러리액을 스프레이 건조기(Mini Spray Dryer B-191, Buchi co.)를 사용하여 노즐부분의 온도 80℃, 노즐의 분무속도 8∼9㎖/min의 조건으로 분사하여 분말상태의 마이크로캡슐화된 Xn을 얻었다.Biodegradable starch was used as a microencapsulating coating material of Xn. 10 g of Xn culture solution was added to 100 g of 30% aqueous biodegradable starch (Suncap ™, Samyang) and stirred for 10 minutes at 7000 rpm with a homogenizer to prepare a microcapsule slurry. This slurry liquid was sprayed using a Mini Spray Dryer B-191, Buchi co. At a nozzle temperature of 80 ° C. and a spray rate of 8 to 9 ml / min. Got.

실시예 2Example 2

피막물질로 젤라틴을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Xn을 마이크로캡슐화하고 스프레이 건조하여 분말상태의 마이크로캡슐화된 Xn을 얻었다.Except for using gelatin as a coating material, Xn was microencapsulated and spray dried in the same manner as in Example 1 to obtain microencapsulated Xn in powder form.

실시예 3Example 3

캡슐물질로 메타크릴릭(methacrylic) 폴리머를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Xn을 마이크로캡슐화하고 스프레이 건조하여 분말상태의 마이크로캡슐화된 Xn을 얻었다.Xn was microencapsulated and spray dried in the same manner as in Example 1, except that a methacrylic polymer was used as the encapsulating material, thereby obtaining powdered microencapsulated Xn.

실시예 4Example 4

비교실험을 위해 마이크로캡슐화하지 않은 Xn의 배양액을 그대로 상기 실시예 1 내지 3과 같은 스프레이 건조조건(노즐부분의 온도를 8, 노즐의 분무속도를 8~9㎖/min)으로 분사하여 분말상태의 Xn을 얻었다.For comparative experiments, the microencapsulated Xn culture medium was sprayed under the same spray drying conditions as in Examples 1 to 3 (the nozzle part temperature was 8 and the spraying speed of the nozzle was 8-9 ml / min). Xn was obtained.

실시예 5Example 5

시판되고 있는 비티제(쎈타리 과립수화제™, 전진산업)와 실시예 3에서 얻은 본 발명의 마이크로캡슐화된 분말 Xn제를 99:1의 비율로 혼합하여 혼합 살충제 조성물을 만들었다.A commercial insecticide composition was prepared by mixing a commercially available beetase (Cactar Granular Watering Agent ™, Advance Industries) and the microencapsulated powder Xn agent of the present invention obtained in Example 3 in a ratio of 99: 1.

실시예 6Example 6

비티제와 Xn제를 90:10의 비율로 혼합하는 것을 제외하고는 상기 실시예 5와동일한 방법으로 혼합 살충제 조성물을 만들었다.A mixed insecticide composition was prepared in the same manner as in Example 5, except that the VAT agent and the Xn agent were mixed at a ratio of 90:10.

실시예 7Example 7

비티제와 Xn제를 50:50의 비율로 혼합하는 것을 제외하고는 상기 실시예 5와 동일한 방법으로 혼합 살충제 조성물을 만들었다.A mixed insecticide composition was prepared in the same manner as in Example 5, except that the BTT agent and the Xn agent were mixed at a ratio of 50:50.

실시예 8Example 8

마이크로캡슐화된 Xn의 저장안정성 시험Storage Stability Test of Microencapsulated Xn

(1) Xn의 농도 측정방법(1) How to measure the concentration of Xn

1) 1 단계 : 다음과 같은 방법으로 상기 실시예 및 비교예에서 얻은 Xn 분말의 부유액을 제조한다.1) Step 1: A suspension of the Xn powder obtained in the above Examples and Comparative Examples was prepared by the following method.

실시예 1, 2, 4 : 살균수 4.5㎖에 실시예 1, 2, 4에서 얻은 마이크로캡슐화된 분말 0.5g을 넣고 캡슐분말이 완전히 녹을 때까지 충분히 흔들어 부유액을 제조한다.Examples 1, 2 and 4: 0.5 g of the microencapsulated powder obtained in Examples 1, 2 and 4 was added to 4.5 ml of sterilized water, and the mixture was shaken sufficiently until the capsule powder was completely dissolved to prepare a suspension solution.

실시예 3 : 15% 알코올 4.5㎖에 실시예 3에서 얻은 마이크로캡슐화된 분말 0.5g을 넣고 캡슐분말이 완전히 녹을 때까지 충분히 흔들어 부유액을 제조한다.Example 3: A suspension was prepared by adding 0.5 g of the microencapsulated powder obtained in Example 3 to 4.5 ml of 15% alcohol and shaking sufficiently until the capsule powder was completely dissolved.

Xn 배양액 : 살균수 19.5㎖에 마이크로캡슐화하지 않은 Xn 배양액 0.5㎖을 넣고 충분히 흔들어 부유액을 제조한다.Xn broth: 0.5 ml of unencapsulated Xn broth was added to 19.5 ml of sterilized water, and shaken sufficiently to prepare a suspension.

2) 2 단계 : 상기에서 제조한 부유액을 각각 10단계 희석법으로 희석한다.2) Step 2: Dilute the suspension prepared above by the 10-step dilution method.

3) 3 단계 : 희석액 100㎕을 NA 평판배지에 골고루 도말한 후 30℃의 배양실에서 배양하여 콜로니수를 측정하여 Xn의 농도를 측정한다.3) Step 3: 100 μl of the diluent is evenly spread on the NA plate medium and incubated in a culture chamber at 30 ° C. to measure the number of colonies to measure the concentration of Xn.

(2) 저장기간별 안정성시험(2) Stability test by storage period

실시예 1∼4와 비교예로 사용된 캡슐화하지 않은 Xn 배양액을 각각 실온에 두고 15일 간격으로 Xn의 농도를 상기 (1)의 방법으로 측정하여 저장기간에 따른 안정성을 평가하였다. 결과는 도 2와 같다. 도 2에 나타난 바와 같이, Xn 배양액보다 Xn을 마이크로캡슐화한 실시예 1∼4가 저장안정성이 좋은 것으로 나타났고, 특히 실시예 3이 저장안정성이 가장 높은 것으로 나타났다.The unencapsulated Xn cultures used in Examples 1 to 4 and Comparative Examples were each placed at room temperature, and the concentration of Xn was measured by the method of (1) at 15 days intervals to evaluate the stability according to the storage period. The results are shown in FIG. As shown in FIG. 2, Examples 1 to 4 which microencapsulate Xn than Xn culture showed better storage stability, and in particular, Example 3 showed the highest storage stability.

(3) 저장온도별 안정성시험(3) Stability test by storage temperature

캡슐화되지 않은 Xn 배양액과 실시예 3의 마이크로캡슐화된 분말을 각각 4℃, 20℃, 40℃에서 저장하면서 15일 간격으로 Xn의 농도를 상기 (1)의 방법으로 측정하여 저장온도에 따른 안정성을 평가하였다. 결과는 도 3과 같다. 도 3에서 보는 바와 같이, Xn 배양액보다 마이크로캡슐화한 실시예 3의 Xn이 저장안정성이 높았으며, 저장온도가 낮을수록 저장안정성이 더 높은 것으로 확인되었다.The unencapsulated Xn culture solution and the microencapsulated powder of Example 3 were stored at 4 ° C., 20 ° C. and 40 ° C., respectively. Evaluated. The results are shown in FIG. As shown in FIG. 3, Xn of Example 3 microencapsulated than the Xn culture medium had higher storage stability, and the lower the storage temperature, the higher the storage stability.

실시예 9Example 9

실내에서의 살충력 시험Insecticidal test indoors

살충효과시험을 위해 상기의 실시예 5∼7의 생물농약을 2000,1000,500,250, 125ppm의 농도로 수용액을 제조하고, 비교를 위해 실시예 3의 Xn제제 단독과 시판비티제(쎈타리 과립수화제™, 전진산업) 단독을 동일한 방법으로 수용액을 제조하였다. 만들어진 수용액에 양배추 엽절편(직경 30㎜)을 0.5∼1분간 침적한 다음, 후드 내에서 건조하여 여과지가 깔린 페트리디쉬(50㎜)에 넣고 파밤나방 (spodoptera exigua)을 10마리씩 접종하였다. 72시간 후 사충수를 조사하였으며, 반수치사농도(LC50값)를 구하여 살충력을 비교하였다. 그 결과는 다음의 표 2와 같다.For the insecticidal effect test, the aqueous solutions of the pesticides of Examples 5 to 7 were prepared at concentrations of 2000, 1000, 500, 250, and 125 ppm, and for comparison, the Xn preparation alone and the commercially available vitiagent were used for comparison. ™, Advance Industries) alone produced an aqueous solution in the same manner. Cabbage leaf slices (diameter 30 mm) were immersed in the prepared aqueous solution for 0.5 to 1 minute, dried in a hood, and placed in a petri dish (50 mm) covered with filter paper and inoculated with 10 spodoptera exigua. After 72 hours, the number of insects was examined, and the insecticide concentrations were determined by using the half lethal concentration (LC 50 value). The results are shown in Table 2 below.

처리process LC50값(ppm)LC 50 value (ppm) Xn 단독Xn alone 1257.6(1150.1~1365.1)1257.6 (1150.1 to 1365.1) 쎈타리 단독쎈 alone 516.4(456.1~576.5)516.4 (456.1-576.5) 실시예 5Example 5 245.5(170.4~321.0)245.5 (170.4-321.0) 실시예 6Example 6 153.9(104.2~203.6)153.9 (104.2 to 203.6) 실시예 7Example 7 372.2(274.7~469.7)372.2 (274.7--469.7)

표 2로부터 알 수 있는 바와 같이, Xn 단독이나 쎈타리 단독보다 실시예 5∼7의 혼합 조성물이 살충력이 더 좋은 것으로 나타났다. 특히, 실시예 6의 경우가 살충력이 가장 높은 것으로 나타났는데, 이로부터 비티제와 마이크로캡슐화된 Xn의 혼합비율이 살충력에 영향을 주는 것을 알 수 있다.As can be seen from Table 2, the mixed composition of Examples 5 to 7 was found to have better insecticidal properties than Xn alone or beetle alone. In particular, the case of Example 6 was found to have the highest insecticide, from which it can be seen that the mixing ratio of the bitty agent and microencapsulated Xn affects the insecticide.

실시예 10Example 10

야외 조건에서 살충력 지속시험Insecticidal test under outdoor conditions

살충지속효과시험을 위해 60일 정도 재배한 양배추에 시판 비티제(쎈타리 과립수화제™, 전진산업) 단독, 실시예 3에서 얻은 Xn 단독, 실시예 6의 조성물을 각각 1000ppm으로 분무처리하고 1, 5, 10, 15, 20일 후 양배추 잎을 잘라 실내에서 살충력을 조사하였다. 그 결과는 도 4와 같다. 도 4로부터 Xn제제 단독이나 비티제 단독보다 이들의 혼합 조성물이 보다 오랫동안 살충력이 지속되는 것을 확인할 수 있다.The cabbages cultivated for about 60 days for the sustained insecticidal test were sprayed with 1000 ppm each of commercially available VITIZE (Cactar Granular Watering Agent ™, Advance Industry) alone, Xn alone obtained in Example 3, and the composition of Example 6, respectively. After 5, 10, 15 and 20 days, the cabbage leaves were cut and examined for insecticide indoors. The result is shown in FIG. 4. It can be seen from FIG. 4 that the insecticidal properties of these mixed compositions last longer than those of Xn alone or Beatty alone.

본 발명에 따른 마이크로캡슐화된 Xn제는 외부 환경으로부터 균주를 보호하여 생존을 보다 오랫동안 유지시키고 저장안정성을 향상시키게 되므로, 살포시 생존력이 약해 살충효과를 제대로 발휘하지 못했던 Xn의 활용을 용이하게 한다. 또한, 본 발명에 따른 마이크로캡슐화된 Xn제와 비티제를 혼합한 생물농약 조성물은, 기존의 생물농약에 대해 감수성이 낮았던 곤충에 대해서도 살충효과가 상승되고 지속적인 약효를 나타내게 된다.Since the microencapsulated Xn agent according to the present invention protects the strain from the external environment to maintain survival for a longer time and improve storage stability, it is easy to utilize Xn, which has poor viability when spraying, and has not properly exhibited an insecticidal effect. In addition, the biopesticide composition in which the microencapsulated Xn agent and the bite agent according to the present invention are mixed, the insecticidal effect is increased and sustained efficacy even for insects that have low sensitivity to the conventional biopesticides.

Claims (5)

고분자 물질의 10∼50% 수용액 100 중량부에 제노랍두스 네마토필러스(Xn) 배양액 1∼30 중량부를 혼합하여 유화·분산시키는 단계와;Emulsifying and dispersing by mixing 1-30 parts by weight of a Genorabdus nematophilus (Xn) culture solution with 100 parts by weight of a 10-50% aqueous solution of a polymer material; 상기 유화·분산된 혼합액을 계면반응 또는 인 시튜(in situ) 중합법으로 반응시켜 마이크로캡슐 슬러리를 얻는 단계와;Reacting the emulsified and dispersed liquid mixture by an interfacial reaction or an in situ polymerization method to obtain a microcapsule slurry; 상기 마이크로캡슐 슬러리를 노즐부분의 온도 50∼100℃, 노즐의 분무속도 1∼30㎖/min의 조건으로 스프레이 건조하여 분말화하는 단계를 포함하는 것인 마이크로캡슐화된 분말 Xn제의 제조방법.And spray-drying the microcapsule slurry under conditions of a temperature of 50 to 100 ° C. of the nozzle portion and a spray rate of 1 to 30 ml / min of the nozzle to powderize the microcapsule slurry. 제 1 항에 있어서, 상기 고분자 물질은 전분, 젤라틴, 메타크릴릭(methacrilic) 폴리머, 에틸셀룰로오스(ethylcellullose) 및 사이크로덱스트린으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the polymer material is selected from the group consisting of starch, gelatin, methacrylic polymer, ethyl cellulose, and cyclodextrin. 제 1 항의 방법으로 제조된 마이크로캡슐화된 분말 Xn제를 유효성분으로 포함하는 살충제.A pesticide comprising the microencapsulated powder Xn prepared by the method of claim 1 as an active ingredient. 제 1 항의 방법으로 제조된 마이크로캡슐화된 분말 Xn제와 비티(Bacillus thuringinesis)제를 혼합한 살충제 조성물.A pesticide composition comprising a microencapsulated powder Xn and a Bacillus thuringinesis agent prepared by the method of claim 1. 제 4 항에 있어서, 상기 Xn제와 비티제는 1:99 내지 50:50의 비율로 혼합되는 것을 특징으로 하는 살충제 조성물.5. The insecticide composition according to claim 4, wherein the Xn agent and the bitty agent are mixed at a ratio of 1:99 to 50:50.
KR1020010002028A 2001-01-13 2001-01-13 Microencapsulation of Xenorhabdus nematophilus and its preparation and composition KR100341186B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010002028A KR100341186B1 (en) 2001-01-13 2001-01-13 Microencapsulation of Xenorhabdus nematophilus and its preparation and composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010002028A KR100341186B1 (en) 2001-01-13 2001-01-13 Microencapsulation of Xenorhabdus nematophilus and its preparation and composition

Publications (2)

Publication Number Publication Date
KR20010035200A KR20010035200A (en) 2001-05-07
KR100341186B1 true KR100341186B1 (en) 2002-06-21

Family

ID=19704610

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010002028A KR100341186B1 (en) 2001-01-13 2001-01-13 Microencapsulation of Xenorhabdus nematophilus and its preparation and composition

Country Status (1)

Country Link
KR (1) KR100341186B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691512B1 (en) * 2004-10-08 2007-03-09 주식회사 비아이지 Insecticide and acaricide comprising benzylideneacetoneBZA and proline-tyrosinePT
KR102661539B1 (en) * 2023-12-20 2024-04-26 주식회사 잰153바이오텍 Composition for controlling pest comprising microencapsulation-based spray drying formulation of Btk IMBL-B9 as effective component

Also Published As

Publication number Publication date
KR20010035200A (en) 2001-05-07

Similar Documents

Publication Publication Date Title
CA2566864C (en) Microbial biosurfactants comprising rhamnolipids as an agent for controlling pests
US6071973A (en) Repellent for ants
AU626561B2 (en) Terrestrial delivery compositions
DE69530003T2 (en) USE OF KONIFERYLALDEHYD AND ALPHA-HEXYL CINNAMALDEHYD FOR COMBATING INSECTS AND MITES
US20190023398A1 (en) Devices and Methods for Pest Control
EP0561990B1 (en) Stabilized insect nematode compositions
JPH05502661A (en) Pesticide transport systems and insect attractants
US20140026468A1 (en) Control of Subterranean Termites
JPH07503484A (en) Biological control of termites
KR101306944B1 (en) Multi-purpse capsule
US5721274A (en) Repellents for ants
RU2328493C1 (en) Application of usnic acid as synergist of insecticides on basis of entomopathogenic microorganisms
KR100341186B1 (en) Microencapsulation of Xenorhabdus nematophilus and its preparation and composition
RU2168298C2 (en) Nonaromatic polyorganic acids for insecticide absorption enhancement
US6294577B1 (en) Repellent for ants
CN109077069A (en) A kind of compound biotic insecticide and its preparation method and application
KR100191896B1 (en) An insectcidal composition which contains beauveria sp. and its producing method
KR101893125B1 (en) Composition for anti-insect coating
CN104219951A (en) Pest control agent
WO2021070060A1 (en) Insecticide device
KR100457391B1 (en) Microcapsules for Cockroach Induced Poisoning and Preparations
JPH0912410A (en) Antimicrobial repellent composition for harmful organism
KR100461086B1 (en) Insecticidal Microcapsules for Hydrogen Ion Phospholytic Cockroach Induced Toxicants and Methods for Manufacturing the Same
KR20230027736A (en) Insecticide and antibacterial composition comprising pyrethrum extract and graphene as active ingredients, and method for manufacturing the same
WO2023161506A1 (en) Carrier material for living biologicals and preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060529

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee