KR100334693B1 - The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation - Google Patents

The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation Download PDF

Info

Publication number
KR100334693B1
KR100334693B1 KR1020000017315A KR20000017315A KR100334693B1 KR 100334693 B1 KR100334693 B1 KR 100334693B1 KR 1020000017315 A KR1020000017315 A KR 1020000017315A KR 20000017315 A KR20000017315 A KR 20000017315A KR 100334693 B1 KR100334693 B1 KR 100334693B1
Authority
KR
South Korea
Prior art keywords
water
breeding
fish
breeding water
foam
Prior art date
Application number
KR1020000017315A
Other languages
Korean (ko)
Other versions
KR20000053762A (en
Inventor
민병서
Original Assignee
민병서
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 민병서 filed Critical 민병서
Priority to KR1020000017315A priority Critical patent/KR100334693B1/en
Priority to KR2020000009468U priority patent/KR200200600Y1/en
Publication of KR20000053762A publication Critical patent/KR20000053762A/en
Application granted granted Critical
Publication of KR100334693B1 publication Critical patent/KR100334693B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/045Filters for aquaria

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

본 발명은 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식 방법 및 그 장치에 관한 것으로서, 광물미립자를 사육수에 현탁시켜, 어류로부터 발생되는 노폐물을 분해 흡착시키고, 이를 포말분리 장치를 이용하여 사육수로부터 분리하여 배출시켜 사육수를 정화하여 재사용함을 특징으로 하는 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식방법이며, 구조가 간단해서 관리유지에 특별한 어려움이 없으며, 90%이상의 사육수를 재사용하므로서 수자원의 풍족하지 못한 곳에서 사용하기 유리하며, 사육수의 오염과 외부 병원생물의 유입을 방지하고 사육수의 수온조절에 필요한 에너지를 절약할 수 있어 어류의 사육 성장율을 높이는 효과가 있는 것이다.The present invention relates to a circulating filtration fish farming method of fish breeding water using mineral fine particles and a foam separator, and a device for suspending mineral fine particles in breeding water to decompose and adsorb waste products generated from fish, Circulation filtration fish farming method of fish breeding water using mineral fine particles and foam separation device, characterized in that the water is purified and reused by separating and discharged from the breeding water by using the device. There is no difficulty, and it reuses more than 90% of breeding water, so it is advantageous to use it in a place where there is not enough water resources, and it can prevent pollution of breeding water and inflow of external hospital organisms and save energy for controlling the temperature of breeding water. It is effective to increase the growth rate of fish.

Description

광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식어류양식방법 및 그 장치 {The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation}The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation}

본 발명은 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식 방법 및 그 장치에 관한 것이다.The present invention relates to a circulating filtration fish farming method and apparatus of fish breeding water using the fine particles and the foam separator.

시설양어에 있어 사육수의 재사용은 수자원, 환경, 에너지, 어병 등 관련되는 여러 가지 문제의 해답으로서 많은 연구가 이루어졌다. 그러나 대부분이 실험실 규모로서 그 결과가 양어현장에 실질적으로 적용된 사례는 거의 없다. 유일하게 IBK System(Kim and Jo, 1999)이 양어현장에 성공적으로 적용되어 완전한 순환여과 양식방법으로 이스라엘잉어, 틸랄피아, 뱀장어 등 담수어종을 산업규모로 생산하고 있다. 현재 해산어를 대상으로 하는 IBK System 시설이 시도되고 있어 (Kim, 2000) 그 결과가 기대되고 있다.Reuse of breeding stock in farmed fish farms has been studied as a solution to various problems related to water resources, environment, energy and fish disease. However, most of them are laboratory scale, and the results have not been practically applied to fish farms. The only IBK system (Kim and Jo, 1999) has been successfully applied to fish farms, producing fresh fish species such as Israeli carp, tiralpia, and eel on an industrial scale. At present, the IBK System facility for marine fish is being attempted (Kim, 2000) and the result is expected.

국외의 경우도 국내와 비슷하여 실제 산업규모의 양어장에 순환여과방법이 성공적으로 적용된 예는 많지 않다. 근래 외국에서 개발된 순환여과 방법이 국내에 도입된 사례가 몇몇 있으나 방법 자체가 가지고 있는 범용성의 한계와 구조의 복잡성에 따른 관리 유지의 문제, 시설비 및 운영비의 경제성 등에서 성공적이지 못했다.Overseas, similar to domestic, there are few examples of successful application of cyclic filtration to fish farms of industrial scale. In recent years, there have been some cases where a circulating filtration method developed in a foreign country has been introduced in Korea, but it has not been successful in the problems of maintenance and maintenance, and the economical efficiency of facilities and operating costs.

순환여과식 양식시설에서 사육수를 재사용하기 위한 과정이 내포하고 있는 기전은 사육의 결과 생성된 노페물질들을 사육수로부터 제거하는 것이다. 전통적으로 걸르고(screening), 침전(settling)시키고, 여과(filtering)하고, 분해(biofiltering)하여, 탈기(degassing)와 살균(disinfecting)하는 과정 등이 포함된다. 이러한 기능을 수행하기 위하여는 상당한 설비가 필요하게 되고 이에 따라 범용성의 한계가 생기고 운영관리에 어려움이 따르게 된다.The mechanism involved in the reuse of breeding water in a circulating filtration aquaculture facility is the removal of the nope substances produced by the breeding from the breeding water. Traditionally, screening, settling, filtering, biofiltering, degassing and disinfecting are involved. In order to perform these functions, a considerable amount of equipment is required, which leads to limitations of versatility and difficulty in operation management.

국내공개특허공보 공개번호 제99-73399호에는 황토와 석회석 물질의 특수성을 이용하여 황토, 생석회, 소석회, 굴껍질분말, 카본 등의 천연자료로 구성된 코라믹을 이용하여 개펄을 갈아주고 산소를 공급시켜 노화된 양식장과 오염된 바다를개선 복원시키는 바다환경복원 개선제가 공개되어 있으며,Korean Patent Publication No. 99-73399 utilizes the specificity of ocher and limestone materials to grind Gaepul and supply oxygen by using a composition composed of natural materials such as ocher, quicklime, slaked lime, oyster shell powder, and carbon. To improve aging farms and polluted seas,

국내공개특허공보 공개번호 제98-19340호에는 황토, 활성탄과 제오라이트 및 맥반석을 최적의 입도와 배합비로 혼합하여, 선택적으로 식물공생균 증식으로 발아 성장 촉진시키거나, 통기성, 보비, 보수 배수력이 우수하여 근부병을 예방하거나, 화분 토양내의 온도 및 수분 조절력이 탁월하여 각종 어병의 예방 및 치료를 할 수 있는 수질 토양개선제의 제조방법이 기재되어 있으며,Korean Laid-Open Patent Publication No. 98-19340 mixes ocher, activated carbon, zeolite and elvan in optimal granularity and blending ratio to selectively promote germination and growth by plant proliferation, or have excellent breathability, bobby and water drainage. To prevent root diseases, or to control the temperature and moisture in pollen soil and to prevent and treat various kinds of fish disease, the manufacturing method of water quality soil improver is described.

국내공개특허공보 공개번호 제2000-8266호에는 진흙 또는 황토와, 소석회, 생석회 또는 가성소다등의 복합성분을 사용하여 적조프랑크톤을 응집흡착하는 다공성 세라믹 분체를 이용한 적조 제거응집제 개발방법이 공개되어 있으나,Korean Laid-Open Patent Publication No. 2000-8266 discloses a method for developing a red tide removal flocculant using porous ceramic powder which coagulates and adsorbs red tide plankton by using a complex component such as mud or loess, slaked lime, quicklime or caustic soda. However,

상기 종래의 기술들은 황토 및 진흙등이 적조 및 어류 성장에 좋다고 예시적으로 이용되고 있으나, 황토 및 진흙등은 사육수에 희석되어 어류의 아가미에 축적되어 어류의 질병을 악화시키거나, 폐사시키며, 사육수의 오염도를 높히는 등의 문제점이 있어 실제 양식장에서 사용하지 못하고 있는 문제점이 있어 왔다.The conventional techniques are used to exemplify that ocher and mud are good for red tide and fish growth, but ocher and mud are diluted in breeding water to accumulate in the gills of the fish to worsen or kill fish diseases. There have been problems such as raising the pollution of breeding water, which has not been used in actual farms.

상기와 같은 문제점을 해결하기 위해, 본 발명은 사육수에 광물 미립자를 현탁시키고 현탁된 미립자가 사육수 중의 노폐물과 병원생물을 흡착 또는 분해하고 이를 포말분리장치가 분리 배출하므로서 사육수를 정화하여 재사용 하는 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식 방법 및 그 장치를 제공하는 것을 그 목적으로 하는 것이다.In order to solve the above problems, the present invention suspended mineral fines in the breeding water and suspended particulates adsorb or decompose waste products and pathogens in the breeding water, and the foam separation device separates and discharges the purified water to reuse. It is an object of the present invention to provide a method of circulating filtration fish farming and a device for breeding fish using mineral fine particles and a foam separator.

도1 본 발명의 순환여과식 어류양식방법 전체도1 is a general view of the circulation filtration fish farming method of the present invention

도2 본 발명의 순환여과식 어류양식방법의 포말분리장치 상세도2 is a detailed view of the foam separation device of the circulating filtration fish culture method of the present invention

<도면의 중요부분 부호설명><Description of Signs of Important Parts in Drawings>

(1)보충수 (2)광물미립자투입 (3)사육수조 (4)사육수 (5)펌프(1) replenishment (2) mineral fines injection (3) breeding tanks (4) breeding water (5) pumps

(6)포말분리장치 (7)순환수 (8)배출수+거품 (10)수집구(6) foam separators (7) circulating water (8) drain water + foam (10) collection ports

(11)유입사육수파이프 (12)벤추리관 (13)공기유입구(11) inflow breeding pipes (12) venturi tubes (13) air inlets

(14)벤추리토출관 (15)벤추리안내관 (16)정화사육수 (17)공기방울(14) Venturi discharge hall (15) Venturi guide (16) Purification stocking (17) Air bubbles

상기와 같은 목적을 달성하기 위하여 본 발명은 광물미립자를 사육수에 현탁시켜, 어류로부터 발생되는 노폐물을 분해 흡착시키고, 이를 포말분리 장치를 이용하여 사육수로부터 분리하여 배출시키는 어류 사육수의 순환여과식 어류양식 방법 및 그 장치에 관한 것이다.In order to achieve the above object, the present invention suspends the mineral fine particles in the breeding water, decomposes and adsorbs the wastes generated from the fish, and separates them from the breeding water using a foam separation device and discharges them from the breeding water. A method and apparatus for overeating fish farming are provided.

본 발명에서 사용되는 광물미립자는 황토, 고령토, 고토, 석회, 벤토나이트 (bentonite),제오라이트(zeolite) 및 규토에서 선택된 어느 하나 또는 그들의 혼합물이며, 그 표면적이 용적에 비하여 매우 넓어서 사육수에 현탁된 미립자는 생물여과재로서의 역할을 효율적으로 하므로 별도의 생물여과시설이 불필요하게 된다. 또한 광물미립자는 광범위한 흡착력으로 사육수 중의 고형유기물, 용해유기물, 병원생물, 암모니아 등의 노폐물을 흡착한다. 이렇게 노폐물과 병원생물을 흡착한 광물미립자는 포말분리기를 통하여 사육방법 밖으로 분리 배출되므로서, 침전 또는 걸름망 등의 고형유기물 처리설비와 오존, 자외선 등의 병원생물 제어에 필요한 설비 역시 불필요하게 된다. 또한 사육수에 부족하게 된 산소는 포말분리과정에 포함된 폭기과정에서 부수적으로 공급되므로 별도의 산소공급장치의 필요성을 감소시킨다. 따라서 본 발명은 광물 미립자의 사육수 현탁과 포말분리 과정이라는 단순한 구성으로 이루어진 효율적인 사육수 정화 재사용 방법인 것이다.The mineral fine particles used in the present invention are any one or a mixture thereof selected from ocher, kaolin, goto, lime, bentonite, zeolite and silica, and the fine particles suspended in breeding water because their surface area is very large in volume. Efficiently acts as a biofilter, thus eliminating the need for a separate biofilter. In addition, the fine particles of the mineral adsorbs the wastes such as solid organics, dissolved organics, pathogens, ammonia, etc. in the breeding water with a wide range of adsorption power. Thus, the fine particles adsorbed waste products and pathogens are separated and discharged out of the breeding method through a foam separator, and thus, facilities required for controlling solid organisms such as sedimentation or strainer and pathogens such as ozone and ultraviolet ray are also unnecessary. In addition, the oxygen shortage in the breeding water is supplied incidentally during the aeration process included in the foam separation process, thereby reducing the need for a separate oxygen supply device. Therefore, the present invention is an efficient breeding water purification and reuse method consisting of a simple structure of breeding water suspension and foam separation process of mineral fine particles.

순환여과식 양식방법에서 사육수의 암모니아는 그 독성 때문에 제거되어야 하는 제1의 표적물질이다. 사육수 중의 암모니아를 제거하는 데 현재 이용되고 있는 방법은 생물여과(biological filtration)가 유일하다. 이에는 고정식이든 유동식이든 질화세균(nitrifying bacteria)이 부착할 수 있는 기질(media)을 필요로 하고 이 기질을 장착할 수 있는 별도의 시설(생물여과조)이 필요하다. 또한 이들 질화세균 자체의 활성을 유지하기 위하여 이에 관련되는 요소들이 관리되어야 한다. 수온, 용존산소, 물의 흐름과 고형유기물(POC), 용해뮤기물(DOC)의 양은 물론이고 암모니아 자체의 농도와 절대량이 이에 관련이 있다. 요약해서 생물여과에 의한 암모니아 제거방법에는 시설과 관리에 여러 가지 어려움이 따른다.In circulating filtration, ammonia in breeding water is the first target to be removed because of its toxicity. Biological filtration is the only method currently used to remove ammonia in breeding water. This requires a medium to which nitrifying bacteria can attach, either fixed or liquid, and a separate facility (biofiltration) to which it can be mounted. In addition, in order to maintain the activity of these nitrifying bacteria themselves, related factors should be managed. The concentration and absolute amount of ammonia itself are related to water temperature, dissolved oxygen, water flow and the amount of solid organics (POC) and dissolved organics (DOC). In summary, the removal of ammonia by biofiltration presents several challenges for installation and management.

이미 세간에는 황토가 만병통치로 유행하고 있고, 수산분야에도 이미 적조방제에 활용되고 있으며, 최근 넙치의 스쿠치카층 구제에 활용 가능성이 있다는 보고가 있다. 또한 황토의 광범위한 흡착능력에 관한 많은 미확인 정보가 있다. 황토를 비롯한 광물미립자는 그 표면적이 아주 넓어 소성가공황토의 경우 600㎡/g에 이른다. 점토(粘土,clay)는 판상의 결정구조를 가지고 스스로 성장할 뿐 아니라, 다른 분자를 흡수하는 능력을 가지고 있으며, 특히 운모형의 점토는 그것의 규산질판(silicate layer)사이에서 800가지 이상의 유기분자 패턴(pattern)의 변형(變形, derivatives)이 확인되었으며 이 유기분자 패턴의 변형들은 암모니아 이온과 알콜분자를 유기분자로 고정시키는 것을 포함하여 마치 템프리트(template)처럼 작용한다(Watsom. 1979).There is a report that ocher is already popular as a panacea, and it is already used for red tide control in the fisheries field, and there is a possibility that it can be used for salvage of flounder. There is also a lot of unconfirmed information about the wide range of adsorption capacity of loess. Mineral particles, including ocher, have a very large surface area of 600 m2 / g for calcined ocher. Clay not only grows on its own with a lamellar crystal structure, but also has the ability to absorb other molecules, especially the mica type clay, which has a pattern of more than 800 organic molecules between its silicate layers. Derivatives of patterns have been identified, and the modifications of these organic molecular patterns act like templates, including the immobilization of ammonia ions and alcohol molecules with organic molecules (Watsom, 1979).

광물미립자로서 사육수의 정화를 목적으로 시도될 수 있는 것으로 황토(주로 SIO2), 고토(苦土, dolomite, MgCO3·CaCO3)와 고령토(주로 Al2O3),석회, 벤토나이트, 제오라이트, 규토 등이 있으며, 본 사육실험에서는 50μ이하의 가공황토 2종과 고토가 사용되었다. 사육실험 중 사육수의 암모니아 농도는 2㎎/ℓ를 넘지 않았다(표 4). 이는 암모니아가 계속 어떤 경로를 통하여 제거되었다는 사실을 확인시켜 준다. 광물미립자의 표면에 흡착되었을 가능성과 이들 미립자를 핵으로 한 활성오니에 의하여 분해되었을 가능성이 있다. 그러나 사육수에 살포된 대부분의 광물미립자가 12시간 이내에 포말분리장치를 통하여 사육방법 밖으로 배출되었으므로 사육수 중의 암모니아가 전부 활성오니의 과정을 통하여 분해되었다고 추정하기는 어렵다. 따라서 광물 미립자가 암모니아를 부분적으로 흡착한 것으로 추정된다. 현재까지의 결과로 사육수에 현탁된 광물미립자가 사육수 중의 암모니아 제거에 어떤 형태로든 기여했으리라는 판단에는 무리가 없다. 따라서 광물미립자를 이용하여 사육수의 탁도 문제와 암모니아 제거 문제는 제한 요소가 될 수 없다고 생각된다.Clay (primarily SIO 2) that can be tried for the purpose of purification of the number of breeding a mineral particulate, Goto (苦土, dolomite, MgCO 3 · CaCO 3) and kaolin (mainly Al 2 O 3), lime, bentonite, zeolite In this breeding experiment, two kinds of processed loess and 50 pieces of clay were used. The ammonia concentration of the breeding water during the breeding experiment did not exceed 2 mg / L (Table 4). This confirms that ammonia has been removed through some path. It may be adsorbed on the surface of the mineral fine particles and may be decomposed by activated sludge using these fine particles as a nucleus. However, since most of the fine particles of the sprayed water were discharged out of the breeding method through the foam separator within 12 hours, it is difficult to estimate that all of the ammonia in the breeding water was decomposed through the process of active sludge. Therefore, it is assumed that the mineral fine particles partially adsorbed ammonia. To date, there is no doubt that the mineral particulates suspended in the stock could contribute in some way to the removal of ammonia from the stock. Therefore, it is considered that the problem of turbidity and ammonia removal of breeding water using mineral particles cannot be a limiting factor.

본 발명에서 사육수를 정화하기 위하여 사육수에 광물미립자를 현탁시킨 것이 사육수 재사용방법의 한 축이라면 이에 상응하는 또 하나의 중요한 축은 포말분리장치(Foam Fractionator)이다.In the present invention, if suspending mineral particles in the breeding water to purify the breeding water is one axis of the breeding water reuse method, another important axis corresponding thereto is a foam fractionator.

포말분리장치는 용액으로부터 용질을, 액상혼합물로부터 특정물질을 분리하는 데 널리 이용되고 있다. 원소와 화합물을 액체로부터 분리하는 용도만 92가지나 되며, 해수로부터는 Ca, Cu, Mg, Mn 등을 분리하는데 이용되고 있다(Rubin and Goden, 1962). 사육수로부터 고형현탁물질(suspended solid)을 분리하고(Wheaton, 1977) 고형유기물(POC)를 제거한다(spotte, 1979). 또한 사육수 중의 부유성미생물의 수를 감소시키며(Schlesner and Rheinheimer, 1974), 굴 양식을 위한 순환여과방법에서 벤츄리를 이용한 포말분리장치로 세균수를 22,100cells/㎖에서 220cells/㎖로 낮출 수 있었다(Dwibedy, 1793). 어류와 패류 사육방법에서 용해유기물(DOC)를 제거하므로서(Dwivedy, 1973;Spotte, 1979;Lomax and Wheaton, 1975)단백질 성분의 세균분해에 의한 암모니아 발생을 억제하고(Dwivedy, 1973) 사육수의 BOD와 COD, 질산염이 축적되는 것을 완화시킨다(Dwivedy, 1973). 유기산 형태의 용해유기물(DOC)를 제거하므로서 사육수의 PH를 조절한다(ewivedy, 1973). 포말분리장치의 폭기과정이나 포말에 의하여 사육수 중의 암모니아 일부가 제거되기도 한다(Wheaton. 1977).Foam separators are widely used to separate solutes from solutions and specific materials from liquid mixtures. There are only 92 uses to separate elements and compounds from liquids, and they are used to separate Ca, Cu, Mg, Mn, etc. from seawater (Rubin and Goden, 1962). The suspended solids are separated from the breeding water (Wheaton, 1977) and the solid organic matter (POC) is removed (spotte, 1979). In addition, the number of floating microorganisms in the breeding water was reduced (Schlesner and Rheinheimer, 1974), and the entrepreneur was able to reduce the bacterial count from 22,100cells / ml to 220cells / ml with a venturi-based foam separator in the circulating filtration method. (Dwibedy, 1793). By removing dissolved organic matter (DOC) from fish and shellfish breeding methods (Dwivedy, 1973; Spotte, 1979; Lomax and Wheaton, 1975), it suppresses ammonia generation by bacterial decomposition of protein components (Dwivedy, 1973) And COD, alleviate the accumulation of nitrates (Dwivedy, 1973). Controlling the pH of breeding water by eliminating organic acids (DOC) forms (ewivedy, 1973). Part of the ammonia in the breeding water may be removed by aeration or foaming of the foam separator (Wheaton. 1977).

포말분리장치는 용해유기물(DOC)과 고형유기물(POC)을 사육수로부터 제거할 뿐만 아니라 효과적인 폭기기능을 가지고 있으며 해수에 적용했을 때 효과가 좋고 생물여과시설과 달리 넓은 공간을 필요로 하지 않으면서 관리가 용이하다. 생물여과시설의 대체로서가 아니고 그것과 연계되어 활용된다(Huguenin and Colt, 1989). 실제로 IBK system에서 생물여과시설 앞에 포말분리장치를 설치하여 운영하고 있으며 큰 효과를 보고 있다.The foam separator not only removes dissolved organic matter (DOC) and solid organic matter (POC) from the breeding water, but also has an effective aeration function.It is effective when applied to seawater and does not require large space unlike biofiltration facilities. Easy to manage It is not used as a substitute for biofiltration but in connection with it (Huguenin and Colt, 1989). In fact, the IBK system has a foam separator installed in front of the biological filtration facility, and it has a great effect.

그러나 본 발명의 사육방법은 사육수조의 배수구에서 펌프로 사육수를 포말분리장치로 보내 포말분리한 후 사육수조로 순환시키는 구성으로 생물여과시설이 생략되었다. 생물여과시설의 기능인 암모니아 제거는 사육수에 현탁된 광물미립자와 이를 사육수로부터 분리, 배출시키는 포말분리장치의 기능이 감당한 것으로 생각된다. 사육기간 중 사육수의 암모니아 농도는 허용치 이하가 유지되었다(표 4).However, in the breeding method of the present invention, the biological filtration facility is omitted as a configuration in which the breeding water is pumped from the drainage port of the breeding tank to the foam separator and then circulated to the breeding tank. The removal of ammonia, which is a function of the biofiltration system, is thought to be the function of the mineral fine particles suspended in the breeding water and the foam separator which separates and discharges it from the breeding water. During the breeding period, the ammonia concentration in the breeding water was kept below the allowable level (Table 4).

또한 포말분리장치는 폭기과정에서 부수적으로 사육수에 산소를 공급하는 것으로 확인되었다. 사육수조에서 배수되는 사육수의 용존산소는 50% 포화도였으나, 포말분리장치를 거쳐 순환되는 사육수는 85% 포화도로 되었다. 이는 별도의 산소공급시설의 필요성을 감소시켜주는 것으로 생각된다.The foam separator was also confirmed to supply oxygen to the breeding water incidentally during the aeration process. Dissolved oxygen in the breeding water drained from the breeding tank was 50% saturation, but breeding water circulated through the foam separator became 85% saturation. This is thought to reduce the need for a separate oxygen supply system.

본 발명은 사육수와 공기방울의 접촉시간을 연장하기 위하여 포말분리기의 상하 축을 길게 하고, 기기의 상부에 설치된 벤츄리관에 의한 흡기펌프를 통하여 빨아들여진 공기가 사육수와 섞여 하단으로 내려간 다음 다시 상승시키는 구조를 한 점이다. 이리하여 접촉시간을 최대로 하고, 하단으로 내려 갈수록 수압이 높아져 효율을 향상시킨다. 다시 상승되어 상단에 도착한 사육수와 공기방울은 단면적이 넓은 외부통에서 사육수는 공기방울의 상승속도 이하로 다시 하강하고, 사육수로부터 상승하여 분리된 공기방울은 사육수 표면에서 거품을 형성하여 사육수와 분리된 후 소량의 사육수와 함께 포말분리장치 외부로 배출되게 한 구조이다.The present invention lengthens the vertical axis of the foam separator in order to extend the contact time between the breeding water and the air bubbles, the air sucked through the intake pump by the venturi tube installed in the upper portion of the equipment is mixed with the breeding water and descends to the bottom and then rises again. It is a structure to let. Thus, the contact time is maximized, and as the pressure goes down to the bottom, the water pressure increases to improve efficiency. The breeding water and the air bubbles that have reached the upper end are raised in the outer cylinder with a large cross-sectional area, and the breeding water descends below the rising speed of the air bubbles, and the air bubbles separated from the watering water form bubbles on the surface of the water. After being separated from the breeding water, it is discharged to the outside of the foam separator with a small amount of breeding water.

이하 본 발명을 실시예를 통하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

두 종류의 가공황토(processed loess, 50μ이하)와 고토(dolomite, 50μ이하)미립자를 사육수에 100ppm이하로 현탁시키고 포말분리장치로 이를 분리, 배출시킴으로서 사육수를 정화하였다. 직경 4.8m의 원형사육수조(사육수량 10㎥), 사육수순환율 시간당 2회전, 재사용율 90%, 수온 17±1℃에서 평균체중 21.3g의 넙치치어(5,555마리, 총중량 128㎏)를 75일간 사육하여 평균체중 84.6g(5,532마리, 총중량 468㎏)으로 육성하였다. 최종 수용밀도는 26.0㎏/㎡였다. 어병의 발생은 없었다.Two kinds of processed loess (less than 50μ) and golom (dolomite (less than 50μ) fine particles were suspended in the breeding water to 100ppm or less, and separated and discharged by a foam separator to purify the breeding water. A round breeding tank with a diameter of 4.8m (breeding quantity 10㎥), 2 cycles per hour of breeding water circulation rate, 90% reuse rate, and 21.3g of flounder fry (5,555, total weight 128kg) at 75 ° C The animals were reared to an average body weight of 84.6 g (5,532 animals, total weight 468 kg). The final storage density was 26.0 kg / m 2. There was no outbreak of fish disease.

실험예Experimental Example

실험에 사용된 광물미립자는 시중에 제품으로 공급되는 2종의 황토(A, B)와 고토분말(C)이었다. 입자 크기는 50μ이하였으며 12시간 간격으로 1일 2회, 1회 400g (40ppm)을 사육수에 직접 살포하였다. 3종의 광물미립자는 시험기간 중 표1과 같이 실험되었다.The mineral particles used in the experiment were two types of loess (A, B) and goto powder (C). The particle size was less than 50μ and 400g (40ppm) was sprayed directly into the breeding water twice a day at 12 hour intervals. Three mineral fine particles were tested as shown in Table 1 during the test period.

표1. Scheme of the mineral particle supply under 50μin diameter tried for the water reuse systemTable 1. Scheme of the mineral particle supply under 50μin diameter tried for the water reuse system

DateDate 1st 25th1st 25th 26st-50th26st-50th 51st-55th51st-55th 56st-60th56st-60th 61st-70th61st-70th 71st-75th71st-75th SchemeScheme AA A + BA + B BB A + CA + C B + CB + C CC

A : 적조제거용 소성(燒成)가공황토A: Calcined yellow soil for red tide removal

B : 사료첨가용 가공황토 (Processed loess for fish feed additive)B: Processed loess for fish feed additive

C : 고토분말 (Dolomite particles)C: Dolomite particles

사료는 Turbot 육성용 펠렛사료를 사용하였으며 공급 전 10%의 담수를 흡수시켰다. 하루 3회(07:00, 13:00, 20:00)공급하였다. 사료의 조성은 표 2와 같다.Feed was used for pellet feed for Turbot growth and absorbed 10% fresh water before feeding. It was supplied three times a day (07:00, 13:00, 20:00). The composition of the feed is shown in Table 2.

표2. Composition of the feed used for the experimentTable 2. Composition of the feed used for the experiment

IngredientIngredient IngredientIngredient Crude protein 54%Crude protein 54% Phosphorus 1.6 %Phosphorus 1.6% Crude fat 12%Crude fat 12% Viatmin A 10000 IUViatmin A 10000 IU Ashes 8.5%Ashes 8.5% Viatmin D3 1750 IUViatmin D3 1750 IU Humidity 10%Humidity 10% Viatmin E 200㎎Viatmin E 200mg Crude fiber 1.5%Crude fiber 1.5% Viatmin C 250㎎Viatmin C 250mg

사육시험에 사용된 넙치는 자가 생산된 종묘로서 1999년 생산되어 판매되고 남은 것이 사용되었다. 실험시작 시 평균체중 23.1g, 5,555마리를 수용, 총중량 128㎏, 수용밀도 7.11㎏/㎡였다. 75일간 사육하였으며 성장을 파악하기 위하여 무작위 추출된 200마리를 25일 간격으로 3회 계체량하였다.The flounder used in the breeding test was a self-produced seedling that was produced in 1999 and sold and left. At the start of the experiment, the mean body weight was 23.1 g and 5,555 were housed, the total weight was 128 kg, and the density was 7.11 kg / m 2. The animals were bred for 75 days and 200 randomized animals were weighed three times at 25-day intervals to determine growth.

사육시험 기간 중 사육수의 수온과 용존산소는 YSI-55 DO Meter로 PH는 Fisher Scientific Co. PH meter 900으로 측정하였다. 암모니아는 10일 간격으로 Kyoritsu Chemical-Check Lab. Corp.의 WAK-NH₄간이테스트킷으로 측정하였으며, 이의 확인을 위하여 실험시작 60일째 오전 먹이공급과 광물미립자 투입 직전인 06:00시 채수, 국립수산진흥원 동해수산연구소 포항분소에 의뢰하여 일반 수질 항목을 조사하였다. 사육수조 중앙 수면 위 2.5m에 40w 형광등을 설치하여 06:00시 점등, 20:00시 소등하였다.During the breeding test, the water temperature and dissolved oxygen of the breeding water were YSI-55 DO meter and the pH was Fisher Scientific Co. It was measured by PH meter 900. Ammonia was released every 10 days at Kyoritsu Chemical-Check Lab. It was measured by Corp.'s WAK-NH ₄ simple test kit, and to confirm this, the water was collected at 06:00, just before feeding and mineral particulates on the 60th day of the experiment, and commissioned by the National Fisheries Research and Development Agency, Pohang Branch, Korea. Was investigated. A 40w fluorescent lamp was installed at 2.5m above the center water surface of the breeding tank to turn on at 06:00 and turn off at 20:00.

결 과result

1. 성장 및 어병1. Growth and Fish Bottles

사육실험 기간 중 넙치의 성장관련 결과는 표 3과 같다.Growth results of the flounder during the breeding experiment are shown in Table 3.

사육 전 기간 중 어병은 관찰되지 않았으며 첫 25일의 초반에 16마리가 폐사하였다. 이는 입식과정에서의 전수조사와 계체량에 따른 물리적 어체손상의 결과로 판단된다. 그 후 계체량 및 사육수조의 중앙배수스텐드파이프 교체작업 후 1-3 마리씩의 지느러미 등의 훼손된 폐사체가 7마리 발견되어 사육실험 총 75일간 23미가 폐사되었다. 그 밖에 어체에서의 육안적인 이상은 발견되지 않았다.No fish disease was observed during the entire breeding period and 16 animals died at the beginning of the first 25 days. This is judged to be the result of physical damage to the body due to the total number of stocks in the stocking process and the weight of the stock. Afterwards, seven damaged dead bodies, such as fins of 1-3, were found after weighing and replacing the central drainage pipe of the breeding tank, and 23 rice were killed for 75 days. Other visual abnormalities in the body were not found.

표3. Results of the rearing experimentTable 3. Results of the rearing experiment

BeginningBeginning 25th day25th day 50th day50th day 75th day75th day No. of fishNo. of fish 5,5555,555 5,5395,539 5,5365,536 5,5845,584 body weightbody weight mean (g)mean (g) 23.123.1 35.735.7 58.958.9 84.684.6 total (g)total (g) 128128 198198 326326 468468 Feed consumed (㎏)Feed consumed (㎏) 6262 108108 121121 Daily feeding rate (%)Daily feeding rate (%) 1.521.52 1.651.65 1.221.22 Feed efficiency (%)Feed efficiency (%) 113113 119119 117117 Daily growth rate (%)Daily growth rate (%) 1.721.72 1.951.95 1.431.43 Stocking density (㎏/㎥)Stocking density (㎏ / ㎥) 7.117.11 11.011.0 18.1118.11 26.026.0

Daily feeding rate (%) : Daily feeding rate (%):

Feed eficiency (%) : Feed eficiency (%):

Daily grpwth rate (%) : Daily grpwth rate (%):

F: Total feed consumed, G: Total weight gained, T: Days of one term(25days), Wt1: Total body weight initial, Wt2: Total body weight finalF: Total feed consumed, G: Total weight gained, T: Days of one term (25days), Wt 1 : Total body weight initial, Wt 2 : Total body weight final

2. 수질2. Water quality

사육수의 수온은 17±1℃가 유지되었다. 수온변화가 12시간 동안 1℃ 범위에서 변화한 경우 먹이섭취, 행동 등에 아무런 변화가 관찰되지 않았다.Breeding water temperature was maintained at 17 ± 1 ℃. No change was observed in food intake or behavior when the water temperature was changed in the range of 1 ° C for 12 hours.

PH는 전 기간 중 7.15-7.20의 범위에 있었다. 시판 가공황토 중 사료첨가제인 제품은 PH를 낮추고 고토미립자는 pH를 높이는 경향이 있었으나 전체 PH의 경향에는 변화가 관찰되지 않았다.The pH was in the range of 7.15-7.20 throughout the period. Among the processed ocher products, the feed additives tended to lower the pH and the high-molecular particles to increase the pH.

용존산소는 보충수(1)에서 포화의 96%, 사육수조 내(3)위치에 따라 가장 자리로부터 중앙배수스탠드파이프를 향하여 75~80%로 측정되었으며, 사육수배수(4)50%, 순환공급수(7) 85%로 유지되었다.Dissolved oxygen was measured to be 96% of saturation in supplementary water (1) and 75 to 80% from the edge toward the central drainage stand pipe, depending on the position in the breeding tank (3). The feed water (7) was maintained at 85%.

시험기간 중 간이 비색측정에 의한 NH₄는 5ppm 이하였다. 이의 확인을 위하여 국립수산진흥원 동해수산연구소 포항분소에 의뢰하여 측정한 일반수질은 표 4와 같다. 이에 따르면 방법 전체의 암모니아 농도는 2.0ppm이하였으며, 일반 수질의 지표항목도 허용치 이하였다.NH₄ by simple colorimetry was less than 5 ppm during the test period. The water quality measured by the National Fisheries Research and Development Agency, Donghae Fisheries Research Institute, Pohang Branch is shown in Table 4. According to this, the ammonia concentration of the whole method was less than 2.0 ppm, and the index items of general water quality were also below the allowable values.

표4. Concentrations(㎖/ℓ) of COD, SS and nitrogen compounds in culture water of the system on 69th day at 6 a.m. just before feeding and mineral particle diffusingTable 4. Concentrations (ml / l) of COD, SS and nitrogen compounds in culture water of the system on 69th day at 6 a.m. just before feeding and mineral particle diffusing

CODCOD SSSS NH4-NNH 4 -N NO2-NNO 2 -N NO3-NNO 3 -N T-NT-N RemarksRemarks Make-upseawaterMake-upseawater 0.880.88 0.40.4 0.0030.003 0.0020.002 0.3530.353 0.3580.358 Fig.1,①Fig. 1, ① Drain formrearing tankDrain formrearing tank 1.821.82 4.74.7 1.6291.629 1.6291.629 0.1890.189 2.1752.175 Fig.1,④Fig. 1, ④ ReturningwaterReturningwater 1.781.78 4.64.6 1.8851.885 0.3840.384 0.1550.155 2.4242.424 Fig.1,⑦Fig. 1, ⑦ Drain fromfoamfractionatorDrain fromfoamfractionator 1.971.97 8.68.6 1.9581.958 0.4200.420 0.1320.132 2.5112.511 Fig.1⑧Fig.1⑧

3. 광물미립자3. Mineral particulate

광물미립자로 사용된 2종의 황토와 고토는 모두 사육수에 살포된 후 사육수조 전면에 고르게 퍼져 나갔으며 바닥에 잔류하지 않고 사육수와 함께 포말분리장치를 거쳐 순환하였으며 일부는 배출되었다. 40ppm이 살포된 직후에는 사육수조 바닥의 어체가 보이지 않을 정도로 탁도가 높았으며, 사육수면 하 10㎝에서 넙치의 형체가 확인되는 정도였다. 시간의 경과와 함께 투명도가 높아져 12시간 후인 다음 살포 전 까지는 사육수조의 바닥에 있는 넙치의 어체를 확실히 구별할 수 있을정도로 맑아졌다.The two types of loess and goto used as mineral fines were sprayed on the breeding water and spread evenly over the front of the breeding tank. They did not remain on the bottom but circulated through the foam separator with the breeding water, and some were discharged. Immediately after 40 ppm was sprayed, turbidity was so high that the fish at the bottom of the breeding tank could not be seen. Over time, the transparency became clearer, clearing the body of the flounder at the bottom of the breeding tank until 12 hours later and before the next spraying.

광물미립자의 살포 자체나 이에 따른 탁도의 변화로 인한 사육중인 넙치의 행동 등에 이상현상은 관찰되지 않았다. 살포직후 사육수 표면에 떠오른 개체가 표면에 떠있는 펠렛사료를 섭취하는 것이 관찰될 정도로 탁도와 행동은 무관하였다. 광물미립자 종류에 따른 차이는 관찰되지 않았다.Abnormal phenomena were not observed in the spraying of mineral particles or the behavior of the flounder during breeding due to the change in turbidity. Turbidity and behavior were irrelevant so that individuals who floated on the surface of the breeding water immediately after spraying consumed the pellet feed on the surface. No difference was observed between the types of mineral particles.

4. 포말분리장치4. Foam separator

사육수조에 사료를 공급한 직후를 제외하고는 계속하여 거품이 대량 발생되어 배출되었다. 포말분리장치는 거품에 의한 노폐물과 광물미립자의 분리 배출기능 이외에, 사육수의 배출수(4)의 용존산소가 포화도 50%였으나, 순환공급수(7)의 포화도를 85%로 높이는 기능도 하였다.Except immediately after feeding the breeding tanks, a large amount of foam continued to be generated and discharged. In addition to separating and discharging wastes and mineral particles by foam, the foam separator had a saturation of 50% of the dissolved oxygen in the effluent (4) of the breeding water, but also increased the saturation of the circulating feed water (7) to 85%.

특기할 것은 실험시작시의 전수조사 후, 중간 2회에 걸친 계체량을 위한 표본채취 후 등 전 실험기간을 통하여 약제를 사용하지 않았음에도 어병에 의한 피해는 물론 어병의 징후조차도 없었으며 어떤 어체 손상도 관찰되지 않았다. 유수식넙치양식장에서 사육밀도가 높아지면 어체가 검어지고 지느러미가 갈라지는 현상이 나타나게 된다. 본 사육실험에서도 체색은 검어졌으나 지느러미가 갈라지는 현상은 관찰되지 않았다. 실험 시작을 위하여 전수 조사를 한후 일주일간 16마리의 폐사가 있었으며 그 후 폐사체로 발견된 7개체는 폐사 원인을 알 수 없었다. 실험시작을 위한 전수 조사를 한 후에 일반적으로 실행하는 약욕을 하지 않았음에도 어병이 발생하지 않은 것은 광물미립자와 포말분리장치가 병원생물을 제거할 수 있는기능을 가졌다는 방증(傍證)으로 생각되며 확인될 경우 본 사육방법이 가지는 또 하나의 장점이 될 수 있다.It should be noted that there was no sign of fish disease, no signs of fish disease, and no damage to the fish, even though the drug was not used throughout the entire experimental period, such as after all investigations at the beginning of the experiment, and after sampling for two intermediate weights. Not observed. In dendritic flounder farms, densely densely resulted in blackened fish and cracked fins. In this breeding experiment, the body color was blackened, but the splitting of the fin was not observed. There were 16 deaths in a week after the total investigation to start the experiment. Thereafter, the cause of death was unknown in seven cases. The fact that fish disease did not occur even after a lack of the usual practice of bathing after the investigation was considered to be a proof that the mineral particles and the foam separator had the ability to remove pathogens. If confirmed, this may be another advantage of this breeding method.

본 넙치사육실험의 사육방법은 사육수의 정화재사용을 위한 정화방법의 원리가 기존 순환여과방법의 그것과는 근본적으로 다르다. 사육의 결과로 생성되는 모든 노폐물이 사육수에 현탁된 광물미립자와 포말분말장치의 기능만으로 정화처리되며 넙치를 정상적으로 사육할 수 있었다.In the method of breeding of the flounder breeding experiment, the principle of the purification method for the reuse of the purified water is fundamentally different from that of the existing circulation filtration method. All wastes produced as a result of breeding were purified only by the functions of mineral fine particles and foam powder suspended in breeding water, and the flounder could be raised normally.

이하 도면을 참고하여 상세히 설명하면 다음과 같다.When described in detail with reference to the drawings as follows.

도1은 본 발명의 순환여과식 어류양식방법 전체도 및 도2 본 발명의 순환여과식 어류양식방법의 포말분리장치 상세도를 도시한 것이며, 도면의 부호는 보충수(1),광물미립자투입(2), 사육수조(3), 사육수(4), 펌프(5), 포말분리장치(6), 순환수(7), 배출수+거품(8), 수집구(10), 유입사육수파이프(11), 벤추리관(12), 공기유입구(13), 벤추리토출관(14), 벤추리안내관(15), 정화사육수(16), 공기방울(17)임을 알 수 있다.Figure 1 shows a general view of the circulating filtered fish farming method of the present invention and Figure 2 is a detailed view of the foam separation device of the circulating filtered fish farming method of the present invention, the reference numerals are supplemental water (1), mineral fine particle injection (2), breeding tank (3), breeding water (4), pump (5), foam separator (6), circulating water (7), effluent + foam (8), collection port (10), inlet breeding water It can be seen that the pipe 11, the venturi tube 12, the air inlet 13, the venturi discharge pipe 14, the venturi guide tube 15, the purified breeding water 16, and the air bubble 17.

도1을 살펴보면 사육시설은 사육수조(3)에 보충수(1)와 광물미립자(2)가 투입되고 펌프(5)에 의해 사육수(4)가 배출되어 연결된 포말분리장치(6)으로 유입되어 처리된 순환수(7)를 재순환 시키고, 거품에 포집된 불순물은 배출수(8)에 혼입되어 배출되도록 구성되어 있으며,Referring to Figure 1, the breeding facility is introduced into the foam separator (6) connected to the supplementary water (1) and mineral fine particles (2) in the breeding tank (3) and the breeding water (4) is discharged by the pump (5) And recycle the treated circulating water (7), and the impurities collected in the bubbles are mixed in the discharge water (8) and discharged.

도2는 포말분리장치(6)를 상세히 도시한 것으로서, 사육수(4)가 펌프(5)에 의해 유입수파이프(11)를 통하여 원통형의 벤추리관(Venturi tube)(12)에 유입되면벤추리 현상에 의한 흡기(吸氣)펌프(aspiration pump)를 이용하여 공기를 공기유입구(13)을 통하여 흡입하여 기포를 발생시켜 벤추리토출관(14)으로 강한 압력으로 분사시켜, 포말분리기의 하단까지 유도된 후, 다시 벤추리안내관(15)의 상부로 상승하여, 상부로 올라오게 되며, 상기 벤추리안내관(15)의 상부로 상승하여, 최상부의 넓어진 곳에서 유속이 떨어져 공기방울(17)은 거품(18)으로 상승되어 자연압에 의해 배출수(8)와 함께 수집구(10)을 통하여 배출되며, 상기 정화사육수(16)은 하강하여 하부의 유출구를 통하여 사육수조(3)로 재순환되는 과정에서 사육수(4)중의 고형유 ·무기물, 용해유기물, 병원생물, 암모니아의 일부 등이 포말의 표면에 흡착되면서 거품을 만들어 사육수와 분리되는 장치인 것이다.FIG. 2 shows the foam separator 6 in detail. When breeding water 4 is introduced into the cylindrical Venturi tube 12 through the inlet pipe 11 by the pump 5, the venturi phenomenon Air is sucked through the air inlet 13 by using an inspiration pump by generating air bubbles and injected into the venturi discharge pipe 14 at a high pressure, which is induced to the bottom of the foam separator. Afterwards, the upper part of the venturi guide tube 15 again rises to the upper part, and the upper part of the venturi guide tube 15 rises to the upper part of the venturi guide tube 15. 18) is discharged through the collecting port 10 with the discharge water 8 by natural pressure, and the purified breeding water 16 is lowered in the process of being recycled to the breeding tank 3 through the outlet of the lower portion Solid oils, inorganics, dissolved organics, pathogens, etc. Some, such as ammonia to the device while adsorbed on the surface of the foam creates a foam separation and can breed.

상술한 발명의 실시 예에서 보충수(1)로서는 17±1℃로 조절된 염분농도 34‰의 자연해수가 2㎥/hr.로 공급되었다. 동일한 양의 사육수(4)가 포말분리장치(6)를 통하여 포말과 함께 배출(8)되었다. 사육수(4)는 사육수조(3)의 외부 수위조절용 스텐드파이프에 연결된 펌프(5)에 의하여 포말분리장치(6)로 보내져서, 분리된 포말은 보충수와 동일한 양의 배출수(8)와 함께 외부로 배출되고 나머지는 사육수조로 순환(7)된다. 순환사육수의 양은 15㎥/hr.이며 사육수의 재사용율은 90%이고 사육수조의 환수율은 48회/일이다.In the above-described embodiment of the invention, the replenishing water 1 was supplied with natural saltwater of 34 ‰ at a salt concentration of 17 ± 1 ° C. at 2 m 3 / hr. The same amount of breeding water 4 was discharged 8 together with the foam through the foam separator 6. Breeding water (4) is sent to the foam separation unit (6) by a pump (5) connected to the external water leveling standing pipe of the breeding tank (3), so that the separated foam is discharged with the same amount of effluent (8) Together it is discharged to the outside and the rest is circulated to the breeding tank (7). The amount of circulating breeding water is 15㎥ / hr., The reuse rate of breeding water is 90%, and the return rate of breeding water tank is 48 times / day.

상기와 같은 본 발명은 구조가 간단해서 관리유지에 특별한 어려움이 없으며, 90% 이상의 사육수를 재사용 함으로써 수자원이 풍족하지 못한 곳에서 사용하기 유리하며, 사육수의 오염과 외부 병원생물의 유입을 방지하고 사육수의 수온조절에 필요한 에너지를 절약할 수 있어 어류의 사육 성장율을 높이는 효과가 있는 것이다.As described above, the present invention has a simple structure, and thus, there is no particular difficulty in maintaining and maintaining the water. By reusing 90% or more of breeding water, it is advantageous to use it in a place where water resources are not abundant. And it is possible to save the energy required to control the temperature of the breeding water, which is effective to increase the breeding rate of fish.

Claims (4)

광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식어류양식방법에 있어서, 광물미립자를 사육수에 현탁시켜, 어류로부터 발생되는 노폐물을 분해 흡착시키고, 이를 포말분리 장치를 이용하여 사육수로부터 분리하여 배출시켜 사육수를 정화하여 재사용함을 특징으로 하는 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식방법.In the circulating filtration fish farming method of fish breeding water using mineral fine particles and foam separator, the mineral fine particles are suspended in breeding water to decompose and adsorb waste products generated from fish, Circulation filtration fish farming method of fish breeding water using the fine particles and foam separation device, characterized in that to separate and discharge the purified water to reuse. 제1항에 있어서, 상기 광물미립자의 크기는 50μ이하이며, 황토, 고령토, 고토, 석회, 벤토나이트(bentonite), 제오라이트(zeolite) 및 규토에서 선택된 어느 하나 또는 그들의 혼합물이며, 상기 광물미립자는 사육수에 100ppm이하로 유지시키도록 투입시킴을 특징으로 하는 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식방법.According to claim 1, wherein the size of the mineral fine particles is 50μ or less, any one selected from loess, kaolin, kaolin, lime, bentonite, zeolite (zeolite) and silica or mixtures thereof, the mineral fine particles Circulating filtration fish farming method of fish breeding water using mineral fine particles and foam separation device, characterized in that it is added to maintain less than 100ppm. 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식장치에 있어서, 사육수조(3)에 보충수(1)와 광물미립자(2)의 투입과 펌프(5)에 의해 사육수(4)가 연결된 포말분리장치(6)로 유입되어 처리된 순환수(7)를 재순환 시키고, 거품에 포집된 광물미립자에 흡착 분해된 노폐물은 배출수(8)에 혼입되어 배출되도록 구성됨을 특징으로 하는 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식장치.Circulation filtration of fish breeding water using mineral fine particles and foam separation device, wherein the supplementary water (1) and mineral fine particles (2) are introduced into the breeding tank (3) and the breeding water is pumped by the pump (5). 4) recycles the treated circulating water (7) introduced into the foam separator (6) connected, and the waste material adsorbed and decomposed on the mineral particles collected in the foam is mixed into the discharge water (8) and discharged. Circulation filtration fish farming device of fish breeding water using mineral fine particles and foam separator. 제3항에 있어서, 상기 포말분리장치(6)는 사육수(4)가 펌프(5)에 의해 유입되는 유입수파이프(11)와, 상기 유입수 파이프(11)와 연결되어 있으며, 내부에 모래시계형상으로 직경이 좁아졌다가, 넓어지며, 그 중앙에 공기유입구(13)가 연결된 나팔관 원통형의 벤추리관(Venturi tube)(12)과,According to claim 3, wherein the foam separator (6) is connected to the inlet pipe (11) through which the breeding water (4) is introduced by the pump (5), the inlet pipe (11), the hourglass inside A narrow tube diameter Venturi tube (12) of the fallopian tube cylindrically connected to the air inlet (13) connected to the center and narrowed in shape, 상기 원통형 벤추리관(12)에 연장되어 있으며 포말분리기의 하단까지 유도되어 있고, 벤추리 현상에 의한 흡기(吸氣)펌프(aspiration pump)를 이용하여 공기를 공기유입구(13)을 통하여 흡입하여 기포를 발생시켜 강한 압력으로 분사되는 벤추리토출관(14)과, 상기 벤추리토출관(14)를 중심으로 외부에서 감싸는 형식으로 포말분리장치 하단에서 상단까지 구성되어 상기 포말과 사육수(4)를 함께 상부로 상승시키는 벤추리안내관(15)과, 상기 벤추리안내관(15)의 상부에 설치되어 있으며 공기방울(17)이 표면으로 상승하여 거품을 형성하고 배출수(8)와 함께 자연압에 의해 흘러나가는 것을 수집하는 수집구(10)와, 상기 포말장치(6)의 하단에 설치되어 있으며 사육수(4)가 정화되어 하강하여 사육수조(3)로 재순환하는 하부의 유출구를 포함하여 구성됨을 특징으로 하는 광물미립자와 포말분리장치를 이용한 어류 사육수의 순환여과식 어류양식장치.It extends to the cylindrical venturi tube 12 and is led to the bottom of the foam separator, the air is sucked through the air inlet 13 by using an inspiration pump (aspiration pump) by the venturi phenomenon to bubble Venturi discharge pipe 14 is generated and sprayed with a strong pressure, and is formed from the bottom to the top of the foam separation device in a form surrounding the venturi discharge pipe 14 from the outside to form the foam and breeding water 4 together Venturi guide tube 15 and the venturi guide tube 15 to be raised to the upper portion of the venturi guide tube 15, the air bubbles 17 rise to the surface to form a bubble and flows out by the natural pressure with the discharge water (8) Collector 10 for collecting this, and is installed at the lower end of the foam device (6), characterized in that it comprises a lower outlet for the breeding water 4 is purified and lowered and recycled back to the breeding tank (3)Recirculating aquaculture system is the number of fish breeding with mineral particles and foam separating devices.
KR1020000017315A 2000-04-03 2000-04-03 The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation KR100334693B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020000017315A KR100334693B1 (en) 2000-04-03 2000-04-03 The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation
KR2020000009468U KR200200600Y1 (en) 2000-04-03 2000-04-03 The apparatus of circulating filter system fish culture using mineral corpuscle and foam separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000017315A KR100334693B1 (en) 2000-04-03 2000-04-03 The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020000009468U Division KR200200600Y1 (en) 2000-04-03 2000-04-03 The apparatus of circulating filter system fish culture using mineral corpuscle and foam separation

Publications (2)

Publication Number Publication Date
KR20000053762A KR20000053762A (en) 2000-09-05
KR100334693B1 true KR100334693B1 (en) 2002-04-27

Family

ID=19661307

Family Applications (2)

Application Number Title Priority Date Filing Date
KR2020000009468U KR200200600Y1 (en) 2000-04-03 2000-04-03 The apparatus of circulating filter system fish culture using mineral corpuscle and foam separation
KR1020000017315A KR100334693B1 (en) 2000-04-03 2000-04-03 The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR2020000009468U KR200200600Y1 (en) 2000-04-03 2000-04-03 The apparatus of circulating filter system fish culture using mineral corpuscle and foam separation

Country Status (1)

Country Link
KR (2) KR200200600Y1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432479B1 (en) * 2001-06-11 2004-05-22 주식회사 레비텍 Sea water treatment recycling system
KR20190044715A (en) 2017-10-20 2019-05-02 고영식 Circulate and filter type water collecting apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404244B1 (en) * 2000-12-13 2003-11-01 전재학 Method for preventing and curing the disease of fish using pegmatite
KR20010074118A (en) * 2001-03-27 2001-08-04 조석찬 A Purifier of living fish water
KR20030023794A (en) * 2001-09-14 2003-03-20 임희숙 bubble separate apparatus for circulation filtering type
KR100722226B1 (en) * 2005-09-29 2007-05-30 대한민국 Nursery system
KR101230469B1 (en) * 2011-10-04 2013-02-07 박송범 Method for rearing sea cucumber having glod
KR200483753Y1 (en) 2016-05-13 2017-06-21 사비생물연구소 영어조합법인 The aqua tank for eel.
KR20190027999A (en) 2017-09-08 2019-03-18 박형호 Water circulation device of fish firm tank
KR20190031687A (en) 2017-09-18 2019-03-27 박형호 Purificationdevice and operation method for water tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432479B1 (en) * 2001-06-11 2004-05-22 주식회사 레비텍 Sea water treatment recycling system
KR20190044715A (en) 2017-10-20 2019-05-02 고영식 Circulate and filter type water collecting apparatus

Also Published As

Publication number Publication date
KR200200600Y1 (en) 2000-10-16
KR20000053762A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
CN108719172B (en) Pond culture circulation system based on ecological toilet module
CN205648738U (en) All receive and be close to ecological industrialization farming systems of shrimp
CN108739617B (en) Sturgeon batch production recirculating aquaculture water supply system
KR100334693B1 (en) The method and apparatus of circulating filter system fish culture using mineral corpuscle and foam separation
CN103719011B (en) A kind of precipitate and separate formula culturing pool
JP3964415B2 (en) Water quality improvement method
CN114600825B (en) Dual cycle aquaculture system
CN112939365A (en) Aquaculture circulating water treatment device
CN116081899A (en) Seawater culture tail water treatment device and method
CN106417365B (en) A kind of the chemical algae removing agent and its application method of eutrophic water algae
KR100461959B1 (en) An apparatus of multi-storied canal-type closed recirculating system for aquatic animal culture with mineral particles and foam fractionator
CN210538263U (en) High-efficient filtration clean system of water is bred to sturgeon
CN116534976A (en) Micro-flocculation water pump and cultivation tail water circulation treatment system
CN105645685B (en) A kind of the discharge of wastewater processing method and equipment of breeding seawater
CN103553185B (en) A kind of micro-electrolysis treatment method that water body is carried out in-situ treatment
CN102503045A (en) Biomembrane sewage processing method
Lawson et al. Recirculating aquaculture systems
KR101102179B1 (en) Method of treating organic waste water and organic sludge and treatment equipment therefor
CN203295304U (en) Zero-discharge treating system for waste water of fish and shrimp factory farming
JP2009060872A (en) Method for treating water for breeding, device for treating water for breeding and system for breeding
KR20100020374A (en) Apparatus and method for treating waste water using a oyster shell and a alum sludge
KR0174364B1 (en) Method and apparatus for removing algae
CN101054211A (en) Water-algae self-circulation station for preventing and curing blooms explosion and water body eutrophication
CN215403672U (en) Integrated equipment for purifying and recycling culture wastewater
RU2240291C2 (en) Process of biological treatment of waste waters

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130415

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160413

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee