KR100334080B1 - Method for preparing organic electroluminescent display device - Google Patents

Method for preparing organic electroluminescent display device Download PDF

Info

Publication number
KR100334080B1
KR100334080B1 KR1020000034812A KR20000034812A KR100334080B1 KR 100334080 B1 KR100334080 B1 KR 100334080B1 KR 1020000034812 A KR1020000034812 A KR 1020000034812A KR 20000034812 A KR20000034812 A KR 20000034812A KR 100334080 B1 KR100334080 B1 KR 100334080B1
Authority
KR
South Korea
Prior art keywords
forming
self
cathode
assembled monolayer
anode
Prior art date
Application number
KR1020000034812A
Other languages
Korean (ko)
Other versions
KR20020000321A (en
Inventor
김성한
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1020000034812A priority Critical patent/KR100334080B1/en
Publication of KR20020000321A publication Critical patent/KR20020000321A/en
Application granted granted Critical
Publication of KR100334080B1 publication Critical patent/KR100334080B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering

Abstract

본 발명은 유기 전자발광소자의 제조방법을 제공한다. 상기 제조방법은 (a) 기판 상부에 애노드 전극용 물질을 코팅하여 애노드를 형성하는 단계; (b) 상기 애노드 전극 상부에 유기막을 형성하는 단계; (c) 탄성 중합체 스탬프의 요철에 자기조립 단일층 형성용 프리커서 용액을 코팅한 후, 이를 (b) 단계의 유기막이 형성된 결과물상에 콘택 프린팅을 실시하여 패터닝된 자기조립 단일층이 형성하는 단계; 및 (d) 상기 자기 조립 단일층을 캐소드 형성용 금속을 선택적으로 진공증착하여 캐소드를 형성하는 단계를 포함한다. 본 발명에 따르면, 종래의 역형상 세퍼레이타를 사용하는 포토리소그래피 방법에 비하여 공정이 단순화된다. 그리고 캐소드를 나노미터 스케일의 미세 패터닝할 수 있게 됨으로써 고정세화된 유기 전자발광소자를 제조할 수 있다.The present invention provides a method of manufacturing an organic electroluminescent device. The manufacturing method includes (a) forming an anode by coating an anode electrode material on the substrate; (b) forming an organic layer on the anode; (c) coating a precursor solution for forming a self-assembled monolayer on the unevenness of the elastomeric stamp, and then performing contact printing on the resultant organic film formed in step (b) to form a patterned self-assembled monolayer. ; And (d) selectively vacuum depositing a metal for forming a cathode on the self-assembled monolayer to form a cathode. According to the present invention, the process is simplified compared to the photolithography method using the conventional inverse separator. In addition, since the cathode can be finely patterned on a nanometer scale, a highly detailed organic electroluminescent device can be manufactured.

Description

유기 전자발광소자의 제조방법{Method for preparing organic electroluminescent display device}Method for preparing organic electroluminescent device {Method for preparing organic electroluminescent display device}

본 발명은 유기 전자발광소자의 제조방법에 관한 것으로서, 보다 상세하기로는 공정이 단순화되고 미세 패터닝이 가능하여 고정세화에 유리한 유기 전자발광소자의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an organic electroluminescent device, and more particularly, to a method for manufacturing an organic electroluminescent device, which is advantageous for high definition because the process is simplified and fine patterning is possible.

EL 소자는 발광층(emitter layer) 형성용 재료에 따라 무기 EL 소자와 유기 EL 소자로 구분된다. 여기에서 유기 EL 소자는 무기 EL 소자에 비하여 휘도, 구동전압 및 응답속도 특성이 우수하고 다색화가 가능하다는 장점을 가지고 있다.EL elements are classified into inorganic EL elements and organic EL elements according to materials for forming an emitter layer. Herein, the organic EL device has an advantage of excellent luminance, driving voltage, and response speed, and multicoloring, compared to the inorganic EL device.

도 1은 일반적인 유기 EL 소자의 구조를 나타낸 단면도이다. 이를 참조하면, 기판(11) 상부에 애노드(anode)(12)가 형성되어 있다. 그리고 이 애노드(12) 상부에는 홀 수송층(13), 발광층(14), 전자 수송층(15) 및 캐소드(cathode)(16)이 순차적으로 형성되어 있다. 여기에서 홀 수송층(13), 발광층(14) 및 전자수송층(15)는 유기 화합물로 이루어진 유기박막들이다.1 is a cross-sectional view showing the structure of a general organic EL device. Referring to this, an anode 12 is formed on the substrate 11. The hole transport layer 13, the light emitting layer 14, the electron transport layer 15, and the cathode 16 are sequentially formed on the anode 12. Here, the hole transport layer 13, the light emitting layer 14, and the electron transport layer 15 are organic thin films made of an organic compound.

상술한 바와 같은 구조를 갖는 유기 EL 소자의 구동원리는 다음과 같다.The driving principle of the organic EL element having the above structure is as follows.

상기 애노드(12) 및 캐소드(16)간에 전압을 인가하면 애노드(12)로부터 주입된 홀은 홀 수송층(13)을 경유하여 발광층(14)에 이동된다. 한편, 전자는 캐소드 (16)으로부터 전자 수송층(15)를 경유하여 발광층(14)에 주입되고, 발광층(14) 영역에서 캐리어들이 재결합하여 엑시톤(exciton)을 생성한다. 이 엑시톤이 여기상태에서 기저상태로 변화되고, 이로 인하여 발광층의 형광성 분자가 발광함으로써 화상이 형성된다.When a voltage is applied between the anode 12 and the cathode 16, holes injected from the anode 12 are moved to the light emitting layer 14 via the hole transport layer 13. On the other hand, electrons are injected from the cathode 16 into the light emitting layer 14 via the electron transport layer 15, and carriers recombine in the light emitting layer 14 region to generate excitons. This exciton is changed from an excited state to a ground state, whereby an image is formed by the fluorescent molecules of the light emitting layer emitting light.

상기한 바와 같은 구조를 갖는 유기 전자발광소자는 캐소드(16) 패터닝시 습식 프로세스 적용이 어렵다. 따라서 유기막 및 캐소드 증착전에 포토레지스트를 이용하여 역상의 세퍼레이타를 미리 형성한 후 자동 패터닝의 방법으로 캐소드의 미세 패터닝을 실시하는 방법에 따라 제조한다(미국 특허 제5,701,055호).The organic electroluminescent device having the structure as described above is difficult to apply a wet process when patterning the cathode (16). Therefore, the reverse phase separator is formed in advance using photoresist before the organic film and the cathode deposition, and then manufactured according to the method of fine patterning of the cathode by the method of automatic patterning (US Pat. No. 5,701,055).

상기 방법에 따르면, 복잡한 포토리소그래피공정을 사용해야 하고, 역형상의 세퍼레이타를 만드는 게 쉽지 않고 전기적 쇼트의 가능성도 배제할 수 없다. 또한 세퍼레이타 역형상을 10㎛ 이하로 미세 패터닝하기가 어렵다는 문제점이 있다.According to the above method, a complicated photolithography process must be used, and it is not easy to make an inverted separator and the possibility of electrical short cannot be excluded. In addition, there is a problem that it is difficult to fine-pattern the reverse shape of the separator to 10㎛ or less.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 공정이 단순화되고 미세 패터닝이 가능하여 고정세화에 유리한 유기 전자발광소자의 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a method of manufacturing an organic electroluminescent device, which is advantageous in high definition because the process is simplified and fine patterning is possible by solving the above problems.

도 1은 일반적인 유기 전자발광소자의 구조를 개략적으로 나타낸 도면이고,1 is a view schematically showing the structure of a general organic electroluminescent device,

도 2a-c는 탄성 중합체 스탬프 제조과정을 설명하기 위한 도면이고,Figure 2a-c is a view for explaining the manufacturing process of the elastomeric stamp,

도 3a-d은 본 발명에 따른 유기 전자발광소자의 제조방법을 설명하기 위한 도면이다.3A-D are views for explaining a method of manufacturing an organic electroluminescent device according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

11, 31... 기판` 12, 32... 애노드(anode)11, 31 ... Substrate` 12, 32 ... Anode

13... 홀수송층 14... 발광층13 ... hole transport layer 14 ... light emitting layer

15... 전자수송층 16, 35... 캐소드15 ... electron transport layer 16, 35 ... cathode

16... 캐소드 23... 탄성중합체 스탬프16 ... cathode 23 ... elastomer stamp

33... 유기막 34... 자기조립 단일층33. Organic film 34. Self-assembled monolayer

상기 기술적 과제를 이루기 위하여 본 발명에서는, (a) 기판 상부에 애노드 전극용 물질을 코팅하여 애노드를 형성하는 단계;In order to achieve the above technical problem, in the present invention, (a) forming an anode by coating a material for the anode on the substrate;

(b) 상기 애노드 전극 상부에 유기막을 형성하는 단계;(b) forming an organic layer on the anode;

(c) 탄성 중합체 스탬프의 요철에 자기조립 단일층 형성용 프리커서 용액을 코팅한 후, 이를 (b) 단계의 유기막이 형성된 결과물상에 콘택 프린팅을 실시하여 패터닝된 자기조립 단일층이 형성하는 단계; 및(c) coating a precursor solution for forming a self-assembled monolayer on the unevenness of the elastomeric stamp, and then performing contact printing on the resultant organic film formed in step (b) to form a patterned self-assembled monolayer. ; And

(d) 상기 자기 조립 단일층을 선택적으로 캐소드 형성용 금속을 진공증착하여 캐소드를 형성하는 단계를 포함하는 것을 특징으로 하는 유기 전자발광소자의 제조방법을 제공한다.(d) vacuum-depositing a metal for forming a cathode on the self-assembled single layer to provide a method of manufacturing an organic electroluminescent device, characterized in that it comprises a cathode.

상기 (c) 단계의 탄성중합체 스탬프는, 실리콘 기판상에 패턴화된 절연막을 형성하는 단계; 상기 절연막이 형성된 실리콘 기판상에 폴리(디메틸실록산)(PDMS)을 코팅, 경화 및 박리하는 단계를 거쳐 형성된다. 그리고 상기 (c) 단계의 자기조립 단일층 형성용 프리커서가 RCOOH(단, R은 탄소수 5~20의 알킬기임)을 포함한다.The elastomeric stamp of step (c) comprises the steps of: forming a patterned insulating film on a silicon substrate; The poly (dimethylsiloxane) (PDMS) is formed on the silicon substrate on which the insulating film is formed by coating, curing and peeling. And the precursor for forming a self-assembled monolayer of step (c) comprises RCOOH (where R is an alkyl group having 5 to 20 carbon atoms).

본 발명은, 콘택프린팅(contact printing)에 의하여 마이크로패턴의 자기조립 단일층을 형성하고, 이를 이용하여 유기 전자발광소자의 캐소드를 패터닝하는데 그 특징이 있다.The present invention is characterized by forming a self-assembled monolayer of micropatterns by contact printing and patterning the cathode of the organic electroluminescent device using the same.

이하, 첨부된 도면을 참조하여 본 발명에 따른 유기 전자발광소자의 제조방법을 살펴보기로 한다.Hereinafter, a method of manufacturing an organic electroluminescent device according to the present invention will be described with reference to the accompanying drawings.

먼저, 도 2a-c에 도시된 바와 같이 탄성중합체 스탬프(elastomeric stamp)를 제조한다. 이를 위해서는 실리콘 기판(21)상에 절연막(22)을 나노미터(nm) 스케일로 패터닝한 다음, 그 상부에 폴리(디메틸실록산)(PDMS)(23)을 코팅한다. 이후, 상기 PDMS를 경화한 다음, 이를 박리하면 탄성중합체 스탬프(23것)를 얻을 수 있다.First, an elastomeric stamp is produced as shown in FIGS. 2A-C. To this end, the insulating film 22 is patterned on a silicon substrate 21 on a nanometer (nm) scale, and then poly (dimethylsiloxane) (PDMS) 23 is coated on the silicon substrate 21. Thereafter, the PDMS is cured and then peeled off to obtain an elastomeric stamp (23).

이와 별도로, 기판(31) 상부에 애노드 전극용 물질을 코팅하여 애노드(32)를 형성한다. 여기에서 기판(31)으로는 통상적인 유기 EL 소자에서 사용되는 기판을 사용하는데, 투명성, 표면평활성, 취급용이성 및 방수성이 우수한 유리기판 또는 투명 플라스틱 기판이 바람직하다. 그리고 애노드 전극용 물질으로는 투명하고 전도성이 우수한 산화인듐주석(ITO), 산화주석(SnO2), 산화아연(ZnO) 등을 사용한다.Separately, the anode 32 is formed by coating an anode electrode material on the substrate 31. As the substrate 31, a substrate used in a conventional organic EL device is used. A glass substrate or a transparent plastic substrate excellent in transparency, surface smoothness, ease of handling, and waterproofness is preferable. In addition, transparent and excellent indium tin oxide (ITO), tin oxide (SnO 2 ), and zinc oxide (ZnO) are used as the anode electrode material.

이어서, 상기 애노드(32) 상부에 유기막(33)을 형성하면, 도 3a의 결과물이 얻어진다. 이 때 유기막(33)에는 홀수송층, 발광층 및 전자수송층이 속한다. 유기막의 최상부층은 전자주입층으로서 금속 산화물 박막을 사용한다.Subsequently, when the organic film 33 is formed on the anode 32, the resultant product of FIG. 3A is obtained. At this time, the hole transport layer, the light emitting layer, and the electron transport layer belong to the organic layer 33. The uppermost layer of the organic film uses a metal oxide thin film as the electron injection layer.

한편, 도 3b에 도시된 바와 같이 상기 탄성중합체 스탬프(23)의 요철에 자기조립 단일층 프리커서로 RCOOH(단, R은 탄소수 5~20의 알킬기임) 용액(24)을 코팅한 후, 이를 유기막이 형성된 결과물상에 콘택 프린팅을 실시한다(도 3b). 그 결과, RCOOH과, 유기막의 최상층 즉, 전자주입층으로서 형성된 금속 산화물의 금속간의 반응으로 RCOO---MOn 결합이 형성되어 패터닝된 자기조립 단일층(34)이 형성된다. 이 자기조립 단일층(34)의 두께는 2 내지 3nm인 것이 바람직하다.On the other hand, as shown in Figure 3b, after coating the RCOOH (where R is an alkyl group having 5 to 20 carbon atoms) solution 24 with a self-assembled monolayer precursor to the unevenness of the elastomeric stamp 23, Contact printing is performed on the resultant organic film formation (FIG. 3B). As a result, a RCOO --- MOn bond is formed by the reaction between RCOOH and the metal of the metal oxide formed as the uppermost layer of the organic film, that is, the electron injection layer, to form a patterned self-assembled monolayer 34. It is preferable that the thickness of this self-assembled monolayer 34 is 2 to 3 nm.

상기 자기 조립 단일층(34)을 캐소드 형성용 금속을 진공증착하여 캐소드(35)를 형성함으로써 유기 EL 소자가 완성된다. 여기에서 캐소드 형성용 금속으로는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 알루미늄-리튬(Al-Li), 칼슘(Ca), 마그네슘-인듐(Mg-In), 마그네슘-은(Mg-Ag) 등이 이용된다.The organic EL element is completed by forming the cathode 35 by vacuum depositing a metal for forming a cathode on the self-assembled single layer 34. The metal for forming the cathode may be lithium (Li), magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver ( Mg-Ag) and the like.

상기한 바와 같이 자기조립 단일층을 이용하면, 나노미터 차수의 캐소드 갭을 확보할 수 있게 되어 고정세화된 유기 전자발광소자를 제조하는 것이 가능하다.Using the self-assembled monolayer as described above, it is possible to secure a cathode gap of order of nanometers, it is possible to manufacture a high-definition organic electroluminescent device.

이하, 본 발명을 하기 실시예를 들어 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the following examples, but the present invention is not limited only to the following examples.

실시예Example

유리 기판상에 ITO 전극을 형성한 다음, 이 상부에 N,N'-비스(3-메틸페닐)-N,N'-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD)를 진공증착하여 홀수송층을 500Å 두께로 형성하였다.An ITO electrode was formed on the glass substrate, and then N, N'-bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine on top of this. (TPD) was vacuum deposited to form a hole transport layer with a thickness of 500 mm3.

이어서, 상기 홀수송층 상부에 하기 구조식의 Alq3 화합물을 진공증착하여280Å 두께의 발광층을 형성하였다.Subsequently, an Alq3 compound having the following structural formula was vacuum deposited on the hole transport layer to form a light emitting layer having a thickness of 280 kPa.

그 후, 상기 발광층 상부에 Li2O을 진공증착하여 350Å 두께의 전자수송층을 형성하였다.Thereafter, Li 2 O was vacuum-deposited on the emission layer to form an electron transport layer having a thickness of 350 kHz.

이와 별도도, PDMS 탄성중합체 스탬프의 요철에 자기 조립 단일층 형성용 프리커서 용액을 C12H25COOH 코팅한 다음, 이를 상기 전자수송층 상부에 콘택프린팅을 실시하여 전자수송층이 형성된 기판 상부에 약 2nm 두께의 자기 조립 단일층을 형성하였다.Separately, C1 2 H 25 COOH-coated precursor solution for forming a self-assembled monolayer on the unevenness of the PDMS elastomer stamp was then contact printed on the electron transport layer, and then about 2 nm on the substrate on which the electron transport layer was formed. A thick self-assembled monolayer was formed.

상기 자기 조립 단일층을 Al을 진공증착하여 1500Å 두께의 알루미늄 전극을 형성함으로써 유기 전자발광소자를 제조하였다.In the self-assembled single layer, Al was vacuum-deposited to form an aluminum electrode having a thickness of 1500 Å, thereby manufacturing an organic EL device.

상기 실시예에서 살펴본 바와 같이, 캐소드 형성시 포토리소그래피공정을 사용하지 않으므로 제조공정이 매우 단순화되었다. 그리고 역상의 세퍼레이타를 사용하는 경우에는 10㎛ 이하의 미세 패터닝이 어려운 반면, 실시예의 경우에는 약 100nm 정도의 캐소드 갭 확보가 가능하게 되었다.As discussed in the above embodiment, the photolithography process is not used to form the cathode, thus greatly simplifying the manufacturing process. In the case of using a reverse phase separator, fine patterning of 10 μm or less is difficult, whereas in the case of the embodiment, a cathode gap of about 100 nm can be secured.

본 발명에 따르면, 종래의 역형상 세퍼레이타를 사용하는 포토리소그래피 방법에 비하여 공정이 단순화된다. 그리고 캐소드를 나노미터 스케일의 미세 패터닝할 수 있게 됨으로써 고정세화된 유기 전자발광소자를 제조할 수 있다.According to the present invention, the process is simplified compared to the photolithography method using the conventional inverse separator. In addition, since the cathode can be finely patterned on a nanometer scale, a highly detailed organic electroluminescent device can be manufactured.

Claims (3)

(a) 기판 상부에 애노드 전극용 물질을 코팅하여 애노드를 형성하는 단계;(a) coating an anode electrode material on the substrate to form an anode; (b) 상기 애노드 전극 상부에 유기막을 형성하는 단계;(b) forming an organic layer on the anode; (c) 탄성 중합체 스탬프의 요철에 자기조립 단일층 형성용 프리커서 용액을 코팅한 후, 이를 (b) 단계의 유기막이 형성된 결과물상에 콘택 프린팅을 실시하여 패터닝된 자기조립 단일층이 형성하는 단계; 및(c) coating a precursor solution for forming a self-assembled monolayer on the unevenness of the elastomeric stamp, and then performing contact printing on the resultant organic film formed in step (b) to form a patterned self-assembled monolayer. ; And (d) 상기 자기 조립 단일층을 마스크로 이용하여 캐소드 형성용 금속을 선택적으로 진공증착하여 캐소드를 형성하는 단계를 포함하는 것을 특징으로 하는 유기 전자발광소자의 제조방법.and (d) forming a cathode by selectively vacuum depositing a metal for forming a cathode using the self-assembled monolayer as a mask. 제1항에 있어서, 상기 (c) 단계의 탄성중합체 스탬프가,The method of claim 1, wherein the elastomeric stamp of step (c) is 실리콘 기판상에 패턴화된 절연막을 형성하는 단계;Forming a patterned insulating film on the silicon substrate; 상기 절연막이 형성된 실리콘 기판상에 폴리(디메틸실록산)(PDMS)을 코팅, 경화 및 박리하는 단계를 거쳐 형성되는 것을 특징으로 하는 유기 전자발광소자의 제조방법.And coating, curing, and peeling poly (dimethylsiloxane) (PDMS) on the silicon substrate on which the insulating film is formed. 제1항에 있어서, 상기 (c) 단계의 자기조립 단일층 형성용 프리커서가RCOOH(단, R은 탄소수 5 내지 20의 알킬기임)을 포함하는 것을 특징으로 하는 유기 전자발광소자의 제조방법.The method of claim 1, wherein the precursor for forming the self-assembled monolayer of step (c) comprises RCOOH (wherein R is an alkyl group having 5 to 20 carbon atoms).
KR1020000034812A 2000-06-23 2000-06-23 Method for preparing organic electroluminescent display device KR100334080B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000034812A KR100334080B1 (en) 2000-06-23 2000-06-23 Method for preparing organic electroluminescent display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000034812A KR100334080B1 (en) 2000-06-23 2000-06-23 Method for preparing organic electroluminescent display device

Publications (2)

Publication Number Publication Date
KR20020000321A KR20020000321A (en) 2002-01-05
KR100334080B1 true KR100334080B1 (en) 2002-04-26

Family

ID=19673471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000034812A KR100334080B1 (en) 2000-06-23 2000-06-23 Method for preparing organic electroluminescent display device

Country Status (1)

Country Link
KR (1) KR100334080B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827617B1 (en) * 2002-02-22 2008-05-07 엘지디스플레이 주식회사 Fabricating Method for Organic Electroluminescence Device and Forming Method of polymer organic layer pattern
KR100473589B1 (en) * 2002-03-12 2005-03-09 엘지.필립스 엘시디 주식회사 Passive Matrix Type Organic Electroluminescent Device and Method for Fabricating the same
KR20030075971A (en) * 2002-03-22 2003-09-26 이홍희 Method for fabricating thin film pattern for organic electronic devices
KR100505343B1 (en) * 2002-11-28 2005-08-03 주식회사 미뉴타텍 Elastomer mold fabrication method for patterning and method for forming cathode separator wall of organic light emitting device by using it
KR100743661B1 (en) * 2005-09-28 2007-07-30 경희대학교 산학협력단 polymer light-emitting diode with insulating layer between a layer and it's fabrication method
KR100713841B1 (en) * 2005-09-30 2007-05-04 싱클레어 월드와이드 인코포레이티드 Paper cutting machine for having separate garbage bag
KR101673147B1 (en) * 2015-05-11 2016-11-07 한국기계연구원 Method of fabricating a hybrid solar cell
KR101978886B1 (en) * 2016-10-31 2019-05-15 울산과학기술원 Method for manufacturing transparent electrode and electro substrate comprising transparent electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144882A (en) * 1988-11-25 1990-06-04 Nec Kansai Ltd Manufacture of electroluminescent lamp
JPH08227792A (en) * 1995-02-22 1996-09-03 Seikosha Co Ltd Electroluminescence device
JPH11265784A (en) * 1998-03-16 1999-09-28 Toppan Printing Co Ltd Substrate for organic electroluminescence element, its manufacture, and organic electroluminescence element with the substrate
US5972419A (en) * 1997-06-13 1999-10-26 Hewlett-Packard Company Electroluminescent display and method for making the same
JP2000164353A (en) * 1998-11-24 2000-06-16 Casio Comput Co Ltd Manufacture of luminescent element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144882A (en) * 1988-11-25 1990-06-04 Nec Kansai Ltd Manufacture of electroluminescent lamp
JPH08227792A (en) * 1995-02-22 1996-09-03 Seikosha Co Ltd Electroluminescence device
US5972419A (en) * 1997-06-13 1999-10-26 Hewlett-Packard Company Electroluminescent display and method for making the same
JPH11265784A (en) * 1998-03-16 1999-09-28 Toppan Printing Co Ltd Substrate for organic electroluminescence element, its manufacture, and organic electroluminescence element with the substrate
JP2000164353A (en) * 1998-11-24 2000-06-16 Casio Comput Co Ltd Manufacture of luminescent element

Also Published As

Publication number Publication date
KR20020000321A (en) 2002-01-05

Similar Documents

Publication Publication Date Title
EP1573831B1 (en) Methods of fabricating devices by low pressure cold welding
US7964439B2 (en) Methods of fabricating devices by transfer of organic material
CN1934910B (en) Highly efficient organic light-emitting device using substrate or electrode having nanosized half-spherical convex and method for preparing same
US7754520B2 (en) Donor film and methods for fabricating patterned organic electroluminescent devices using the same
JP2005203339A5 (en)
AU8991598A (en) Self-assembled transport layers for oleds
WO1999046961A1 (en) Method of manufacturing organic el display
JP2006190671A (en) Electroluminescent element and its manufacturing method
KR100334080B1 (en) Method for preparing organic electroluminescent display device
WO2018095027A1 (en) Encapsulation structure of organic electroluminescent device, method for encapsulating organic electroluminescent device, and display device
JP2755216B2 (en) Manufacturing method of organic thin film EL element
CN1627869A (en) Organic EL device and method of forming the same
KR100805270B1 (en) Flexible organic light emitting diode using transparent organic based electrode and method for manufacturing this
KR20030075971A (en) Method for fabricating thin film pattern for organic electronic devices
JP2000123971A (en) Manufacture of organic el
US20070236138A1 (en) Organic light-emitting diodes with nanostructure film electrode(s)
CN111312914B (en) Quantum dot light-emitting device, preparation method thereof and display device
JP2002270368A (en) Transfer film and manufacturing method of organic electroluminescence element using it
JP2005310469A (en) Organic light emitting element
US6717356B1 (en) Organic electroluminescent device with trapezoidal walls
KR100318853B1 (en) Method of preparing a full-color organic electroluminescent display using a multi-metal mask
JP4538948B2 (en) Method for manufacturing organic electroluminescence display element
KR20090072149A (en) Method of manufacturing pattern for metal oxide thin film and method of manufacturing for oled using the same
KR100669667B1 (en) Manufacturing method of polymer organic electroluminescent device
JPH09306667A (en) Manufacture of organic electroluminescence element

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee