KR100332916B1 - A method of manufacturing dispersion strengthened lopper alloyes - Google Patents

A method of manufacturing dispersion strengthened lopper alloyes Download PDF

Info

Publication number
KR100332916B1
KR100332916B1 KR1019970073596A KR19970073596A KR100332916B1 KR 100332916 B1 KR100332916 B1 KR 100332916B1 KR 1019970073596 A KR1019970073596 A KR 1019970073596A KR 19970073596 A KR19970073596 A KR 19970073596A KR 100332916 B1 KR100332916 B1 KR 100332916B1
Authority
KR
South Korea
Prior art keywords
alloy
lopper
weight
dispersion strengthened
alloyes
Prior art date
Application number
KR1019970073596A
Other languages
Korean (ko)
Other versions
KR19990053893A (en
Inventor
박우진
이언식
이택근
안상호
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1019970073596A priority Critical patent/KR100332916B1/en
Publication of KR19990053893A publication Critical patent/KR19990053893A/en
Application granted granted Critical
Publication of KR100332916B1 publication Critical patent/KR100332916B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: A method of manufacturing dispersion strengthened lopper alloy in which TiB2 is homogeneously dispersed is provided. CONSTITUTION: In a manufacture method of steel by spray forming, the method is characterized in that (a) a mother alloy comprising 1 to 5 wt.% of Ti and balance of Cu and (b) a mother alloy comprising 1 to 5 wt.% of Bi and balance of Cu are prepared, respectively; the two mother alloy are melted again; obtaining a bulk material by spray-forming above melt, wherein the temperature of the melt is raised up to 1300 to 1500 deg.C right before spray forming; and hot forging.

Description

분산강화 동합금의 제조방법{A method of manufacturing dispersion strengthened lopper alloyes}A method of manufacturing dispersion strengthened lopper alloyes

본 발명은 전극재료 등에 이용되는 동합금의 제조방법에 관한 것으로, 보다 상세하게는 모재내에 균일한 분산상이 형성되어 우수한 고온강도를 갖는 동합금의 제조방법에 관한 것이다.The present invention relates to a method for producing a copper alloy used for electrode materials and the like, and more particularly to a method for producing a copper alloy having an excellent high temperature strength by forming a uniform dispersed phase in the base material.

일반적으로 점용접기의 전극재료 등에 이용되는 동합금은 그 제조방법에 따라 석출강화형인 주조합금과 분산강화형인 분말야금합금으로 구분된다.In general, copper alloys used for the electrode material of the spot welding machine are classified into the main alloy of the precipitation-reinforced type and the powder metallurgy alloy of the dispersion-reinforced type according to the production method.

주조합금은 Cu 기지내에 분포하는 미세한 석출상으로 인해 우수한 상온 강도를 나타내지만, 고온노출시 석출상의 급격한 조대화로 인해 Cu 기지융점의 약 1/2∼1/3 온도에서부터 고온강도가 급격히 저하되는 결점으로 그 사용온도가 제한되고 있다(A. Datta A. Soffa: Acta Metall., 24(1976)987).The main alloy exhibits excellent room temperature strength due to the fine precipitated phase distributed in the Cu matrix, but the high temperature strength drops rapidly from about 1/2 to 1/3 of the Cu matrix melting point due to the rapid coarsening of the precipitated phase at high temperature exposure. The drawback is that its temperature is limited (A. Datta A. Soffa: Acta Metall., 24 (1976) 987).

분말야금방법은 다양한 합금원소를 첨가할 수 있으며, 분말야금법의 특성상분말야금법으로 제조된 동합금 내에는 1μm 이하의 미세한 분산상이 균일하게 분포되고 분산상은 고온에서도 조대화되지 않아 우수한 고온 기계적 특성을 나타낸다(R.A. Rapp: Corrosion, 21(1965) 19).The powder metallurgy method can add various alloying elements.In the characteristic of powder metallurgy, fine dispersed phases of 1μm or less are uniformly distributed in the copper alloy manufactured by powder metallurgy, and the dispersed phase does not coarsen even at high temperature, so it has excellent high-temperature mechanical properties. (RA Rapp: Corrosion, 21 (1965) 19).

그러나, 분말야금법을 이용하여 동합금을 제조하기 위해서는 분말의 제조, 입도분류, 캐닝(canning), 탈가스처리, 성형공정, 소결공정 등 복잡한 제조공정을 거쳐야 하므로 각 제조공정 조건의 제어가 어려우며, 이에 따라 제조단가가 매우 높다는 단점을 가지고 있다.However, in order to manufacture copper alloy using powder metallurgy, it is difficult to control the conditions of each manufacturing process because it has to go through complicated manufacturing processes such as powder preparation, particle size classification, canning, degassing, molding process, and sintering process. As a result, the manufacturing cost is very high.

본 발명은 이러한 종래의 문제점을 해소하기 위한 것으로, 그 목적은 종래대비 제조공정이 간단한 분무성형(Spray Forming)방법에 의해 미세한 TiB2분산상이 균일하게 분포하는 조직을 유도함으로써 우수한 고온강도를 지닌 동합금의 제조방법을 제공함에 있다.The present invention is to solve such a conventional problem, the purpose of the copper alloy having excellent high temperature strength by inducing a structure in which the fine TiB 2 dispersed phase is uniformly distributed by a spray forming method is simple compared to the conventional manufacturing process To provide a method of manufacturing.

도1은 종래 주조방법에 의해 제조후 열간가공된 시편의 미세조직사진이다;1 is a microstructure photograph of a specimen hot worked after being manufactured by a conventional casting method;

도2는 본 발명에 따라 분무성형후 열간가공된 시편의 미세조직사진이다.Figure 2 is a microstructure photograph of the hot worked specimen after spray molding in accordance with the present invention.

상기 목적을 달성하기 위한 본 발명의 제조방법은, Ti:1∼5중량%를 함유하고 나머지 Cu인 모합금과 B:1∼5중량%를 함유하고 나머지 Cu인 모합금을 제조한 다음, 이 두 모합금을 재용해하고 이 용융물을 가스분사에 의해 모재(bulk material)를 얻은 후 통상의 방법으로 열간가공하는 것을 포함하여 구성된다.In order to achieve the above object, the production method of the present invention comprises a master alloy containing Ti: 1 to 5% by weight and remaining Cu and a B: 1 to 5% by weight, and then preparing a mother alloy containing Cu. It involves dissolving the two master alloys and obtaining the bulk material by gas spraying, followed by hot working in a conventional manner.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

우선, Cu-Ti-B의 용탕을 얻기위해 Cu-Ti과 Cu-B의 모재합금을 제조한다. 이때, Cu-Ti과 Cu-B의 모재합금을 각각 제조하는 이유는 Cu, Ti, B원소중에서 B의 융점이 상대적으로 매우 낮기 때문에 Cu-Ti-B 용탕제조시 B의 함량조절이 매우 까다롭기 때문이다. 따라서, B의 함량조절을 위해서는 서로 고용도가 전혀 없는 Cu-B 모합금을 이용하여 B의 함량을 조절하는 것이 필요하다.First, a base alloy of Cu-Ti and Cu-B is prepared to obtain a molten Cu-Ti-B. At this time, the reason for producing the base alloy of Cu-Ti and Cu-B is because the melting point of B among Cu, Ti, and B elements is relatively low, so the control of B content is very difficult in the production of Cu-Ti-B molten metal. to be. Therefore, in order to control the content of B, it is necessary to control the content of B by using a Cu-B master alloy having no solid solution at all.

이와 같은 연유로 Cu-Ti과 Cu-B의 모재합금을 제조할 때, 그 성분조성은 Ti:1∼5중량%를 함유하고 나머지 Cu인 모합금과 B:1∼5중량%를 함유하고 나머지 Cu인 모합금을 제조하는 것이 바람직하다. 그 이유는 Ti과 B의 함량이 1중량%미만의 경우 모재에 형성되는 TiB2의 부피분율이 감소되어 고온강도가 저하되며, 5중량%를 넘으면 TiB2의 부피분율이 증가되어 고온강도는 향상되나 전기전도도가 감소되기 때문이다.When preparing a base alloy of Cu-Ti and Cu-B with such condensed milk, the composition of the composition contains Ti: 1-5% by weight, and the remaining Cu-base alloy and B: 1-5% by weight It is preferable to produce a mother alloy which is Cu. The reason is that when the content of Ti and B is less than 1% by weight, the volume fraction of TiB 2 formed in the base material decreases, thereby reducing the high temperature strength. When the content of Ti and B exceeds 5% by weight, the volume fraction of TiB 2 is increased, thereby improving the high temperature strength. However, the conductivity is reduced.

Ti:1∼5중량%를 함유하고 나머지 Cu인 모합금과 B:1∼5중량%를 함유하고 나머지 Cu인 모합금을 제조한 다음, 이 두 모합금을 재용해하는데, 이때의 용해조건은 단지 두 모합금을 재용해하는 것이므로 특별한 것이 없으나 재용해된 용융물을 가스분사직전의 온도를 1300-1500℃로 유지하는 것이 좋다. 만일 용융물의 온도가 1300℃미만의 경우 TiB2가 제대로 형성되지 못하고, 또한, 용탕의 점도저하로 인해 노즐이 막힐 수 있으며, 1500℃를 넘으면 용탕내에 조대한 TiB2가 형성될 수 있다.A master alloy containing Ti: 1 to 5% by weight and the remaining Cu and a B: 1 to 5% by weight is prepared, and then the two mother alloys are redissolved. There is nothing special about remelting the two master alloys, but it is advisable to keep the melted melt at 1300-1500 ° C just before gas injection. If the temperature of the melt is less than 1300 ℃ TiB 2 is not formed properly, the nozzle may be clogged due to the viscosity of the melt, and if the temperature exceeds 1500 ℃ coarse TiB 2 may be formed in the melt.

이와 같이 적정온도로 유지된 용융물을 가스분사에 의해 모재(bulk material)를 얻은 후 통상의 방법으로 열간가공하면 된다.In this way, the melt maintained at the proper temperature may be hot worked by a conventional method after obtaining a bulk material by gas injection.

이하, 실시예를 통하여 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

Cu-2중량%Ti와 Cu-2중량%B 두 합금의 모합금을 제조하고 이 두 모합금을 진공유도용해로에서 1370℃의 온도로 용해한 다음, 이 온도로 유지하고 분무성형장치를 이용하여 원기둥형태의 모재로 제조하였다. 이 모재를 950℃에서 25:1의 압출비로 압출한 후 미세조직을 관찰한 후(도 1), 기계적특성을 측정하고 그 결과를 아래 표 1에 나타내었다.A mother alloy of two alloys, Cu-2% by weight Ti and Cu-2% by weight B, was prepared and dissolved at a temperature of 1370 ° C. in a vacuum induction furnace. It was prepared in the form of a base material. After extruding the base material at an extrusion ratio of 25: 1 at 950 ° C., the microstructure was observed (FIG. 1), and mechanical properties were measured and the results are shown in Table 1 below.

아래 표 2의 비교재(1)은 Cu-1.5중량%Ti-1.5중량%B 합금을 종래의 주조방법으로 제조된 것의 기계적특성을 나타낸 것이며, 그 미세조직은 도 2에 나타내었다.Comparative material (1) of Table 2 below shows the mechanical properties of the Cu-1.5 wt% Ti-1.5 wt% B alloy produced by the conventional casting method, the microstructure is shown in FIG.

구분division 합금조성(중량%)Alloy composition (% by weight) 인장강도(MPa)Tensile Strength (MPa) 내마모성(하중감량)/(mg/km)Abrasion Resistance (Load Reduction) / (mg / km) 상온Room temperature 300℃300 ℃ 400℃400 ℃ 상온Room temperature 300℃300 ℃ 400℃400 ℃ 실시예 1Example 1 Cu-TiB2분무주조합금Cu-TiB 2 Spray Mixture 162162 153153 132132 9292 107107 123123 비교재 1Comparative material 1 Cu-Ti-B 주조합금Cu-Ti-B Main Alloy 135135 120120 9292 189189 223223 387387

상기 표 1에 나타난 바와 같이, 본 발명재는 주조법으로 제조된 합금과 비교해 보면, 본 발명재의 인장강도와 내마모특성은 주조합금에 비해 2배이상 우수하였다.As shown in Table 1, the present invention compared with the alloy produced by the casting method, the tensile strength and wear resistance of the present invention was more than twice as excellent as the main alloy.

한편, 비교재(1)의 미세조직을 나타낸 도 1를 보면, 조대한 TiB2초정상의 불균일한 분포를 나타나 있음을 알 수 있다. 이에 반해, 본 발명재를 나타낸 도 2를 보면, TiB2분산상의 균일한 분포를 나타나 있었다.On the other hand, looking at Figure 1 showing the microstructure of the comparative material (1), it can be seen that the non-uniform distribution of coarse TiB 2 ultra-normal. On the other hand, looking at Figure 2 illustrating the present invention material, there appeared a uniform distribution of TiB 2 dispersed phase.

상술한 바와 같이, 본 발명에 의하면, 종래 대비 간단한 제조공정으로 TiB2분산상의 균일한 분포를 갖는 고강도, 고내마모성 동합금을 제조할 수 있으며, 이에 따라 고품위 동합금의 응용분야를 확대시킬 수 있는 효과가 있다.As described above, according to the present invention, a high-strength, high wear-resistant copper alloy having a uniform distribution of TiB 2 dispersed phase can be manufactured by a simple manufacturing process compared with the conventional one, and thus the effect of expanding the application field of high-quality copper alloy have.

Claims (1)

분무성형(spray forming)에 의해 강을 제조하는 방법에 있어서,In the method of manufacturing steel by spray forming, Ti:1∼5중량%를 함유하고 나머지 Cu인 모합금과 B:1∼5중량%를 함유하고 나머지 Cu인 모합금을 제조한 다음, 이 두 모합금을 재용해하고 이 용융물을 가스분사직전 온도를 1300~1500℃로 하여 가스분사에 의해 모재(bulk material)를 얻은 후 열간가공함을 특징으로 하는 분산강화 동합금의 제조방법.A master alloy containing Ti: 1 to 5% by weight and the remaining Cu and B: 1 to 5% by weight is prepared, and then the two mother alloys are redissolved and the melt is immediately before gas injection. A method for producing a dispersion-reinforced copper alloy, wherein the temperature is 1300-1500 ° C. to obtain a bulk material by gas spraying and then hot working.
KR1019970073596A 1997-12-24 1997-12-24 A method of manufacturing dispersion strengthened lopper alloyes KR100332916B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970073596A KR100332916B1 (en) 1997-12-24 1997-12-24 A method of manufacturing dispersion strengthened lopper alloyes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970073596A KR100332916B1 (en) 1997-12-24 1997-12-24 A method of manufacturing dispersion strengthened lopper alloyes

Publications (2)

Publication Number Publication Date
KR19990053893A KR19990053893A (en) 1999-07-15
KR100332916B1 true KR100332916B1 (en) 2002-11-01

Family

ID=37479549

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970073596A KR100332916B1 (en) 1997-12-24 1997-12-24 A method of manufacturing dispersion strengthened lopper alloyes

Country Status (1)

Country Link
KR (1) KR100332916B1 (en)

Also Published As

Publication number Publication date
KR19990053893A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
US5897830A (en) P/M titanium composite casting
CN1109123C (en) Nickel base self-fluxing alloy powder
EP4083244A1 (en) Heat-resistant powdered aluminium material
US5102452A (en) Method for the treatment and production of free-flowing wc-ni-co powders
CN105132736A (en) Dispersed copper composite material and preparation method thereof
JPWO2009136552A1 (en) Brass alloy powder, brass alloy extruded material and method for producing the same
EP1711342B1 (en) Wear resistant materials
US4440572A (en) Metal modified dispersion strengthened copper
JPH0625774A (en) Production of tib2-dispersed tial-base composite material
JPH10158766A (en) Copper alloy with heat resistance and wear resistance
KR100332916B1 (en) A method of manufacturing dispersion strengthened lopper alloyes
JPH10219312A (en) Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
CN102016094A (en) Magnesium-based composite material having Ti particles dispersed therein, and method for production thereof
KR100350072B1 (en) Method of manufacturing high conductivity dispersion streng thened copper alloy
KR100264233B1 (en) High strength wire and plate of cu-ni-mn-sn-ti alloy and it's manufacturing process
JP2738766B2 (en) Method for producing compound sintered body
KR100413279B1 (en) Manufacturing method of high heat-resistance and high wear-resistance aluminum alloys
DE19928330C2 (en) Use of a tin-rich copper-tin-iron wrought alloy
KR100436401B1 (en) Manufacturing method of high heat-resistance dispersion strengthened aluminum alloys
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
KR20120051572A (en) Method of modifying thermal and electrical properties of multi-component titanium alloys
KR100299463B1 (en) A method of manufacturing cold work tool steel with superior toughness and wear resistance
KR100321062B1 (en) Process for manufacturing tool steel with superior abrasion resistance for cold working
US4985200A (en) Method of making sintered aluminium nickel alloys
KR20010073098A (en) Aluminium-lithium alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee