JPH06172915A - Wear resistant alloy powder, wear resistant composite member using the same and production thereof - Google Patents

Wear resistant alloy powder, wear resistant composite member using the same and production thereof

Info

Publication number
JPH06172915A
JPH06172915A JP13970892A JP13970892A JPH06172915A JP H06172915 A JPH06172915 A JP H06172915A JP 13970892 A JP13970892 A JP 13970892A JP 13970892 A JP13970892 A JP 13970892A JP H06172915 A JPH06172915 A JP H06172915A
Authority
JP
Japan
Prior art keywords
alloy powder
wear resistant
composite member
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13970892A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okubo
一宏 大久保
Teruo Asai
輝雄 浅井
Yuji Yanagida
裕二 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP13970892A priority Critical patent/JPH06172915A/en
Publication of JPH06172915A publication Critical patent/JPH06172915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain alloy powder for enhancing the wear resistance of an iron- based member and to provide wear resistant composite member by using the powder. CONSTITUTION:The objective alloy powder has a chemical compsn. consisting of, by weight, 2-4% C, <=2% Si, 1-4% Ni, 2-30% Cr, 2-10% V, 5-15% W, 3-10% Mo, 1-15% Co and the balance Fe with inevitable impurities. This alloy powder is simultaneously subjected to sintering by hot isostatic pressing and diffusion bonding to carbon steel or low-alloy steel to obtain the objective wear resistant composite member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄基部材の耐摩耗性を
向上させるために用いられる合金粉末並びにそれを用い
た耐摩耗性部材及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy powder used for improving the wear resistance of an iron-based member, a wear resistant member using the same, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、製鉄機械部品等の耐摩耗性を向上
させるためには、部材の素材そのものを改善するほか、
各種溶融溶接法により硬化層を形成し、部材表面の複合
化が行われている。また一部では、熱間等方圧加圧(以
下HIPとする)法による粉末材料の加圧接合、拡散接
合技術を利用して、市販のプラズマ溶射用粉末材料を用
いた複合部材の製作が行われている。
2. Description of the Related Art Conventionally, in order to improve the wear resistance of iron-making machine parts and the like, in addition to improving the material itself of the member,
Hardened layers are formed by various fusion welding methods, and the surfaces of members are compounded. In addition, in some cases, it is possible to manufacture a composite member using a commercially available powder material for plasma spraying by using pressure bonding of powder material by a hot isostatic pressing (hereinafter referred to as HIP) method and diffusion bonding technology. Has been done.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、溶融溶接
法では各種の添加元素量を増加させて高合金化すると、
溶接材料自体の製造や溶接施工が困難になり、これらの
両面から、添加出来る合金元素の成分範囲には限界があ
った。また、機械部品の長寿命化を図るために、表面硬
化層の肉厚を厚くする方案が採用される場合も多いが、
一般に高硬度を有する溶接材料ほど多層盛りは困難とな
り、たとえ施工可能であっても、施工条件等、非常に厳
密な管理が要求される場合が多い。またこのような厚肉
施工、即ち多層盛り施工では溶接施工が長時間に渡り、
作業者の健康管理、製品コスト等での問題点も多い。
However, in the fusion welding method, when the amounts of various additive elements are increased to form a high alloy,
It became difficult to manufacture the welding material itself and welding work, and from these two aspects, there was a limit to the range of alloy element components that can be added. In addition, in order to prolong the service life of mechanical parts, a method of increasing the thickness of the surface hardened layer is often adopted,
Generally, a welding material having a higher hardness is more difficult to form a multi-layer deposit, and even if it is possible to perform work, very strict management such as work conditions is often required. Also, in such thick-walled construction, that is, in the multi-layered construction, the welding construction takes a long time,
There are also many problems regarding worker health management and product cost.

【0004】さらに肉盛溶接では溶接施工の熱履歴等に
より、溶接ビードの組織、硬さ分布が必ずしも一定とな
らず、そのためビードマークが発生し、相手材である製
品に転写されるといった問題も生じる。プラズマ溶射法
では比較的高合金のものでも施工可能であり、それゆえ
に高硬度を有する表面層を形成することが可能となる
が、これらの場合一般的には多層盛りは不可能であり、
表面に薄く硬化層が形成されるのみである。
Furthermore, in overlay welding, the structure and hardness distribution of the weld bead are not always constant due to the heat history of the welding process, etc. Therefore, there is a problem that a bead mark is generated and transferred to a product which is a mating material. Occurs. In the plasma spraying method, it is possible to apply even a relatively high alloy, and therefore it is possible to form a surface layer having a high hardness, but in these cases, in general, it is impossible to form a multi-layer deposit,
Only a thin hardened layer is formed on the surface.

【0005】本発明は、上記従来技術の問題点を解消す
る合金粉末を得ることを目的としており、さらに該合金
粉末を用いた耐摩耗性複合部材及びその製造方法を提供
することを目的としている。
An object of the present invention is to obtain an alloy powder that solves the above-mentioned problems of the prior art, and further to provide a wear resistant composite member using the alloy powder and a method for producing the same. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の耐摩耗性合金粉末では、 化学成分が重量
%で、C2〜4%,Si2%以下,Ni1〜4%,Cr
2〜30%,V2〜10%,W5〜15%,Mo3〜1
0%,Co1〜15%,残部Fe及び不可避不純物から
成るものである。
In order to achieve the above object, in the wear-resistant alloy powder of the present invention, the chemical composition is% by weight, C2-4%, Si2% or less, Ni1-4%, Cr.
2-30%, V2-10%, W5-15%, Mo3-1
It is composed of 0%, Co 1 to 15%, balance Fe and unavoidable impurities.

【0007】また、本発明の耐摩耗性複合部材は、上記
合金粉末を用いて、該合金粉末がHIP法により焼結さ
れると共に炭素鋼あるいは低合金鋼に拡散接合されてい
るものである。
The wear-resistant composite member of the present invention is made of the above alloy powder, which is sintered by the HIP method and is diffusion bonded to carbon steel or low alloy steel.

【0008】さらに、上記複合部材は、それを1000
℃以下の温度で熱処理を施すとより一層耐摩耗性が向上
して好ましいものである。
Further, the above-mentioned composite member has 1000
It is preferable that the heat treatment is performed at a temperature of ℃ or less because the wear resistance is further improved.

【0009】以下、本発明の合金粉末の化学成分につい
て説明する。なお以下%は全て重量%を示すものとす
る。Cはマトリックスに固溶し、またVを始め、Crや
Wと結合して炭化物を形成することにより焼結合金の硬
度を高める。C量が2%未満では炭化物の量が少なく耐
摩耗性が不足し、焼結合金を高合金化したことの効果が
十分に得られない。一方4%を越えると、VやWの炭化
物の粗大化等による靱性の低下や、マトリックスへの固
溶による液相温度の低下が生じ、炭化物の生成を考慮し
た安定した施工が困難になる。
The chemical components of the alloy powder of the present invention will be described below. In the following, all% means% by weight. C forms a solid solution in the matrix, and increases the hardness of the sintered alloy by forming a carbide by combining with V, Cr, and W. When the amount of C is less than 2%, the amount of carbides is small and the wear resistance is insufficient, and the effect of highly alloying the sintered alloy cannot be sufficiently obtained. On the other hand, if it exceeds 4%, the toughness decreases due to coarsening of V and W carbides, and the liquidus temperature decreases due to solid solution in the matrix, making it difficult to perform stable construction in consideration of the formation of carbides.

【0010】Siは、粉末材料製造時の脱酸材として有
効であるが、量を多くすると基地を脆くするので、上限
を2%としたが、出来れば1.0%以下とすることが望
ましい。
Si is effective as a deoxidizing agent in the production of powder materials, but if the amount is increased, the matrix becomes brittle, so the upper limit was made 2%, but it is desirable to make it 1.0% or less if possible. .

【0011】Niは、基地硬度を高めるが、反面組織の
高温安定性を減じる。従って良好な硬度及び高温安定性
を付与する範囲として1〜4%とした。
Ni increases the matrix hardness, but reduces the high temperature stability of the structure. Therefore, the range for imparting good hardness and high temperature stability is set to 1 to 4%.

【0012】Crは、Cと結合してCr炭化物を形成
し、耐摩耗性を向上させ、併せて基地の耐食性を向上さ
せるが、2%未満では炭化物が少なく十分な耐摩耗性が
期待できない。一方15%を越えると常温硬さへの効果
はなくなるが、マトリックスへ固溶するCr量が増え、
耐食性及び高温硬さはさらに著しく改善される。そのた
め特に高温での使用に対してはその含有量が15%未満
ではこれらの効果が少なく、また、含有量が30%を越
えると合金の融点が高くなり、焼結性が悪くなる。
[0012] Cr combines with C to form a Cr carbide, which improves the wear resistance and also improves the corrosion resistance of the matrix. However, if it is less than 2%, the amount of the carbide is small and sufficient wear resistance cannot be expected. On the other hand, if it exceeds 15%, the effect on room temperature hardness disappears, but the amount of Cr dissolved in the matrix increases,
Corrosion resistance and high temperature hardness are further significantly improved. Therefore, especially when used at high temperatures, if the content is less than 15%, these effects are small, and if the content exceeds 30%, the melting point of the alloy becomes high and the sinterability deteriorates.

【0013】Vは、Cと化合してV炭化物を形成する。
V炭化物は高度が高く、また球状に析出し靱性も良好に
するが、2%未満では耐摩耗性が不足であり、合わせて
基地に固溶するC量が増えるために適正焼結温度範囲が
大きく変化する。10%を越えると基地に固溶するV量
が増加して焼入れ性の低下が生じ、さらにVは非常に酸
化され易いことから基地の耐食性が低下する。
V combines with C to form V carbides.
V carbides have a high altitude and are precipitated in a spherical shape to improve the toughness, but if the content is less than 2%, the wear resistance is insufficient, and the amount of C dissolved in the matrix increases. It changes a lot. If it exceeds 10%, the amount of V dissolved in the matrix increases and the hardenability deteriorates. Further, V is very easily oxidized, and the corrosion resistance of the matrix decreases.

【0014】Wは、Cと化合して炭化物を形成し、また
Moと化合して金属間化合物を形成し、耐摩耗性に寄与
する。添加量を増すほど、その効果は増大するが、多量
に含有すると析出炭化物の粗大化により、靱性等の機械
的性質が劣化する。従って良好な耐摩耗性と共に耐クラ
ック性を備える範囲として5〜15%と限定した。
W combines with C to form a carbide and combines with Mo to form an intermetallic compound, which contributes to wear resistance. The effect increases as the added amount increases, but if it is contained in a large amount, mechanical properties such as toughness deteriorate due to coarsening of precipitated carbide. Therefore, the range having good wear resistance and crack resistance is limited to 5 to 15%.

【0015】Moは、炭化物中に入り、炭化物高度を高
めると同時に焼戻し軟化抵抗を向上させるのに有効であ
る。また、Wと化合して金属間化合物を形成し、耐摩耗
性に寄与する。しかしその含有量が3%未満ではこのよ
うな効果がなく、一方10%を越えるとその効果はほぼ
飽和する。
Mo enters the carbide and is effective in increasing the carbide height and at the same time improving the temper softening resistance. Further, it combines with W to form an intermetallic compound, which contributes to wear resistance. However, if the content is less than 3%, such an effect does not occur, while if it exceeds 10%, the effect is almost saturated.

【0016】Coは、大部分基地に固溶し、耐熱性(高
温硬さ)及び焼戻し硬さの向上に寄与するが、1%未満
ではこの効果が十分でなく、一方15%を越えるとその
効果はほぼ飽和する。
[0016] Co dissolves mostly in the matrix and contributes to the improvement of heat resistance (high temperature hardness) and tempering hardness, but if it is less than 1%, this effect is not sufficient, while if it exceeds 15%, it is The effect is almost saturated.

【0017】[0017]

【作用】HIP法による粉末焼結では、一般的に液相を
出現させることなく、粉末同士の固相拡散接合によって
焼結し、母材となるべき部材への拡散接合も同時に行わ
れる。このため施工可能となる合金成分範囲が非常に広
く、またその適用材料自体も粉末製造に際してはアトマ
イズ等の急冷凝固法によって製造されるので、高合金化
が容易である。
In the powder sintering by the HIP method, generally, without causing the appearance of a liquid phase, the powder is sintered by solid phase diffusion bonding, and the diffusion bonding to the member to be the base material is also performed at the same time. For this reason, the range of alloy components that can be applied is very wide, and the applied material itself is manufactured by a rapid solidification method such as atomization when manufacturing powder, so that high alloying is easy.

【0018】また、粉末焼結時に故意に部分的に液相を
出現させることによって、マトリックス中の析出炭化物
等の成長を促すことも可能である。このように成長した
炭化物等の効果により、優れた耐摩耗性を発揮すること
が出来る。この場合、液相の存在が局部的な微小な領域
であるので、結晶粒が粗大化するような全体的な溶融凝
固反応ではなく、主として炭化物,析出物の成長におい
てのみその効果が発揮される。また焼結及びその後の高
温域での冷却時には、周囲から高い等方圧が付加されて
いるため、一般に鋳造や溶融溶接等で生じる引け巣,引
き割れのような欠陥は発生しにくく、健全な焼結層が得
られる。
It is also possible to promote the growth of precipitated carbide and the like in the matrix by intentionally causing a liquid phase to partially appear during powder sintering. Excellent wear resistance can be exhibited by the effect of the carbides grown in this way. In this case, since the existence of the liquid phase is a local minute region, the effect is exerted mainly only in the growth of carbides and precipitates, not in the entire melt-solidification reaction in which the crystal grains become coarse. . In addition, during sintering and subsequent cooling in the high temperature range, high isotropic pressure is applied from the surroundings, so defects such as shrinkage cavities and cracks that generally occur during casting or fusion welding are less likely to occur and sound A sintered layer is obtained.

【0019】どちらの場合も得られた焼結層は全域に渡
って微細で均一な組織を呈し、その硬さもあらゆる方向
について均一な値となり、良好な耐摩耗性、耐食性を備
え、十分な表面複合層の厚さを容易に得ることができ
る。
In either case, the obtained sintered layer has a fine and uniform structure over the entire area, and its hardness has a uniform value in all directions, and it has good wear resistance and corrosion resistance, and has a sufficient surface area. The thickness of the composite layer can be easily obtained.

【0020】また、粉末,鋼材を問わず、高速度鋼系の
材料であれば、焼入れ,焼戻し処理により高硬度が得ら
れるが、その場合一般に焼入れ温度が1000℃以上と
高く、熱処理施工が特殊なものとなるための難しさや、
コスト高等の問題点がある。しかし乍ら本発明における
合金粉末であれば、より低温でのごく一般的な熱処理に
より高度な特性を発揮することができる。
High-speed steel materials, whether powder or steel, can be hardened and tempered to obtain high hardness. In this case, the quenching temperature is generally as high as 1000 ° C or more, and heat treatment is special. The difficulty of becoming
There are problems such as high cost. However, with the alloy powder according to the present invention, it is possible to exhibit high-level properties by a general heat treatment at a lower temperature.

【0021】[0021]

【実施例】以下本発明の実施例を比較例と共に説明す
る。表1に本発明合金及び比較合金の化学成分と硬さを
示す。表1中、HIPとは熱間等方圧加圧のことを示
す。また、No.1〜No.9が本発明合金で、No.
10〜No.14は比較合金である。
EXAMPLES Examples of the present invention will be described below together with comparative examples. Table 1 shows the chemical composition and hardness of the alloys of the present invention and comparative alloys. In Table 1, HIP means hot isostatic pressing. In addition, No. 1-No. No. 9 is the alloy of the present invention.
10-No. 14 is a comparative alloy.

【0022】[0022]

【表1】 [Table 1]

【0023】化学式等を記載した書面中、〔A〕はas
−HIP(熱処理なし)状態での常温硬さ、〔B〕はa
s−HIP(熱処理なし)状態での800℃における高
温硬さ、〔C〕は500℃焼戻し後の常温硬さ、〔D〕
は900℃焼入れ後の常温硬さを示す。尚、*は割れ発
生を示す。 (1)表1のNo.3の合金粉末を用いて、HIP処理
条件、1200℃,1000kg/cm2,2hrにて、棒鋼
圧延用ロールを製作した。焼結層はマトリックス中に1
0〜30μmの球状炭化物が均一に分散した組織を呈し
た。
In the document describing the chemical formula, etc., [A] is as
-Normal temperature hardness in HIP (without heat treatment), [B] is a
High temperature hardness at 800 ° C in s-HIP (without heat treatment), [C] is room temperature hardness after tempering at 500 ° C, [D]
Indicates the room temperature hardness after quenching at 900 ° C. In addition, * indicates the occurrence of cracking. (1) No. 1 in Table 1 Using the alloy powder of No. 3, a steel bar rolling roll was manufactured under HIP treatment conditions of 1200 ° C., 1000 kg / cm 2 , and 2 hr. 1 sintered layer in matrix
It exhibited a structure in which spherical carbides of 0 to 30 μm were uniformly dispersed.

【0024】(2)表1のNo.6の合金粉末を用い
て、HIP処理条件、1200℃,1000kg/cm2,2
hrにて、棒鋼圧延用ロールを製作した。焼結層はマト
リックス中に10〜30μmの球状炭化物が均一に分散
した組織を呈した。
(2) No. 1 in Table 1 Using the alloy powder of No. 6, HIP treatment conditions, 1200 ° C, 1000 kg / cm 2 , 2
A roll for rolling steel bars was manufactured at hr. The sintered layer had a structure in which 10 to 30 μm spherical carbides were uniformly dispersed in the matrix.

【0025】(3)表1のNo.9合金粉末を用いて、
HIP処理条件、1200℃,1000kg/cm2,2hr
にて、棒鋼圧延用ロールを製作した。焼結層はマトリッ
クス中に微細な炭化物等が均一に分散した組織を呈し
た。
(3) No. 1 in Table 1 Using 9 alloy powder,
HIP treatment condition, 1200 ° C, 1000kg / cm 2 , 2hr
In the above, a steel bar rolling roll was manufactured. The sintered layer had a structure in which fine carbides were uniformly dispersed in the matrix.

【0026】(4)表1のNo.3の合金粉末を用い
て、HIP処理条件、1100℃,1000kg/cm2,2
hrにて、棒鋼圧延用ロールを製作した。焼結層はマト
リックス中に微細な炭化物等が均一に分散した組織を呈
した。
(4) No. 1 in Table 1 Using the alloy powder of No. 3, HIP treatment conditions, 1100 ° C., 1000 kg / cm 2 , 2
A roll for rolling steel bars was manufactured at hr. The sintered layer had a structure in which fine carbides were uniformly dispersed in the matrix.

【0027】上記実施例(1)〜(4)のいずれの場合
も、棒鋼圧延用ロールとは外径100mm,長さ100mm
で、ロール外周にR30の溝を有する形状であり、母材
としてはS35Cを用いた。これについて、ロール表面
から厚さ10mmの粉末焼結層を形成した。いずれの場合
も、as−HIP,熱処理後とも焼結層中に欠陥等は認
められず、表1に示したものと同様の硬さを有する焼結
層が得られた。
In any of the above-mentioned Examples (1) to (4), the bar rolling roll has an outer diameter of 100 mm and a length of 100 mm.
The shape of the roll was R30 on the outer circumference, and S35C was used as the base material. For this, a powder sintered layer having a thickness of 10 mm was formed from the roll surface. In each case, no defects were found in the sintered layer after as-HIP and after the heat treatment, and a sintered layer having a hardness similar to that shown in Table 1 was obtained.

【0028】これらのHIP製ロールは、合金チルドロ
ールと比較して10倍以上の寿命延長が認められた。ま
た自溶性合金溶射ロールとの比較では、耐摩耗性での比
較において6倍以上の寿命延長が認められ、さらに硬化
層の厚さが増大した効果を併せて比較すれば、製品寿命
としては10倍以上の寿命延長が認められた。勿論これ
らについての適用部品の大きさに対する制約は、処理す
るHIP炉の大きさによるもののみであり、より大きな
部材への適用が可能であることは言うまでもない。また
表面の焼結層の厚さについても、数mmから数十mmまで任
意に設定可能である。
These HIP rolls were found to have a life extension of 10 times or more as compared with alloy chilled rolls. Further, in comparison with the self-fluxing alloy sprayed roll, a life extension of 6 times or more was recognized in comparison with wear resistance, and further, when the effect of increasing the thickness of the hardened layer was also compared, the product life was 10 The life extension was more than doubled. Needless to say, of course, the only restriction on the size of the applied parts is the size of the HIP furnace to be processed, and it can be applied to larger members. Also, the thickness of the sintered layer on the surface can be arbitrarily set from several mm to several tens of mm.

【0029】[0029]

【発明の効果】以上説明して来たように、本発明の耐摩
耗性合金粉末によれば、それを簡単に熱間等方圧加圧す
ることで容易に焼結され、得られる焼結部材は硬さが大
で耐摩耗性に富むものである。またこの合金粉末の焼結
体を炭素鋼あるいは低合金鋼に拡散させた複合部材は、
簡単に製作出来、焼結部材が耐摩耗性に富むために圧延
ロール等として用いるときその寿命を大幅に延長するこ
とができる。なおこの複合部材の硬度は、それを100
0℃以下の温度で熱処理することで表1に示す様に、よ
り一層向上させることが出来、従って耐摩耗性も向上す
るものである。
As described above, according to the wear-resistant alloy powder of the present invention, the sintered member can be easily sintered by hot isostatic pressing. Has a high hardness and abundant wear resistance. Also, a composite member obtained by diffusing a sintered body of this alloy powder into carbon steel or low alloy steel is
Since it can be easily manufactured and the sintered member has high wear resistance, its life can be greatly extended when it is used as a rolling roll or the like. The hardness of this composite member is 100
By heat treatment at a temperature of 0 ° C. or lower, as shown in Table 1, the heat resistance can be further improved, and thus the wear resistance can be improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が重量%で、C2〜4%,Si
2%以下,Ni1〜4%,Cr2〜30%,V2〜10
%,W5〜15%,Mo3〜10%,Co1〜15%,
残部Fe及び不可避不純物から成ることを特徴とする耐
摩耗性合金粉末。
1. The chemical component is, by weight, C2-4%, Si
2% or less, Ni1-4%, Cr2-30%, V2-10
%, W5-15%, Mo3-10%, Co1-15%,
A wear-resistant alloy powder comprising the balance Fe and inevitable impurities.
【請求項2】 請求項1に記載の合金粉末を用いて、該
合金粉末が熱間等方圧加圧法により焼結されると共に炭
素鋼あるいは低合金鋼に拡散接合されていることを特徴
とする耐摩耗性複合部材。
2. The alloy powder according to claim 1, wherein the alloy powder is sintered by hot isostatic pressing and diffusion bonded to carbon steel or low alloy steel. Wear resistant composite member.
【請求項3】 請求項2に記載の複合部材を、1000
℃以下の温度で熱処理を施すことを特徴とする耐摩耗性
複合部材の製造方法。
3. The composite member according to claim 2,
A method for producing a wear-resistant composite member, characterized by performing heat treatment at a temperature of ℃ or less.
JP13970892A 1992-05-01 1992-05-01 Wear resistant alloy powder, wear resistant composite member using the same and production thereof Pending JPH06172915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13970892A JPH06172915A (en) 1992-05-01 1992-05-01 Wear resistant alloy powder, wear resistant composite member using the same and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13970892A JPH06172915A (en) 1992-05-01 1992-05-01 Wear resistant alloy powder, wear resistant composite member using the same and production thereof

Publications (1)

Publication Number Publication Date
JPH06172915A true JPH06172915A (en) 1994-06-21

Family

ID=15251574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13970892A Pending JPH06172915A (en) 1992-05-01 1992-05-01 Wear resistant alloy powder, wear resistant composite member using the same and production thereof

Country Status (1)

Country Link
JP (1) JPH06172915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091609A (en) * 2007-10-05 2009-04-30 Hitachi Powdered Metals Co Ltd Sintered composite sliding part and production method therefor
JP2021021115A (en) * 2019-07-29 2021-02-18 東洋刃物株式会社 Iron-based alloy member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091609A (en) * 2007-10-05 2009-04-30 Hitachi Powdered Metals Co Ltd Sintered composite sliding part and production method therefor
JP2021021115A (en) * 2019-07-29 2021-02-18 東洋刃物株式会社 Iron-based alloy member

Similar Documents

Publication Publication Date Title
EP0223202B1 (en) Iron alloy containing molybdenum, copper and boron
JP7311633B2 (en) Nickel-base alloy for powder and method for producing powder
CN111699063B (en) Method for producing aluminium-chromium alloy parts
JPS63109151A (en) High hardness composite material
JP2002503764A (en) Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder
CN108690946B (en) Spray welding powder material and preparation method and application thereof
EP4083244A1 (en) Heat-resistant powdered aluminium material
JP2018135585A (en) Metal member and method for manufacturing clad layer
US10982306B2 (en) Additive manufacturing process and powder material therefor
JPS6121299B2 (en)
DE112008001868T5 (en) Weldable, fracture-resistant, Co-based alloy, application process and components
CN113174525A (en) High-entropy alloy powder and preparation and application thereof
JP2006022896A (en) Double-layered bearing material and its manufacturing method
JPS59200743A (en) Sintered alloy steel
JP2857724B2 (en) High speed steel based sintered alloy
JPH06172915A (en) Wear resistant alloy powder, wear resistant composite member using the same and production thereof
JPH03254304A (en) Wear resistance conjugated roll
JP4373785B2 (en) Metal powder for thermal coating of substrate
KR20220131182A (en) Fe-BASED ALLOY AND METAL POWDER
JP3107932B2 (en) Method of manufacturing composite high-speed sleeve roll
JPH02179843A (en) Tool material for hot tube making
JPS60158906A (en) Composite roll for rolling and its manufacture
KR20010074460A (en) High-strength metal solidified material and acid steel and manufacturing methods thereof
EP0513238B1 (en) Arc spraying of rapidly solidified aluminum base alloys
KR100611201B1 (en) High speed steel compound roll for hot strip milling having excellent roughness-resistance