KR100332674B1 - Biological Treatment Method of Wastewater Containing Heavy Metals - Google Patents

Biological Treatment Method of Wastewater Containing Heavy Metals Download PDF

Info

Publication number
KR100332674B1
KR100332674B1 KR1019990011668A KR19990011668A KR100332674B1 KR 100332674 B1 KR100332674 B1 KR 100332674B1 KR 1019990011668 A KR1019990011668 A KR 1019990011668A KR 19990011668 A KR19990011668 A KR 19990011668A KR 100332674 B1 KR100332674 B1 KR 100332674B1
Authority
KR
South Korea
Prior art keywords
wastewater
heavy metals
containing heavy
reactor
present
Prior art date
Application number
KR1019990011668A
Other languages
Korean (ko)
Other versions
KR20000065415A (en
Inventor
양지원
염상필
Original Assignee
윤덕용
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤덕용, 한국과학기술원 filed Critical 윤덕용
Priority to KR1019990011668A priority Critical patent/KR100332674B1/en
Publication of KR20000065415A publication Critical patent/KR20000065415A/en
Application granted granted Critical
Publication of KR100332674B1 publication Critical patent/KR100332674B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/345Biological treatment of water, waste water, or sewage characterised by the microorganisms used for biological oxidation or reduction of sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Abstract

본 발명은 황산염환원균의 활성을 이용하여 중금속을 함유한 폐수를 생물학적 공정에 의해 처리하는 방법에 관한 것이다.The present invention relates to a method for treating wastewater containing heavy metals by biological process using the activity of sulfate reducing bacteria.

본 발명은 중금속을 함유한 폐수가 혐기성 반응기의 미생물 대사를 거친 반송류와 만나 오염 중금속의 일부가 미리 처리되고 pH도 미생물이 견딜 수 있는 영역으로 중화를 거친 뒤 반응기로 유입됨으로써 안정적인 운전이 가능하며 이 과정에서 생기는 유해한 황화수소(H2S) 가스는 따로 처리할 수 있다. 본 발명의 목적은 광산폐수, 도금폐수 등과 같이 중금속을 함유한 폐수를 기존의 방법에 비해 보다 경제적인 방법으로 법적인 방류기준을 만족시키도록 처리하고자 하는 것이다.According to the present invention, the wastewater containing heavy metals meets the return flow through the microbial metabolism of the anaerobic reactor, so that some of the contaminated heavy metals are pretreated, and the pH is neutralized into an area to which microorganisms can tolerate. Hazardous hydrogen sulfide (H 2 S) gases from this process can be treated separately. An object of the present invention is to treat wastewater containing heavy metals, such as mine wastewater, plating wastewater, and the like to satisfy the legal discharge standard in a more economical way than conventional methods.

Description

생물학적 공정에 의한 중금속 함유 폐수의 처리방법{Biological Treatment Method of Wastewater Containing Heavy Metals}Biological Treatment Method of Wastewater Containing Heavy Metals

본 발명은 중금속을 함유한 폐수를 생물학적 공정에 의해 처리하는 방법에 관한 것으로 보다 상세하게는 반송류(Recycle)의 도입을 통해 폐수가 반응기에 유입되기 전에 반응기 밖에서 미리 반송류와 반응시켜 폐수중에 함유된 중금속을 침전 및 여과를 통해 처리하여 반응기 내의 침전물 축적을 완화시킬 수 있는 중금속 함유 폐수의 생물학적 공정을 이용한 폐수의 처리방법에 관한 것이다. 도금폐수와 같이 중금속을 포함하는 액상의 오염물로부터 중금속을 제거하는 방법으로는 일반적으로 침전ㆍ응집법, 이온교환 수지법, 역삼투압법, 전기투석법, 미생물 흡착법, 용매 추출법, 착염화, 여과, 시멘트화(cementation)와 같은 물리적, 화학적 처리방법이 있다. 그러나 가장 널리 알려진 침전ㆍ응집법 이외에는 경제성 문제 등을 포함한 여러 단점들로 인해 실제적인 폐수처리에 널리 적용되지 못하고 있다. 침전ㆍ응집법에서는 보통 석회 등을 이용해 pH 조정법으로 중금속을 제거한다. 즉, 중화과정과 침전제 첨가과정을 통해 중금속 침전물이 형성되면서 중금속이 용해도가 낮은 중금속 입자 상태로 존재하게 되고 이렇게 생성된 중금속 입자들은 다시 염화철 등과 같은 응집제의 작용에 의해 서로 응집되어 침전하게 된다. 그러나 이러한 경우, 폐수액에 포함된 중금속의 농도가 높아질수록 보다 많은 양의 침전제와 응집제를 투입해야 하므로 처리비용이 문제가 될 뿐만 아니라 유출수의 화학적산소요구량 (COD)이 증가하여 다량의 유해 슬러지가 발생하여 최종처리비의 부담이 증가하는 2차 적인 문제점이 있다. 또한 이러한 처리과정을 거쳐 형성된 중금속 침전물은 대부분이 수산화물 형태로서 용해도는 pH에 매우 민감해서 어떤 특정한 좁은 범위의 최적 pH 범위를 벗어날 경우에는 침전되었던 것이 다시 용출될 뿐 아니라 달성할 수 있는 최저 용해도에 있어서도 다른 형태의 침전물에 비해 한계가 있어서 배출되는 상등액 중의 중금속 농도에 관한 배출 허용 기준치를 만족시키지 못하는 문제가 발생하며 슬러지의 최종처분단계에서도 안정화, 고형화를 까다롭게 하는 원인이 된다. 더우기 수산화물 형태의 중금속 침전물은 농축과 탈수도 상당히 어렵고 킬레이트 화합물이 포함된 폐수액의 경우 중금속이 킬레이트 화합물과 복합체를 형성하며 물에 다시 용출되어 침전에 의한 중금속 제거율이 더욱 낮아지게 된다. 예를 들면 도금 공장에서 나오는 폐액의 경우 시안(CN-) 이온이 많이 함유되어 있으면 침전이 잘 되지 않아 기준치 이하까지 중금속을 제거할 수 없다.The present invention relates to a method for treating a wastewater containing heavy metals by a biological process, and more particularly, by reacting with a conveying stream outside the reactor before the wastewater enters the reactor through the introduction of a recycle, it is contained in the wastewater. The present invention relates to a method for treating wastewater using a biological process of heavy metal-containing wastewater, which can treat the precipitated heavy metal through precipitation and filtration to mitigate deposit accumulation in the reactor. As a method of removing heavy metals from liquid contaminants containing heavy metals, such as plating wastewater, precipitation, flocculation, ion exchange resin, reverse osmosis, electrodialysis, microbial adsorption, solvent extraction, complex salting, filtration, cement There are physical and chemical treatment methods such as cementation. However, in addition to the most widely known precipitation and flocculation methods, it is not widely applied to practical wastewater treatment due to various disadvantages including economic problems. In the precipitation and flocculation methods, heavy metals are usually removed by adjusting the pH with lime. That is, as the heavy metal precipitate is formed through the neutralization process and the addition of the precipitant, the heavy metal is present in the state of the low solubility heavy metal particles, and the heavy metal particles are aggregated and precipitated again by the action of a coagulant such as iron chloride. However, in this case, the higher the concentration of heavy metals in the wastewater, the greater the amount of precipitant and flocculant, so the treatment cost is not only a problem, but the chemical oxygen demand (COD) of the effluent increases, resulting in a large amount of harmful sludge. There is a secondary problem that occurs, the burden of the final processing cost increases. In addition, most of the heavy metal precipitates formed through this treatment are hydroxide type and the solubility is very sensitive to pH so that when it is out of certain narrow range of optimum pH range, the precipitate is not only eluted again but also at the lowest solubility that can be achieved. There is a limit compared to other types of sediment, which does not satisfy the emission allowance for heavy metal concentrations in the supernatant discharged, and causes sludge and solidification even in the final disposal stage of the sludge. Furthermore, heavy metal precipitates in hydroxide form are very difficult to concentrate and dehydrate, and in the case of wastewater containing chelating compounds, heavy metals form complexes with chelating compounds and are eluted again in water, resulting in lower removal of heavy metals by precipitation. For example, in the case of waste liquid from the plating factories cyanide (CN -), if the ion is a heavy metal containing a large amount it can not be removed to not higher than the reference value does not work sufficiently precipitated.

이러한 제반 이유로 생물학적인 접근을 통해 액상의 중금속 오염물에서 중금속을 제거하려는 연구가 세계적으로 많이 이루어지고 있으며 특히 생흡착 (biosorption) 분야에 관해서는 그동안 많은 연구가 이루어져 왔다.For this reason, many studies have been conducted worldwide to remove heavy metals from liquid heavy metal contaminants through a biological approach, and in particular, many studies have been conducted in the field of biosorption.

선진 G7국가들을 중심으로 최근의 생물학적 중금속 처리에 관한 연구 상황을 살펴보면 바이오매스(biomass)를 이용한 흡착 메카니즘으로 접근하는 것과 아울러, 처리하려는 액상의 중금속 함유 오염물을 살아있는 미생물(viable cell)의 안정한 혼합상과 접촉시켜, 미생물에 의해 생성된 화학물질(ligand)과 중금속이 침전물을 형성하도록 하여 중금속을 보다 적극적으로 제거하는 방법이 활발하게 연구되고 있다. 살아있는 미생물의 활성을 이용하여 중금속 폐액을 처리하는 공정으로서 가장 대표적인 것이 혐기성 반응기 내에서 황산염환원미생물(Sulfate reducing bacteria, SRB) 에 의해 S2-(sulfide, 황화물) 이온을 생성해 용해도가 매우 낮은 황화물 형태의 중금속 침전물이 형성되도록 유도하는 공정이며 이 공정은 1992년에 처음으로 네덜란드(Budelco)에서 산업화된 신기술이다[P. J. H. Scheeren, R. O. Koch and C. J. N. Buisman, Geohydrological containment system and microbial water treatment plant for metal-contaminated groundwater at Budelco,Proceedings of Inter. Symp. - World Zinc '93, pp. 373-383, Hobert, 10-13 Oct. 1993]. 그러나 이 공정은 pH 4.5이고 오염 중금속이 아연(Zn) 하나인 지하수를 처리대상으로 하여 처리운전을 하고 있어서 처리대상의 확장성이 확보되어 있지 않으며, 반응기 속의 미생물이 다양한 지역에서 채취하여 선별한 SRB를 혼합배양하여 구성한 미생물군이어서 작업상의 번거로움이 내재되어 있다. 한편, 미국특허 5,587,079호는 황산염과 금속이온을 함유한 용액의 처리방법으로서 pH 2.5의 폐수에 대해 알칼리로 중화하여 처리하는 방법이다. 미국특허 4,789,478호는 미생물에 의한 무기이온을 금속 황산염으로 전환시키는 방법으로 생성된 침전물을 유출수에서 추가로 제거하는 방법이고 미국특허 4,354,937호는 폐수로부터 중금속을 침전시키기 위해 SRB를 액체배양해서 사용하는 방법이다.In the recent research on biological heavy metal treatment, especially in advanced G7 countries, we have approached biomass adsorption mechanisms and stable mixed phases of viable cells containing the heavy metal-containing contaminants in the liquid to be treated. There is an active research into a method for more aggressively removing heavy metals by bringing them into contact with chemicals produced by microorganisms and heavy metals to form precipitates. The most representative is sulfate-reducing microorganisms in the anaerobic reactor, as the step of treating the waste liquid heavy metal by the use of the live microbial activity (Sulfate reducing bacteria, SRB) by S 2- (sulfide, sulfide) produced by the ions is very low solubility sulfide It is a process that induces the formation of heavy metal deposits in the form, which was first industrialized in Buelco in the Netherlands in 1992 [PJH Scheeren, RO Koch and CJN Buisman, Geohydrological containment system and microbial water treatment plant for metal-contaminated groundwater at Budelco, Proceedings of Inter. Symp. -World Zinc '93 , pp. 373-383, Hobert, 10-13 Oct. 1993]. However, this process is treated with groundwater with pH 4.5 and one contaminated heavy metal zinc (Zn), so the scalability of the treatment target is not secured. Since it is a microbial group composed of mixed cultures, it is inherent in working. On the other hand, US Patent No. 5,587,079 is a method of treating a solution containing sulfate and metal ions is a method of neutralizing and treating the waste water of pH 2.5 with alkali. US Pat. No. 4,789,478 describes the removal of sediment from effluent by converting inorganic ions by microorganisms into metal sulphates. US Pat. No. 4,354,937 uses liquid culture of SRB to precipitate heavy metals from wastewater. to be.

본 발명은 종래의 SRB 공정이 pH 4.5 정도의 폐수에 대해 적용되던 것을 반송류의 도입을 통해 pH 2.0인 폐수까지 처리할 수 있게 하며, 폐수가 반응기에 유입되기 전에 반응기 밖에서 미리 반송류와 만남으로써 중금속이 침전 및 여과를 통해 처리되어 반응기 내의 침전물 축적을 완화시킨다. 또한 다른 폐수처리장에서 운전중인 상향류 혐기성 슬러지상 공정(UASB)에 형성되어 있던 미생물을 그대로 본 처리공정에 적응시켜 폐수처리시 작업 및 운전 용이성을 향상시키는 데 있다.The present invention enables the conventional SRB process to be applied to wastewater of pH 4.5 through the introduction of the return flow to the wastewater of pH 2.0, by meeting the return flow outside the reactor in advance before the wastewater enters the reactor Heavy metals are treated through precipitation and filtration to mitigate deposit buildup in the reactor. In addition, the microorganisms formed in the upflow anaerobic sludge bed process (UASB) operating in other wastewater treatment plants are adapted to this treatment process as it is to improve the ease of operation and operation in wastewater treatment.

도 1은 본 발명의 처리공정도 이다.1 is a process chart of the present invention.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

10: 반응기 11: 유입관 12: 사력층10: reactor 11: inlet tube 12: fire bed

13: 미생물층 14: 반송류관 15: 배출관13: microbial layer 14: return flow pipe 15: discharge pipe

16: 부유물질 배출밸브 17: 황화수소 배출관 18: 수렴판16: Suspended material discharge valve 17: Hydrogen sulfide discharge pipe 18: Converging plate

20: 혼합기 21: 슬러지 배출밸브 22: 유입밸브20: mixer 21: sludge discharge valve 22: inlet valve

30: 가스여과기 31: 가스배출관 40: 폐수저장조30: gas filter 31: gas discharge pipe 40: waste water storage tank

50: 반송류펌프 60: 폐수펌프50: return flow pump 60: wastewater pump

본 발명은 도 1과 같이 주요구성장치로 반응기(10), 혼합기(20), 가스여과기 30), 폐수저장조(40), 반송류펌프(50), 폐수펌프(60)를 이용하여 생물학적 공정에 의한 중금속 함유 폐수의 처리방법에 관한 것으로서 본 발명의 폐수 처리방법에 이용되는 상기 장치의 구성을 보다 상세히 나타내면 다음과 같다.The present invention is a biological component using a reactor 10, a mixer 20, a gas filter 30, a wastewater storage tank 40, a return flow pump 50, a wastewater pump 60 as a main component as shown in FIG. The present invention relates to a method for treating heavy metal-containing wastewater according to the present invention.

반응기(10)는 저부로부터 사력층(12)과 미생물층(13)을 이루고 있고, 미생물층(13) 상부에 반송류관(14)과 부유물질을 수렴하는 역할을 하는 수렴판(18)이 반응기(10) 양쪽으로 이중으로 구성되고, 반응기(10) 상부에는 가스여과기(30)와 연결되어 있는 황화수소 배출관(17)으로 구성된다.The reactor 10 forms the dead layer 12 and the microbial layer 13 from the bottom, and the converging plate 18 serving to converge the carrier flow pipe 14 and the suspended solids on the microbial layer 13 is a reactor. (10) It is composed of a double in both sides, the reactor 10 is composed of a hydrogen sulfide discharge pipe 17 is connected to the gas filter 30.

상기 반응기(10) 일측에는 저부에 슬러지 배출밸브(21)가 설치된 혼합기(20)를 구비하고, 상부에 반송류펌프(50) 및 폐수펌프(60)와 연결하며, 폐수펌프(60)는 폐수저장조40)와 연결하고, 반송류펌프(50)는 반응기(10) 내부의 반송류관(14)과연결하는 한편, 혼합기(20)는 유입밸브(22)를 갖는 일측의 유입관(11)으로 반응기 10)의 사력층(12)과 연결된 구조이다.One side of the reactor 10 is provided with a mixer 20 having a sludge discharge valve 21 installed at a bottom thereof, connected to a return flow pump 50 and a wastewater pump 60 at an upper portion thereof, and the wastewater pump 60 is wastewater. Connected to the reservoir 40, and the return flow pump 50 is connected to the return flow pipe 14 inside the reactor 10, while the mixer 20 is connected to the inlet pipe 11 on one side having the inlet valve 22. 10) is connected to the history layer 12 of the structure.

상기의 장치를 이용한 본 발명의 중금속 함유 폐수의 처리방법을 구체적으로 설명하면 다음과 같다.The method for treating heavy metal-containing wastewater of the present invention using the above apparatus will be described in detail.

먼저 반응기(10)에 폐수를 유입하기 전에 반응기(10) 내부의 미생물층(13)에 황산염환원미생물(SRB)로서 다른 폐수처리장에서 운전중인 상향류 혐기성 슬러지상 공정(UASB)에 존재하는 그래뉼(granule) 형태의 혼합상 미생물인 디설퍼비브리오(Desulfovibrio), 디설퍼코커스(Desulfococcus), 디설포벌버스 (Desulfobulbus) 등을 넣고 pH 7, 30∼35℃인 온화한 조건의 합성폐수 또는 아래의 표 1의 배합비로 구성된 배지를 이용해 황산염환원미생물을 수리학적 체류시간 (Hydraulic Retention Time, HRT)을 48시간 하여 연속적으로 유입하여 적응 (acclimation) 시킨다. 이때 황산염환원미생물의 적응유무는 유출수의 산화환원포텐셜(OPR) 값과 알칼리도 등을 측정하여 안정화된 값을 나타내는 시점을 적응된 시점으로 하여 적응을 확인한다.First, the granules present in the upflow anaerobic sludge phase process (UASB) operating in other wastewater treatment plants as sulfate reduction microorganisms (SRB) in the microbial layer 13 inside the reactor 10 before the wastewater is introduced into the reactor 10. Synthetic wastewater in a mild condition with pH 7, 30-35 ° C. by adding granule-type mixed phase microorganisms such as Desulfovibrio, Desulfococcus, and Desulfobulbus, etc. Sulfate reduction microorganisms are acclimated continuously by introducing 48 hours of hydraulic retention time (HRT) using a medium consisting of a mixing ratio. At this time, the presence or absence of adaptation of sulfate-reducing microorganism is confirmed by adapting the time point indicating the stabilized value by measuring the redox potential (OPR) value and alkalinity of the effluent.

표 1. 배지의 배합비Table 1. Mixing ratio of medium

성 분ingredient 사용량(g/ℓ)Usage (g / ℓ) KH2PO4 KH 2 PO 4 0.270.27 K2HPO4 K 2 HPO 4 0.350.35 CaCl2·H2OCaCl 2 H 2 O 0.0750.075 MgCl2·6H2OMgCl 2 · 6H 2 O 0.0750.075 NH4ClNH 4 Cl 0.30.3 Na2SO4 Na 2 SO 4 0.142(for 1 mM SO4 2-)0.142 (for 1 mM SO 4 2- ) 이스트(yeast) 추출물Yeast extract 0.20.2 탄소원Carbon source 66 mM66 mM

그 다음 반송류 펌프(50)를 이용해서 황산염환원미생물을 포함하고 있는 반송류를 혼합기(20)에 보내고 동시에 폐수펌프(60)를 이용하여 폐수저장조(40)에 있는 폐수를 혼합기(20)로 보내 반응기(10)로부터 나온 반송류와 폐수를 혼합한다. 혼합기(20)내에서 반송류와 폐수의 혼합과정에서 발생하는 슬러지와 폐수중의 부유물질의 일부가 슬러지 배출밸브(21)를 통해 제거되고 반송류와 폐수의 혼합액은 유입관(11)을 거쳐 반응기(10) 내부로 이동한다. 물론 이때의 유입밸브(22)는 개방된 상태이다. 반응기(10) 내부로 들어온 반송류와 폐수의 혼합액은 사력층(12)을 지나면서 더욱 균일한 혼합을 이루고, 미생물층(13)에서 황산염환원미생물과 반응함으로써 폐수의 pH 및 중금속 농도를 배출허용기준치 이하로 낮추게 된다. 한편 폐수중에 존재하는 부유물질은 반응기(10) 내부 양쪽에 이중으로 설치된 수렴판(18)에 부딪치면서 수렴판(18) 사이에 수렴하고 수렴된 부유물질은 부유물질 배출밸브(16)를 통해 반응기(10) 외부로 배출된다. 보통 이 수렴판(18)으로 충분히 제거가 되지 않은 부유물질은 모래여과기 등의 여과단계를 통해 처리된다. 또한 황산염환원미생물과 폐수중의 중금속이 반응하면서 생기는 유해한 황화수소(H2S) 가스는 반응기 (10) 상부에 설치된 황화수소 배출관(17)을 통해 가스여과기(30)로 이동하고 가스여과기(30)에서 여과된 후 외부로 배출된다. 상기에서 언급한 본 발명에 의한 폐수의 처리방법에 있어서, 혼합기(20) 내에서 반송류와 폐수의 혼합과정에서 폐수중의 중금속 농도와 낮은 pH 값이 황산염환원미생물이 적응할 수 있을 정도의 수준으로 상당부분 처리가 일어나게 되어 결국 전체공정을 거치는 동안 방류기준의 10∼30% 수준까지 처리되고, 오염물인 슬러지 또는 부유물질(Suspended solid, SS)의 일부가 반응기(10) 밖에서 미리 침전형태로 여과 또는 침강처리 됨으로 인해 반응기 (10)내의 오염물질의 축적문제를 완화시키는 효과도 가져온다. 또한 본 발명에서 폐수중의 중금속을 침전물 형태로 처리하는데 필요한 황화물(sulfide)은 황산염환원균미생물의 활성을 통해 생성되는데 이를 위한 미생물원으로는 폐수처리에 사용되는 공지의 황산염 환원균 미생물이면 어느것이나 가능하고, 바람직하기로는 현재 공연히 운전중인 타 상향류 혐기성 슬러지상 공정(Upflow Anaerobic Sludge Blanket, UASB)에서 채취한 그래뉼(Granule) 형태의 미생물을 이용하여 그 속에 혼합상으로 존재하는 여러 황산염환원미생물의 활성을 사용한다. 이처럼 상향류 혐기성 슬러지상 공정에 이미 형성되어 있는 그래뉼을 활용하면 처음에 황산염환원미생물을 선별하고 입자상의 그래뉼을 형성하는 단계를 생략할 수 있어 초기 작업(startup)이 매우 용이해진다. 그런데 중금속을 함유한 폐수를 상기에서 언급된 황산염환원미생물에 바로 접촉시켜 연속처리시 황산염환원미생물의 불활성화 현상이 야기되므로 이를 해결하기 위해서 폐수가 반응기(10)로 유입되기전 우선 반응기(10) 내의 황산염환원미생물 층을 통과하여 황산염을 포함하고 있는 반송류를 혼합기(20)에서 반응시켜 1차적인 처리를 거치게 하였다. 이를 통해 황산염환원미생물의 불활성화 문제가 해결되고 상기에서 언급한 것처럼 반응기(10) 내에 슬러지 또는 부유물질이 축적되는 문제가 크게 완화된다.Then, a return flow containing sulfate-reducing microorganisms is sent to the mixer 20 using the return flow pump 50, and at the same time, the wastewater in the wastewater storage tank 40 is transferred to the mixer 20 using the wastewater pump 60. The return stream from the reactor 10 is mixed with the wastewater. Part of the sludge generated in the mixing process of the return stream and the wastewater in the mixer 20 and the suspended solids in the wastewater are removed through the sludge discharge valve 21, and the mixed liquid of the return stream and the wastewater is passed through the inlet pipe 11. Move inside the reactor 10. Of course, the inlet valve 22 is open at this time. The mixed liquid of the return stream and the wastewater introduced into the reactor 10 forms a more uniform mixture through the deadening layer 12, and reacts with the sulfate-reducing microorganisms in the microbial layer 13 to discharge the pH and heavy metal concentration of the wastewater. It will be lowered below the threshold. Meanwhile, the suspended solids present in the wastewater collide with the convergent plates 18 installed on both sides of the reactor 10 and converge between the convergent plates 18. The suspended solids converge through the float discharge valve 16. (10) It is discharged to the outside. Usually, the suspended solids that are not sufficiently removed by the convergence plate 18 are treated through a filtration step such as a sand filter. In addition, the harmful hydrogen sulfide (H 2 S) gas generated by the reaction of sulfate-reducing microorganisms and heavy metals in the waste water is moved to the gas filter 30 through the hydrogen sulfide discharge pipe 17 installed at the upper portion of the reactor 10, and in the gas filter 30. After filtration, it is discharged to the outside. In the wastewater treatment method according to the present invention mentioned above, the heavy metal concentration and low pH value in the wastewater during the mixing of the return stream and the wastewater in the mixer 20 to the level that the sulfate-reducing microorganism can adapt to A large part of the treatment takes place, and eventually, during the whole process, up to 10 to 30% of the discharge standard, some of the contaminant sludge or suspended solids (SS) are filtered out of the reactor 10 in a pre-sedimentation form or The sedimentation treatment also has the effect of mitigating the accumulation of contaminants in the reactor (10). In the present invention, the sulfide (sulfide) required to treat the heavy metals in the waste water in the form of precipitates is produced through the activity of sulfate-reducing microorganisms, and as a microbial source for this, any known sulfate reducing microorganisms used for wastewater treatment may be used. It is possible and preferably using granules-type microorganisms collected from other upflow anaerobic sludge blanks (UASB), which are currently in operation, to reduce the number of sulfate-reducing microorganisms present in the mixed phase therein. Use activity. The use of granules already formed in the upflow anaerobic sludge phase process allows the initial screening to be very easy since the steps of initially screening sulfate-reducing microorganisms and forming granular granules can be omitted. However, in order to solve this problem, the wastewater containing heavy metals is directly contacted with the sulfate-reducing microorganisms mentioned above. Through the sulfate reduction microorganism layer in the reactor, the return stream containing sulfate was reacted in the mixer 20 to undergo a first treatment. This solves the problem of inactivation of sulfate-reducing microorganisms and greatly alleviates the problem of sludge or suspended matter accumulating in the reactor 10 as mentioned above.

이하 본 발명을 다음의 실시예에 의하여 설명하고자 한다. 그러나 이것에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described by the following examples. However, the technical scope of the present invention is not limited by this.

< 실시예 ><Example>

상기에서 언급한 장치의 반응기(10)내 미생물층(13)에 황산염환원균미생물원으로서 충청북도 청원 소재 진로맥주공장 내 폐수처리장의 상향류 혐기성 슬러지상 공정반응기에 이미 형성되어 있는 디설퍼비브리오 (Desulfovibrio), 디설퍼코커스(Desulfococcus), 디설포벌버스(Desulfobulbus) 등의 그래뉼을 이용하고 폐수는 도금폐수(정풍물산)와 광산폐수(일광광산)를 1:1로 혼합한 250ℓ 폐수를 폐수저장조(40)에 보관한 후 상기에서 언급한 본 발명의 방법을 이용하여 폐수를 처리한 후 폐수의 pH 및 중금속 농도의 변화를 측정하였다. 이때 반응기(10)내에서 폐수의 수리학적 체류시간(HRT)을 48시간으로 하고 이 공정을 10개월 이상 처리하였을 때 폐수의 처리전 pH 및 중금속 농도와 처리후의 pH 및 중금속 농도의 상향치를 방류기준과 함께 아래의 표 2에 나타내었다.Desulfovibrio already formed in the upflow anaerobic sludge process reactor of a wastewater treatment plant in Jinro Beer Factory, Chungcheongbuk-do, Korea as a sulfate microbial microorganism source in the microbial layer 13 in the reactor 10 of the above-mentioned device. Wastewater storage tank (40) using granules such as Desulfococcus, Desulfobulbus, etc., and 1: 1 wastewater mixed with plating wastewater (Jeongpoongsan) and mine wastewater (daylight mine). After storage, the wastewater was treated using the above-mentioned method of the present invention, and then the pH and heavy metal concentrations of the wastewater were measured. At this time, the hydraulic retention time (HRT) of the wastewater in the reactor 10 is set to 48 hours, and when the process is treated for 10 months or more, the upstream value of the pH and heavy metal concentration before the treatment and the pH and heavy metal concentration after the treatment are discharged. It is shown in Table 2 below.

표 2. 본 발명의 공정으로 중금속의 처리결과 (금속단위 : ppm)Table 2. Results of Treatment of Heavy Metals by the Process of the Invention (Metal Unit: ppm)

구 분division pHpH CrCr CuCu ZnZn PbPb SnSn AgAg 처 리 전Before processing 2.2972.297 23.8723.87 9.989.98 44.0644.06 50.0050.00 18.5018.50 0.750.75 방류기준Discharge standard 5.8-8.65.8-8.6 22 33 55 1One -- -- 처 리 후After treatment 6.0-7.06.0-7.0 <0.05<0.05 <0.08<0.08 <0.06<0.06 <0.10<0.10 <0.10<0.10 <0.08<0.08

본 발명은 기존의 SRB 공정이 pH 4.5 정도의 폐수에 대해 적용되던 것을 반송류(Recycle)의 도입을 통해 생물반응기로 바로 유입하지 않고 반송류와 한번 만나 섞이게 함으로써 pH 2.0인 폐수까지 처리할 수 있다. 또한 오염물의 일부가 생물반응기 밖에서 미리 침전형태로 여과 또는 침강처리 됨으로 인해 생물반응기 내의 부유물질 축적을 방지할 수 있다. 그리고 다른 폐수처리장에서 운전중인 UASB에 형성되어 있던 미생물을 그대로 본 발명의 처리공정에 적응시킴으로써 초기의 공정 작업이 용이하다.The present invention can treat wastewater of pH 2.0 by allowing the SRB process to be applied to wastewater at pH 4.5 or more by mixing once with the return stream without introducing into the bioreactor through the introduction of recycle stream. . In addition, some of the contaminants may be filtered or settled out of the bioreactor in the form of pre-sedimentation to prevent the accumulation of suspended solids in the bioreactor. In addition, the initial process operation is easy by adapting the microorganisms formed in the UASB operating in other wastewater treatment plants as it is in the treatment process of the present invention.

Claims (2)

미생물을 이용하여 폐수를 처리하는 공지의 생물학적 처리방법에 있어서,In a known biological treatment method for treating wastewater using microorganisms, 미생물층에 황산염환원균과 폐수를 미리 반응시킨 반송류와 처리를 요하는 폐수를 혼합하는 단계와, 상기 반송류와 폐수의 혼합액을 미생물층에서 반응시켜 폐수를 처리하는 단계를 포함함을 특징으로 하는 생물학적 공정에 의한 중금속을 함유한 폐수의 처리방법.And mixing the return stream in which the microbial layer reacts with the sulfate reducing bacteria and the wastewater and the wastewater requiring treatment, and treating the wastewater by reacting the mixed solution of the return stream and the wastewater in the microbial layer. A method for treating wastewater containing heavy metals by a biological process. 제 1항에 있어서, 상기 황산염환원균은 공지의 상향류 혐기성 슬러지상 공정에 사용되는 그래뉼 형태의 혼합상 미생물임을 특징으로 하는 생물학적 공정에 의한 중금속을 함유한 폐수의 처먕방법.The method of treating wastewater containing heavy metals by biological processes according to claim 1, wherein the sulfate reducing bacterium is a mixed phase microorganism in granule form used in a known upflow anaerobic sludge phase process.
KR1019990011668A 1999-04-02 1999-04-02 Biological Treatment Method of Wastewater Containing Heavy Metals KR100332674B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990011668A KR100332674B1 (en) 1999-04-02 1999-04-02 Biological Treatment Method of Wastewater Containing Heavy Metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990011668A KR100332674B1 (en) 1999-04-02 1999-04-02 Biological Treatment Method of Wastewater Containing Heavy Metals

Publications (2)

Publication Number Publication Date
KR20000065415A KR20000065415A (en) 2000-11-15
KR100332674B1 true KR100332674B1 (en) 2002-04-17

Family

ID=19578689

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990011668A KR100332674B1 (en) 1999-04-02 1999-04-02 Biological Treatment Method of Wastewater Containing Heavy Metals

Country Status (1)

Country Link
KR (1) KR100332674B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200480626Y1 (en) 2016-04-04 2016-06-16 박지환 Device for prtecting finger from elevevator door

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990068454A (en) * 1999-05-18 1999-09-06 백병천 Treatment Method of Acid Mine Drainage Using SRB(Sulfate Reducing Bacteria) and the Process of AFRM(Anaerobic Floating Media Reactor)
KR100414891B1 (en) * 2001-05-30 2004-01-13 한국과학기술원 Method for recovering heavy metals from the drainage containing heavy metals
WO2012168754A1 (en) * 2011-06-10 2012-12-13 West Bengal University Of Technology Self-sustained microbial detoxification of soluble sulfate from environmental effluent
CN105692893B (en) * 2016-03-17 2018-06-29 中山大学 A kind of method for treating water that emerging organic matter micropollutants are removed based on sulfate reducing bacteria
CN107963769A (en) * 2016-10-18 2018-04-27 中国石油化工股份有限公司 A kind of method of sulfate radical in removal oilfield sewage
CN112573702B (en) * 2020-12-09 2024-01-19 陕西金禹科技发展有限公司 Method and device for treating heavy metals in wastewater by micro-channel reaction
CN115124146A (en) * 2022-07-12 2022-09-30 国环电池科技(苏州)有限公司 Nitrogen and phosphorus removal heavy metal sewage treatment method based on sulfur circulation
CN115367868A (en) * 2022-08-10 2022-11-22 桂林电子科技大学 Method for treating cadmium-zinc-containing mine wastewater by sulfate reducing bacteria

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200480626Y1 (en) 2016-04-04 2016-06-16 박지환 Device for prtecting finger from elevevator door

Also Published As

Publication number Publication date
KR20000065415A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
Mouchet From conventional to biological removal of iron and manganese in France
US8192626B2 (en) Wastewater chemical/biological treatment method for open water discharge
Maiti et al. Comprehensive review on wastewater discharged from the coal-related industries–characteristics and treatment strategies
US6207059B1 (en) Process for treating wastewater
KR100332674B1 (en) Biological Treatment Method of Wastewater Containing Heavy Metals
CN110342750A (en) The synchronous sewage-treatment plant and technique for realizing sludge in-situ decrement and denitrogenation dephosphorizing
CN111362425B (en) Method for treating acid mine wastewater by using micro-electrolysis-enhanced sulfate reducing bacteria and micro-electrolysis bioreactor
US20170260066A1 (en) Struvite formation by precipitation of ammonia in electrocoagulation process
CN108117224A (en) A kind of preprocess method of desulfurization wastewater
CN108059300B (en) Treatment process of chromium-containing sewage
CN211734103U (en) Copper ammonia complex effluent disposal system
Abou-Elela et al. Bio-immobilization of Cr (VI) and its impact on the performance of a pilot scale anaerobic sludge reactor treating municipal wastewater
Einarsen et al. Biological prevention and removal of hydrogen sulphide in sludge at Lillehammer wastewater treatment plant
Reinsel A new process for sulfate removal from industrial waters
KR100311587B1 (en) Batch type apparatus for treating organic wastewater/sewage
RU2356857C2 (en) Method of removing ions of heavy metals from solutions with high concentration of heavy metals
US20050077251A1 (en) Method for control of wastewater treatment plant odors
CN111960607A (en) Treatment process of electroplating wastewater
KR100254523B1 (en) Natural purification method and apparatus thereof
CN215924703U (en) Hazardous waste landfill leachate evaporation treatment system
CN219771904U (en) Production wastewater treatment system of hazardous waste disposal plant
KR0142894B1 (en) Wastewater treatment method using electrolysis of iron
CN217398612U (en) High COD high salt waste water softens pretreatment systems
CN220642843U (en) Nitrogen-phosphorus zero emission system
CN111087081B (en) Wastewater treatment method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080331

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee