KR100320130B1 - Method of forming AlN layer for aluminum parts - Google Patents

Method of forming AlN layer for aluminum parts Download PDF

Info

Publication number
KR100320130B1
KR100320130B1 KR1019990055561A KR19990055561A KR100320130B1 KR 100320130 B1 KR100320130 B1 KR 100320130B1 KR 1019990055561 A KR1019990055561 A KR 1019990055561A KR 19990055561 A KR19990055561 A KR 19990055561A KR 100320130 B1 KR100320130 B1 KR 100320130B1
Authority
KR
South Korea
Prior art keywords
aluminum
nitride layer
forming
power source
aluminum nitride
Prior art date
Application number
KR1019990055561A
Other languages
Korean (ko)
Other versions
KR20000062191A (en
Inventor
이명재
이근호
홍정미
심연근
김윤기
Original Assignee
김덕중
사단법인 고등기술연구원 연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김덕중, 사단법인 고등기술연구원 연구조합 filed Critical 김덕중
Priority to KR1019990055561A priority Critical patent/KR100320130B1/en
Publication of KR20000062191A publication Critical patent/KR20000062191A/en
Application granted granted Critical
Publication of KR100320130B1 publication Critical patent/KR100320130B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding

Abstract

본 발명은 플라즈마질화법을 이용하여 질소개스를 플라즈마상태로 활성화시킨 뒤 알루미늄의 표면과 접촉반응을 일으켜 질화알루미늄층을 형성시키는 알루미늄제 부품의 질화알루미늄층 형성방법에 관한 것으로,The present invention relates to a method for forming an aluminum nitride layer of an aluminum component that forms an aluminum nitride layer by activating a nitrogen gas in a plasma state using a plasma nitriding method to cause a contact reaction with an aluminum surface.

본 발명의 실시로 저가의 알루미늄 합금에도 막형성이 가능해져 제조비용 절감이 가능하고, 질화알루미늄(AlN) 피막은 내식성이 좋을 뿐만 아니라 조직이 치밀하고 다공성이 없으므로 부식을 근본적으로 방지할 수 있으며, 또한 열전달계수가 알루미늄과 비슷한 200 - 300 W/mk 정도로 우수하며, 따라서 AlN은 융점 및 경도가 높고 열전도율도 알루미늄과 비슷하여 열전달 능력이 탁월하므로 내식성 향상에 따른 내구성 증가뿐만 아니라 열전달 효율의 향상에 의한 성능향상 및 에너지 절감 효과도 있다.Due to the practice of the present invention, it is possible to form a film even in a low-cost aluminum alloy, thereby reducing manufacturing costs, and the aluminum nitride (AlN) film not only has good corrosion resistance, but also has a dense structure and no porosity, thereby preventing corrosion essentially. In addition, the heat transfer coefficient is excellent at about 200-300 W / mk similar to that of aluminum. Therefore, AlN has a high melting point and hardness, and heat conductivity is similar to that of aluminum, so that the heat transfer ability is excellent, thereby increasing heat transfer efficiency as well as increasing durability due to improved corrosion resistance. It also improves performance and saves energy.

Description

알루미늄제 부품의 질화알루미늄층 형성방법 {Method of forming AlN layer for aluminum parts}Method of forming aluminum nitride layer of aluminum parts {Method of forming AlN layer for aluminum parts}

본 발명은 알루미늄제 부품의 표면에 질화알루미늄층을 형성시키는 방법에 관한 것으로서, 보다 상세하게는 플라즈마질화법을 이용하여 질소개스를 플라즈마상태로 활성화시킨 뒤 알루미늄의 표면과 접촉반응을 일으켜 질화알루미늄층을 형성시키는 알루미늄제 부품의 질화알루미늄층 형성방법에 관한 것이다.The present invention relates to a method of forming an aluminum nitride layer on the surface of an aluminum component, and more particularly, to activate a nitrogen gas in a plasma state by using a plasma nitriding method, and then to make a contact reaction with the surface of the aluminum aluminum nitride layer It relates to a method for forming an aluminum nitride layer of an aluminum component for forming a film.

알루미늄제 부품의 표면처리 방법에는 화학적 에칭방법과 플라즈마 용사에 의한 기능성 코팅형성방법이 있다.Surface treatment methods for aluminum components include a chemical etching method and a functional coating formation method by plasma spraying.

화학적 에칭방법으로는 알루미늄제 부품을 니켈, 실리콘 등이 함유된 전해욕조에 담가서 니켈, 실리콘과 같은 강성물질을 부품의 표면에 부착시키는 Nikasil 방법이 있다. 그러나 이 Nikasil 방법을 이용하여 엔진의 실린더 라이너로 사용시 황함량이 높은 연료들이 코팅을 갉아내어 코팅기능을 상실하는 문제점이 있다.As a chemical etching method, there is a Nikasil method in which aluminum parts are immersed in an electrolytic bath containing nickel, silicon, and the like, and rigid materials such as nickel and silicon are attached to the surface of the parts. However, when the Nikasil method is used as a cylinder liner of an engine, fuels having a high sulfur content remove the coating and lose the coating function.

Nikasil과 유사한 방법으로, 알루미늄 부품을 실리콘 함량이 높은 알루미늄 합금으로 부터 만들고 난 후, 초기가공을 하고 산성 수조에 담가 내마모성이 강한 실리콘을 드러나게 하는 Alusil 방법이 있다. 그러나 Alusil 방법은 저속, 저압공정이며 알루미늄 합금자재 가격이 비싸서 공정속도나 비용이 크게 문제가 되지 않는 작은 알루미늄제 부품에는 적당하지만, 큰 부품에는 고가며 생산속도가 느린 문제점이 있다.In a similar way to Nikasil, there is an Alusil method, in which aluminum parts are made from aluminum alloys with a high silicon content, followed by initial processing and immersing in an acid bath to reveal abrasion resistant silicon. However, the Alusil method is a low-speed, low-pressure process, and is suitable for small aluminum parts, which are not expensive, because the cost of aluminum alloy materials is high, but large parts are expensive and have slow production speed.

다른 화학적 에칭방법으로는 25% 실리콘을 함유하고 있는 알루미늄합금의 표면층에 미세한 실리콘결정과 금속간에 분무적층공법으로 형성시킨 빌레트(Billet)를 제조한 후 압출하는 기술로 10㎛ 미만의 구상의 실리콘 입자를 라이너 표면에 유지시켜 내마모성을 증가시키고 마찰력을 줄일 수 있는 과공정(hypereutectic) Al-Si 합금공정이 있다. 그러나 이 방법은 라이너와 마찰되는 부품, 즉 엔진의 실린라이너에 적용시 피스톤의 내마모성을 증가시켜야 하며 이를 위한 코팅처리로 단가가 증가되는 문제점이 있었다.Another chemical etching method is a method of preparing and exposing a billet formed by a fine lamination between a fine silicon crystal and a metal on the surface layer of an aluminum alloy containing 25% silicon by spray lamination method, and then spherical silicon particles smaller than 10 μm. There is a hypereutectic Al-Si alloy process that maintains on the liner surface to increase wear resistance and reduce friction. However, this method has to increase the abrasion resistance of the piston when applied to the parts rubbed with the liner, that is, the cylinder liner of the engine, and there is a problem in that the unit cost increases due to the coating treatment.

종래의 플라즈마를 이용한 질화알루미늄층 형성방법은 질화알루미늄층과 모재인 알루미늄 사이의 높은 열팽창계수로 인하여 질화알루미늄층을 10 ㎛ 이상 증가시키면 질화처리후 질화층에 결함이 발생하는 단점이 있다.In the conventional method of forming an aluminum nitride layer using plasma, if the aluminum nitride layer is increased by 10 µm or more due to the high thermal expansion coefficient between the aluminum nitride layer and the base aluminum, defects occur in the nitride layer after the nitriding treatment.

또한, 증발기와 같은 알루미늄제 부품에 보호피막을 형성하는 기술로서는 크게 양극산화(anodizing)법과 도장(painting)법이 있다.Further, as a technique for forming a protective film on an aluminum component such as an evaporator, there are largely anodizing and painting methods.

양극산화(anodizing)법은 알루미늄이 공기와 접촉하기만 하면 공기중의 산소와 결합하여 항상 생기는 자연적인 산화피막(Al2O3)을 인위적으로 더욱 강화시킨 것이라고 할 수 있다. 즉, 황산, 수산, 크롬산 등을 전해액으로 사용하여 알루미늄을 양극으로 하고 납을 음극으로 한 후 직류전원을 연결하면 알루미늄의 표면에 얇은 산화피막이 형성되기 시작하고 시간이 지남에 따라 점점 성장하게 된다. 이 피막은 표면에 미세한 구멍이 많은 다공질이며, 이러한 다공질의 구멍을 메우기 위하여 봉공처리(sealing treatment)라는 공정을 거쳐야만 내식성을 확보할 수 있게 된다.The anodizing method is an artificial reinforcement of the natural oxide film (Al 2 O 3 ), which always occurs when aluminum comes into contact with oxygen in the air once it comes into contact with air. That is, when sulfuric acid, oxalic acid, and chromic acid are used as electrolytes, aluminum is used as an anode, lead is used as a cathode, and a direct current power source is connected. Then, a thin oxide film begins to form on the surface of aluminum and grows over time. This coating is porous with many fine pores on the surface, and it is possible to secure corrosion resistance only through a process called sealing treatment to fill the porous pores.

도장법(painting)은 제품의 표면위에 페인트를 스프레이방식으로 뿌림으로서 도장하거나 페인트속에 담궜다가 꺼내는 딥핑(dipping)법이 있다.Painting is a dipping method that sprays paint on the surface of a product by spraying it or paints it or dips it in the paint.

상기의 양극산화법에 의하여 알루미늄의 표면위에 형성된 산화피막은 표면에 미세한 구멍이 많은 다공질이어서 피팅(pitting)에 의한 부식을 발생시키는 문제점이 있다. 피팅에 의한 부식이란 재료의 표면위에 미세한 구멍이 있을 때 이 부분에 부식이 집중되므로 부식속도가 특히 빨라서 금속내로 깊이 뚫고 들어가는 형태의 국부부식이다. 피팅부식은 모든 부식중에서 가장 파괴적일 뿐만 아니라 그 크기가 작고 부식생성물에 의해 쉽게 가려지기 때문에 발견이 용이하지 않다. 또한, 이러한 부식은 빠른 시간내에 진행되므로 증발기와 같은 부품일 경우 증발기의 냉매가 흐르는 부분에서 부식이 발생하여 냉매가 유출되는 위험성을 안고 있다.The oxide film formed on the surface of aluminum by the anodization method is a porous material having many fine pores on the surface, causing corrosion by pitting. Corrosion by fitting is a local corrosion in the form of a small hole on the surface of the material where corrosion is concentrated in this area, so that the corrosion rate is particularly fast and penetrates deep into the metal. Fitting corrosion is not only easy to find because it is the most destructive of all corrosion, but also small in size and easily masked by corrosion products. In addition, since the corrosion proceeds quickly, parts such as an evaporator have a risk of corrosion occurring in a portion in which the refrigerant flows in the evaporator and the refrigerant flows out.

상기의 도장법에 의한 알루미늄제 부품의 표면처리는 상기 양극산화법과 같은 피팅에 의한 부식은 방지할 수 있지만, 페인트로 형성된 피막은 열전달효율이 나빠서 증발기와 같은 부품의 경우 냉각성능을 떨어뜨리고 그에 따라 전력소모를 증가시키는 문제점이 있었다.The surface treatment of the aluminum parts by the coating method can prevent corrosion by fittings such as the anodizing method, but the coating formed of the paint has a poor heat transfer efficiency, and in the case of a component such as an evaporator, cooling performance decreases and accordingly There was a problem of increasing consumption.

따라서, 본 발명은 상기 문제점을 해결하기 위하여 이루어진 것으로서, 본 발명의 목적은 플라즈마 발생 전원을 복합적으로 이용하여 질화알루미늄층을 균일하게 형성시켜 작은 구멍이나 구부러진 형상이 있는 복잡한 3차원 부품에 치밀하고 균일한 조직의 질화알루미늄층을 형성시킴으로써 내식성과 열교환 효율을 향상시키는 알루미늄제 부품의 질화알루미늄층 형성방법을 제공하는데 있다.Accordingly, the present invention has been made to solve the above problems, and an object of the present invention is to uniformly form an aluminum nitride layer by using a plasma generating power source, and to compact and uniform three-dimensional parts having small holes or bent shapes. The present invention provides a method for forming an aluminum nitride layer of an aluminum component that improves corrosion resistance and heat exchange efficiency by forming an aluminum nitride layer of a structure.

도 1은 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법을 수행하기 위한 장치의 구성을 개략적으로 도시한 도면,1 is a view schematically showing the configuration of an apparatus for performing a method for forming an aluminum nitride layer of an aluminum component according to an embodiment of the present invention;

도 2는 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법의 플로우챠트.2 is a flowchart of a method for forming an aluminum nitride layer of an aluminum component according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 히터 전원공급장치 2 : 펄스직류 공급장치1: heater power supply 2: pulse DC supply

3 : 로터리 펌프 4 : 확산펌프3: rotary pump 4: diffusion pump

5 : 개스공급부 6 : 전원공급장치5 gas supply unit 6 power supply unit

7 : 시료대(음극대) 8 : 히터7: sample stand (cathode stand) 8: heater

9 : 시료지지부 10 : 반응챔버9 sample support 10 reaction chamber

11 : 반응챔버벽 12 : 개폐장치11 reaction chamber wall 12 switchgear

13 : 멀티 커넥션 포트13: multi connection port

상기의 목적을 달성하기 위하여 본 발명의 알루미늄제 부품의 질화알루미늄층 형성방법은 알루미늄제 부품을 반응챔버내의 시료대에 올려 놓고 배기장치를 가동시켜 상기 반응챔버내부의 진공도를 10-5내지 10-6torr로 만드는 배기단계와, 가스공급장치를 통하여 수소와 아르곤등의 가스를 주입시키고 진공도를 0.5 내지 2 torr로 유지시키는 개스주입단계와, 반응챔버내의 히터에 전원을 공급하여 챔버내의 온도를 적정공정온도로 승온시키는 승온단계와, 시료대와 반응챔버벽을 양극으로 하여 고전압을 인가시켜 아르곤 플라즈마를 발생시킴으로써 알루미늄표면에 형성되어 있는 산화막을 제거하는 전처리단계와, 반응챔버내에 질소가스를 주입시키고 시료대와 반응챔버벽을 양극으로 하여 고전압을 인가시켜 질소 플라즈마를 발생시킴으로써 알루미늄표면에 질화알루미늄층을 형성시키는 질화층 형성단계로 이루어져 있는 것을 특징으로 구성하였다.Forming an aluminum nitride layer method of the aluminum component of the present invention in order to attain the object of the aluminum parts to place the sample stage in the reaction chamber by operating the exhaust device 10. As the degree of vacuum inside the reaction chamber -5 to 10- 6 torr evacuation step, gas injecting gas such as hydrogen and argon through the gas supply device, gas injection step to maintain the vacuum degree at 0.5 to 2 torr, and supplying power to the heater in the reaction chamber to adjust the temperature in the chamber An elevated temperature step of raising the temperature to a process temperature; a pretreatment step of removing an oxide film formed on the aluminum surface by generating an argon plasma by applying a high voltage using the sample stage and the reaction chamber wall as an anode; and injecting nitrogen gas into the reaction chamber. By using a sample table and the reaction chamber wall as an anode, high voltage is applied to generate nitrogen plasma. To form an aluminum nitride layer on the titanium surface was composed characterized in that consists of a nitride layer forming step.

이하, 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법에 대하여 첨부도면을 참조하여 상세히 설명한다.Hereinafter, a method of forming an aluminum nitride layer of an aluminum component according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법을 수행하기 위한 장치의 구성을 개략적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법의 플로우챠트이다.1 is a view schematically showing a configuration of an apparatus for performing a method of forming an aluminum nitride layer of an aluminum component according to an embodiment of the present invention, Figure 2 is a view of the aluminum component according to an embodiment of the present invention It is a flowchart of the method of forming an aluminum nitride layer.

도 1과 도 2에서 알 수 있는 바와 같이 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법은 반응챔버(10)내부를 진공화하는 배기단계 (S1)와, 전처리를 위한 가스를 주입하는 개스주입단계(S2)와, 반응챔버(10)내부의 온도를 상승시키는 승온단계(S3)와, 아르곤 플라즈마로 알루미늄제 부품의 표면을 전처리하는 전처리단계(S4)와, 상기 표면에 질화알루미늄층을 형성시키는 질화층형성단계(S5)로 이루어져 있다.As can be seen in Figures 1 and 2, the aluminum nitride layer forming method of an aluminum component according to an embodiment of the present invention is an exhaust step (S1) for evacuating the inside of the reaction chamber 10, and the gas for pretreatment Gas injection step (S2) for injecting, an elevated temperature step (S3) for raising the temperature inside the reaction chamber (10), a pretreatment step (S4) for pretreating the surface of the aluminum component with argon plasma, and the surface It consists of a nitride layer forming step (S5) to form an aluminum nitride layer.

상기 배기단계(S1)는 개폐장치(12)를 열고 상기 알루미늄 부품을 반응챔버 (10)내의 시료대(7) 위의 시료지지부(9)에 지지한 후, 로터리 펌프(3)와 확산펌프 (4)를 순차적으로 가동시켜 반응챔버 내부의 진공도를 10-6torr 정도로 만들어 산소의 잔존량을 최소화시키는 단계이다.In the exhausting step S1, the opening and closing device 12 is opened and the aluminum part is supported by the sample support 9 on the sample table 7 in the reaction chamber 10, and then the rotary pump 3 and the diffusion pump ( Step 4) is performed sequentially to minimize the residual amount of oxygen by making the vacuum degree in the reaction chamber about 10 -6 torr.

상기 개스주입단계(S2)는 개스공급부(5)를 통하여 수소와 아르곤 등의 개스를 주입시킨 다음 반응챔버(10)내부의 진공도를 0.5 내지 2 torr로 유지시키는 단계이다.The gas injection step (S2) is a step of injecting gas such as hydrogen and argon through the gas supply part 5 and then maintaining the vacuum degree in the reaction chamber 10 at 0.5 to 2 torr.

상기 승온단계(S3)는 반응챔버(10)내에 설치되어 있는 히터(8)에 히터 전원공급장치(1)로부터 전원을 공급하여 반응챔버(10)내의 온도를 플라즈마반응이 발생하기에 알맞은 적정 공정온도로 승온시키는 단계이다.The temperature raising step (S3) is a proper process for supplying power from the heater power supply device 1 to the heater 8 installed in the reaction chamber 10 so as to generate a temperature in the reaction chamber 10 so as to generate a plasma reaction. The step of raising the temperature.

상기 전처리단계(S4)는 시료대(7)와 반응챔버벽(11)을 양극으로 하여 전원공급장치(6)로부터 고전압을 인가시켜 아르곤 플라즈마를 발생시킴으로써 알루미늄부품의 표면에 형성되어 있는 산화막을 제거하는 단계인데, 상기에서 반응챔버벽(11)은 접지되고 시료대(7)에는 음의 고전압이 인가되어 아르곤 플라즈마를 발생시키게되고, 발생된 아르곤 플라즈마는 스퍼터링에 의하여 알루미늄제 부품의 표면에 형성되어 있는 산화알루미늄(Al2O3) 피막을 제거시키는 작용을 한다.In the pretreatment step S4, an oxide film formed on the surface of the aluminum component is removed by generating an argon plasma by applying a high voltage from the power supply device 6 using the sample stage 7 and the reaction chamber wall 11 as anodes. In this case, the reaction chamber wall 11 is grounded and a negative high voltage is applied to the sample stage 7 to generate argon plasma, and the generated argon plasma is formed on the surface of the aluminum component by sputtering. It acts to remove the aluminum oxide (Al 2 O 3 ) film.

상기 알루미늄제 부품의 표면의 이물질 등의 완전한 제거를 위해서 상기 배기단계(S1) 이전에 알루미늄 부품을 먼저 NaCl:NaOH:증류수가 1:5:50 비율로 혼합된 용액에 1-3분 담가서 에칭한 후 에탄올에 담가서 초음파세척기로 30분 세척후 건조하는 에칭 및 건조단계를 시행할 수 있으며, 아울러 상기 배기단계(S1) 내지 전처리 단계(S4)를 반복할 수 있다.In order to completely remove foreign substances and the like on the surface of the aluminum component, the aluminum component is first immersed in a solution mixed with NaCl: NaOH: distilled water at a ratio of 1: 5: 50 for 1-3 minutes and etched prior to the evacuation step (S1). After immersing in ethanol and washing with an ultrasonic cleaner for 30 minutes, the etching and drying steps may be performed, and the exhaust step (S1) to pretreatment step (S4) may be repeated.

질화층 형성단계(S5)는 반응챔버(10)내의 히터(8)에 전원을 공급하여 반응챔버(10)내의 온도를 400-500 ℃로 승온한 후, 반응챔버(10)내에 개스공급부(5)로 부터 질소개스를 주입하고 압력을 0.5-2.0 torr로 유지하여 3-5시간 처리하고, 시료대(7)와 멀티 커넥션 포트(13)를 양극으로 하여 각각 펄스직류 공급장치(2)와 전원공급장치(6)로 부터 고전압을 인가시켜 질소 플라즈마를 발생시킴으로써 알루미늄표면에 질화알루미늄층을 형성시킨다. 여기에서도 상기에서와 동일하게 반응챔버벽 (11)은 접지되고 시료대(7)에는 음의 고전압을 인가시켜 질소 플라즈마를 발생시키고, 이렇게 하여 플라즈마상태가 된 질소이온은 시료표면을 형성하고 있는 원소, 즉 알루미늄과 결합하며 확산작용에 의하여 질화알루미늄(AIN)층을 형성하게 된다.In the nitride layer forming step S5, power is supplied to the heater 8 in the reaction chamber 10 to raise the temperature in the reaction chamber 10 to 400-500 ° C., and then the gas supply part 5 in the reaction chamber 10. Inject nitrogen gas from the tank and maintain the pressure at 0.5-2.0 torr for 3-5 hours, and use the sample stand (7) and the multi-connection port (13) as anodes. An aluminum nitride layer is formed on the aluminum surface by applying a high voltage from the supply device 6 to generate a nitrogen plasma. Here again, as in the above, the reaction chamber wall 11 is grounded, and a negative high voltage is applied to the sample stage 7 to generate nitrogen plasma. Thus, the nitrogen ions in the plasma state form the element surface. That is, it combines with aluminum and forms an aluminum nitride (AIN) layer by diffusion.

상기에서 전원공급장치(6)로 부터 인가되는 전원으로서 직류전원을 사용할 경우, 시료표면에 형성된 질화알루미늄이 전기적으로 부도체이기 때문에 상기 표면에 질화알루미늄이 생성되면서 부터 전류의 흐름이 나빠지게 되며 어느 정도 질화알루미늄이 형성된 후에는 상기 표면이 완전히 부도체로 덮히게 되어 플라즈마가 발생하지 않게 되어서 공정시간을 늘려주어도 더 이상의 질화는 어렵게 된다.In the case of using the DC power as the power applied from the power supply device 6, since the aluminum nitride formed on the sample surface is an electrical insulator, the current flows from the aluminum nitride to the surface, and the current flows to some extent. After the aluminum nitride is formed, the surface is completely covered with a non-conductor, so that plasma is not generated, so that further nitriding is difficult even if the process time is increased.

따라서, 질화알루미늄층의 형성을 계속적으로 유도하기 위해서는 쌍극 펄스 직류전원 또는 무선주파수(RF)전원을 사용하여 알루미늄시료에 셀프바이어스 (self-bias)가 걸리도록 하여야 한다. 이 셀프바이어스에 의해 직류전원과 유사한 전계가 계속 유지되고 알루미늄표면위에서 질화반응이 지속적으로 진행될 수 있다.Therefore, in order to continuously induce the formation of the aluminum nitride layer, it is necessary to apply self-bias to the aluminum sample by using a bipolar pulsed DC power source or a radio frequency (RF) power source. This self-biasing allows an electric field similar to a DC power source to be maintained and the nitriding reaction can continue on the aluminum surface.

뿐만 아니라, 질소 플라즈마가 효율적으로 발생하도록 하기 위해서 마이크로웨이브시스템, 전자사이클로트론공명(ECR)시스템, PIII(plasma immersion ion implantation), PSII(plasma source ion implantation) 등을 사용하여 고밀도의 플라즈마를 발생시킴으로써 짧은 시간안에 질화알루미늄층의 두께를 효과적으로 증가시킬 수 있다.In addition, in order to efficiently generate nitrogen plasma, high-density plasma is generated by using a microwave system, an electron cyclotron resonance (ECR) system, plasma immersion ion implantation (PIII), plasma source ion implantation (PSII), etc. It is possible to effectively increase the thickness of the aluminum nitride layer in time.

또한, 개스공급부(5)에 의해 질소개스를 공급하지 않고 질소이온을 발생시킨 후 상기 질소이온을 직접 반응챔버로 주입시킬 수 있는 이온빔(ion beam)장치를 사용할 경우 증가된 두께의 질화알루미늄층을 형성시키는 시간을 더욱 단축시킬 수 있다.In addition, in the case of using an ion beam apparatus capable of directly injecting nitrogen ions into the reaction chamber after generating nitrogen ions without supplying nitrogen gas by the gas supply unit 5, an aluminum nitride layer having an increased thickness may be formed. The time to form can be further shortened.

상기 질화 알루미늄층의 두께는 5-20 ㎛ 으로 하는 것이 바람직하다.It is preferable that the thickness of the said aluminum nitride layer is 5-20 micrometers.

또한 상기 질화층 형성단계(S5)후 반응챔버(10)내에 개스공급부(5)로 부터 산소개스를 주입하여 압력을 1-3 torr로 유지하여 1-3 시간 처리함으로써 상기 질화알루미늄의 표면에 산화알루미늄층을 형성시키는 단계를 추가로 구비할 수 있으며, 이 때 상기 산화알루미늄층의 두께는 1-5 ㎛ 으로 하는 것이 바람직하며, 이는알루미늄제 부품에 알루미늄 질화층을 형성할 경우에 두께 증가시 열팽창에 의한 결함이 발생하나 여기에 산화알루미늄막을 추가로 형성하면 이러한 문제를 방지하면서 두꺼운 막 조절이 가능하고 상품성을 증가시킬 수 있다.In addition, by injecting oxygen gas from the gas supply unit 5 into the reaction chamber 10 after the step of forming the nitride layer (S5), the pressure is maintained at 1-3 torr and treated for 1-3 hours to oxidize the surface of the aluminum nitride. It may further comprise the step of forming an aluminum layer, wherein the thickness of the aluminum oxide layer is preferably 1-5 ㎛, which is a thermal expansion when the thickness increases when forming an aluminum nitride layer on aluminum parts Although defects are caused by the addition of an aluminum oxide film, it is possible to control the thick film and increase the marketability while preventing such a problem.

한편 상기 질화 알루미늄층 형성시 온도를 400 - 500 ℃ 유지하기 위해 사용하는 전원은 단극 펄스직류전원, 쌍극 펄스직류전원, 무선주파수(RF)전원 중에서 하나를 선택하거나 두가지 이상을 복합적으로 사용하며, 상기 직류전원은 -500 ∼ -600 V, 상기 무선주파수(RF)전원은 200 - 400 W 으로 하고, 상기 산화화 알루미늄층 형성시 사용하는 전원은 직류전원 -300 ∼ -500 V, 무선주파수(RF)전원은 200 - 400 W 로 하는 것이 바람직하다.On the other hand, the power source used to maintain the temperature 400-500 ℃ when forming the aluminum nitride layer is selected from a single pole pulse DC power source, a dipole pulse DC power source, a radio frequency (RF) power source or a combination of two or more. The DC power source is -500 to -600 V, and the radio frequency (RF) power source is 200 to 400 W, and the power source used for forming the aluminum oxide layer is the DC power source -300 to -500 V, radio frequency (RF) power source. It is preferable that the power supply is 200-400 W.

알루미늄제 부품을 실린더 라이너로 사용하는 경우, 그 소재는 Al-Si계, Al-Mg계, Al-Mg-Si계 알루미늄 다이캐스팅으로 주조된 것으로, 두께는 2-3 mm 정도의 실린더 모양이며, 표면가공을 통하여 표면조도는 Rz 1-9 ㎛인 것을 특징으로 한다.When aluminum parts are used as cylinder liners, the material is cast from Al-Si, Al-Mg, and Al-Mg-Si aluminum die castings. Surface roughness through the processing is characterized in that Rz 1-9 ㎛.

한편, 본 발명에서 사용하는 알루미늄제 부품은 알루미늄 합금제 부품을 사용하여도 같은 효과를 얻을 수 있다.On the other hand, the aluminum component used by this invention can obtain the same effect also if it uses an aluminum alloy component.

앞에서 설명한 바와 같이, 본 발명의 일 실시예에 의한 알루미늄제 부품의 질화알루미늄층 형성방법에 의하면, 알루미늄 부품의 표면에 질화알루미늄층을 형성함으로써 저가의 알루미늄 합금에도 막형성이 가능해져 제조비용 절감이 가능하고, AlN 피막은 내식성이 좋을 뿐만 아니라 조직이 치밀하고 다공성이 없으므로 부식을 근본적으로 방지할 수 있으며 AlN은 열전달계수가 알루미늄과 비슷한 200 - 300 W/mk 정도이며 따라서 AlN은 융점 및 경도가 높고 열전도율도 알루미늄과 비슷하여 열전달 능력이 탁월하므로 내식성 향상에 따른 내구성 증가뿐만 아니라 열전달 효율의 향상에 의한 성능향상 및 에너지 절감 효과가 있다.As described above, according to the method for forming an aluminum nitride layer of an aluminum component according to an embodiment of the present invention, by forming an aluminum nitride layer on the surface of the aluminum component, a film can be formed on a low-cost aluminum alloy, thereby reducing manufacturing costs. AlN film is not only good at corrosion resistance but also has a dense structure and no porosity, which can fundamentally prevent corrosion.AlN has a heat transfer coefficient of 200-300 W / mk similar to that of aluminum, so AlN has a high melting point and hardness. The thermal conductivity is similar to that of aluminum, so the heat transfer ability is excellent, thereby increasing the durability and improving the energy efficiency by improving heat transfer efficiency.

Claims (10)

알루미늄제 부품을 반응챔버내의 시료대에 올려 놓고 배기장치를 가동시켜 상기 반응챔버내부의 진공도를 10-5내지 10-6torr 정도로 만드는 배기단계와, 개스공급장치를 통하여 수소와 아르곤 등의 개스를 주입시키고 진공도를 0.5 내지 2 torr 로 유지시키는 개스주입단계와, 반응챔버내의 히터에 전원을 공급하여 챔버내의 온도를 적정공정온도로 상승시키는 승온단계와, 시료대와 반응챔버벽을 양극으로 하여 고전압을 인가시켜 아르곤 플라즈마를 발생시킴으로써 알루미늄표면에 형성되어 있는 산화막을 제거하는 전처리단계와, 반응챔버내에 질소개스를 주입시키고 시료대와 반응챔버벽을 양극으로 하여 고전압을 인가시켜 질소 플라즈마를 발생시킴으로써 알루미늄표면에 질화알루미늄층을 형성시키는 질화층형성단계로 이루어져 있는 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The aluminum part was placed on the sample table in the reaction chamber and the exhaust system was operated to increase the vacuum degree in the reaction chamber by 10.-5To 10-6an exhaust step of torring, a gas injection step of injecting gas such as hydrogen and argon through a gas supply device, and maintaining a vacuum of 0.5 to 2 torr; A temperature raising step to raise the temperature, a pretreatment step of removing an oxide film formed on the aluminum surface by generating an argon plasma by applying a high voltage using the sample stage and the reaction chamber wall as an anode, and injecting nitrogen gas into the reaction chamber. A method of forming an aluminum nitride layer of an aluminum component, comprising: forming a nitride layer on an aluminum surface by applying a high voltage to the anode and the reaction chamber wall as an anode to generate a nitrogen plasma. 제 1 항에 있어서, 상기 질화층 형성단계에 이어 반응챔버내에 산소개스를 주입하여 상기 질화알루미늄의 표면에 산화알루미늄층을 형성시키는 산화층 형성단계를 추가하는 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The aluminum nitride layer of the aluminum component according to claim 1, further comprising an oxide layer forming step of forming an aluminum oxide layer on the surface of the aluminum nitride by injecting oxygen gas into the reaction chamber after the forming of the nitride layer. Formation method. 제 1 항에 있어서, 반응챔버벽은 접지시키고 시료대는 음의 고전압을 인가시키는 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The method of claim 1, wherein the reaction chamber wall is grounded and the sample stage is applied with a negative high voltage. 제 1 항에 있어서, 상기 질화층형성단계에서 사용하는 전원은 단극 펄스직류전원, 쌍극 펄스직류전원, 무선주파수(RF)전원 중에서 하나를 선택하거나 두가지 이상을 복합적으로 사용하는 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.[Claim 2] The aluminum power source of claim 1, wherein the power source used in the nitride layer forming step is selected from a monopolar pulsed DC power source, a bipolar pulsed DC power source, a radio frequency (RF) power source, or a combination of two or more thereof. Method of forming an aluminum nitride layer of a part. 제 4 항에 있어서, 상기 직류전원 -500 ∼ -600 V, 상기 무선주파수(RF)전원은 200 - 400 W 인 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.5. The method of forming an aluminum nitride layer of an aluminum component according to claim 4, wherein the direct current power source -500 to -600 V and the radio frequency (RF) power source are 200 to 400 W. 제 1 항에 있어서, 상기 개스공급부는 이온빔(ion beam)장치로 대체되는 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The method of claim 1, wherein the gas supply unit is replaced with an ion beam device. 제 2 항에 있어서, 상기 산화 알루미늄층 형성시 사용하는 전원은 직류전원 -300 ∼ -500 V, 무선주파수(RF)전원은 200 - 400 W 인 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.3. The method for forming an aluminum nitride layer of an aluminum component according to claim 2, wherein a power source used for forming the aluminum oxide layer is a DC power source of -300 to -500 V, and a radio frequency (RF) power source is 200 to 400 W. . 제 1 항 또는 제 2 항에 있어서, 상기 질화알루미늄층의 두께가 5-20 ㎛ 인 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The aluminum nitride layer forming method of an aluminum component according to claim 1 or 2, wherein the aluminum nitride layer has a thickness of 5-20 m. 제 2 항에 있어서, 상기 산화알루미늄층의 두께가 1-5 ㎛ 인 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The method for forming an aluminum nitride layer of an aluminum component according to claim 2, wherein the aluminum oxide layer has a thickness of 1-5 µm. 제 1 항 또는 제 2 항에 있어서, 상기 알루미늄제 부품을 실린더 라이너로 사용하는 경우, 그 소재는 Al-Si계, Al-Mg계, Al-Mg-Si계 알루미늄 다이캐스팅으로 주조된 것으로, 두께는 2-3 mm 정도의 실린더 모양이며, 표면가공을 통하여 표면조도는 Rz 1-9 ㎛인 것을 특징으로 하는 알루미늄제 부품의 질화알루미늄층 형성방법.The method according to claim 1 or 2, wherein when the aluminum component is used as a cylinder liner, the material is cast from Al-Si, Al-Mg, and Al-Mg-Si aluminum die casting. A method of forming an aluminum nitride layer of an aluminum component, characterized by a cylindrical shape of about 2-3 mm and a surface roughness of Rz 1-9 μm through surface processing.
KR1019990055561A 1999-03-05 1999-12-07 Method of forming AlN layer for aluminum parts KR100320130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990055561A KR100320130B1 (en) 1999-03-05 1999-12-07 Method of forming AlN layer for aluminum parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR19990007342 1999-03-05
KR1019990007342 1999-03-05
KR1019990055561A KR100320130B1 (en) 1999-03-05 1999-12-07 Method of forming AlN layer for aluminum parts

Publications (2)

Publication Number Publication Date
KR20000062191A KR20000062191A (en) 2000-10-25
KR100320130B1 true KR100320130B1 (en) 2002-01-10

Family

ID=26634778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990055561A KR100320130B1 (en) 1999-03-05 1999-12-07 Method of forming AlN layer for aluminum parts

Country Status (1)

Country Link
KR (1) KR100320130B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199068A (en) * 1985-02-28 1986-09-03 Sumitomo Electric Ind Ltd Method and apparatus for coating cylindrical conductor member with ceramic
JPH02102110A (en) * 1988-10-06 1990-04-13 Nec Corp Surface-treatment of ultrafine particle of aluminum nitride
KR910013519A (en) * 1989-12-29 1991-08-08 원본미기재 RF transistor package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199068A (en) * 1985-02-28 1986-09-03 Sumitomo Electric Ind Ltd Method and apparatus for coating cylindrical conductor member with ceramic
JPH02102110A (en) * 1988-10-06 1990-04-13 Nec Corp Surface-treatment of ultrafine particle of aluminum nitride
KR910013519A (en) * 1989-12-29 1991-08-08 원본미기재 RF transistor package

Also Published As

Publication number Publication date
KR20000062191A (en) 2000-10-25

Similar Documents

Publication Publication Date Title
JP4987911B2 (en) Inside the plasma processing vessel
US7323230B2 (en) Coating for aluminum component
CN105990081B (en) Plasma processing apparatus and preparation method thereof
EP0383550A2 (en) Plasma forming electrode and method of using the same
US20120186985A1 (en) Component for substrate processing apparatus and method of forming film on the component
KR100924852B1 (en) Parts for substrate processing apparatus and method for forming coating film
US20230092570A1 (en) Method for conditioning semiconductor processing chamber components
CN103866286B (en) For the parts within semiconductor chip reative cell and manufacture method
JPWO2008081748A1 (en) Structural member used in semiconductor or flat display manufacturing apparatus and manufacturing method thereof
US5154816A (en) Process for depositing an anti-wear coating on titanium based substrates
KR100320130B1 (en) Method of forming AlN layer for aluminum parts
JP3148878B2 (en) Aluminum plate, method of manufacturing the same, and anti-adhesive cover using the aluminum plate
KR20130128733A (en) Apparatus and method for ion-implantation and sputtering deposition
US6649039B2 (en) Process of surface treating aluminum articles
CN111394771B (en) Method for preparing coating on surface of copper and copper alloy and copper product
KR100324435B1 (en) Plasma of use nitriding aluminum formative and apparatus
JP3705898B2 (en) Surface-treated aluminum components for vacuum equipment and manufacturing method thereof
JPH10321559A (en) Manufacture of semiconductor device
CN113355713A (en) Antifriction lubricating aluminum alloy
JP2934263B2 (en) Aluminum material and method of manufacturing the same
JP3637255B2 (en) Aluminum nitride material and manufacturing method thereof
CN112301400B (en) Preparation method of hard protection micro-arc oxidation film layer on surface of titanium alloy ball valve
TWI472637B (en) Surface treatment for aluminum alloy and housing manufactured by the aluminum alloy
JPS62202071A (en) Ionic nitriding method for aluminum material
KR20170009759A (en) Metal component and process chamber having the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061122

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee