KR100317999B1 - Oxygen Enriched Waste Incinerator and Incineration Method - Google Patents

Oxygen Enriched Waste Incinerator and Incineration Method Download PDF

Info

Publication number
KR100317999B1
KR100317999B1 KR1019980032409A KR19980032409A KR100317999B1 KR 100317999 B1 KR100317999 B1 KR 100317999B1 KR 1019980032409 A KR1019980032409 A KR 1019980032409A KR 19980032409 A KR19980032409 A KR 19980032409A KR 100317999 B1 KR100317999 B1 KR 100317999B1
Authority
KR
South Korea
Prior art keywords
gas
combustion
waste
oxygen
carbon dioxide
Prior art date
Application number
KR1019980032409A
Other languages
Korean (ko)
Other versions
KR20000013513A (en
Inventor
송석목
Original Assignee
윤명조
주식회사 씨앤지엔테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤명조, 주식회사 씨앤지엔테크 filed Critical 윤명조
Priority to KR1019980032409A priority Critical patent/KR100317999B1/en
Publication of KR20000013513A publication Critical patent/KR20000013513A/en
Application granted granted Critical
Publication of KR100317999B1 publication Critical patent/KR100317999B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 산소부화 폐기물 소각장치 및 소각방법에 관한 것으로, 순산소에 연소후 발생되는 순도 98%이상의 탄산가스의 일부를 적정비율로 혼합하여, 폐기물의 특성에 따라 산소농도를 30∼80%로 부화(富化)한 기체로 폐기물을 1차 연소에서 고온(1,200℃ 이상) 조건에서 무기물은 용융배출되고, 유기물은 부분연소-열분해되어 2차 연소에서 완전연소 되며, 연소후 생성되는 기체는 열회수 장치와 산성가스(SOx, HCl 등) 제거장치, 제진장치 등의 정제과정을 거친 다음, 잔류하는 유일한 기체인 탄산가스를 일부는 1,2차 연소로로 순환, 산소와 혼합, 연소로의 연소용 기체로 사용하고, 일부는 액체탄산, 고체탄산(Dry Ice), 요소비료 등의 제조용 원료로 재활용하며, 최종 잉영 탄산가스는 모두 알카리 수용액(주로 소석회(Ca(OH)2)수용액)으로 흡수하여 무공해물인 고체의 탄산염(주로 석회석(CaCO3)등)으로 전환, 방출하거나, 시멘트 등의 원료로 재활용토록 하여, 2차 공해의 원인이 되는 연소 가스를 완전히 제거하는 것을 특징으로 한다.The present invention relates to an oxygen-enriched waste incineration apparatus and an incineration method, by mixing a portion of carbon dioxide gas having a purity of 98% or more generated after combustion with pure oxygen in an appropriate ratio, the oxygen concentration of 30 to 80% according to the characteristics of the waste The enriched gases are melted and discharged from the primary combustion at high temperatures (above 1,200 ℃), the organic materials are partially combusted and pyrolyzed and completely burned in the secondary combustion. After the purification process of the device, acid gas (SOx, HCl, etc.) removal device, dust removal device, etc., some carbon dioxide gas, which is the only gas remaining, is circulated to the first and second combustion furnaces, mixed with oxygen, and burned in the combustion furnace. It is used as a solvent gas, and some of it is recycled as raw materials for manufacturing liquid carbonic acid, solid carbonic acid (Dry Ice), urea fertilizer, etc., and the final ying carbon dioxide is all absorbed by alkaline aqueous solution (mainly Ca (OH) 2). Pollution-free Conversion to carbonate in the body (mainly limestone (CaCO 3)), release, or ever recycled as raw material for cement or the like, characterized by completely removing the combustion gases that cause secondary pollution.

Description

산소부화 폐기물 소각장치 및 소각방법Oxygen Enriched Waste Incinerator and Incineration Method

본 발명은 순산소를 탄산가스와 적정비율로 혼합하여 소각로에 공급하므로써 폐기물을 안전하고 완전하게 연소시킬 수 있도록 한 폐기물 소각장치 및 소각방법에 관한 것이다.The present invention relates to a waste incineration apparatus and an incineration method that can safely and completely burn waste by supplying pure oxygen with carbon dioxide gas at an appropriate ratio.

일반적으로 가연성 물질은 산소농도가 21%인 공기중에서 보다 산소농도가 높은 기체내에서 연소가 용이하며, 연소가스의 온도가 상승하여 결과적으로 공기중에서 보다 완전연소가 잘 이루어진다. 그러나 산소농도가 너무 높으면 연소속도가 폭발적으로 진행되어 사고의 위험성이 있다.In general, combustible materials are more easily burned in gas with higher oxygen concentration than in air with 21% oxygen concentration, and the temperature of the combustion gas rises, resulting in more complete combustion in air. However, if the oxygen concentration is too high, the combustion speed may explode and there is a risk of an accident.

한편, 폐기물을 소각처리하기 위한 종래의 소각로에서는 연소가스를 법정된 허용치까지 제거시켜 대기로 방출하고, 연소잔재는 고화처리하여 매립하는 방법이 주류를 이루고 있다. 그러나 이러한 연소가스 방출과 잔재 매립은 2차적인 공해요인으로 지적되고 있을 뿐만 아니라, 사회적으로 문제화 되고 있는 실정이다.On the other hand, in the conventional incinerator for incineration of waste, the combustion gas is discharged to the atmosphere by removing the statutory allowance, and the combustion residue is solidified by landfilling. However, such combustion gas emissions and reclamation of landfills are not only pointed out as secondary pollutants, but are also becoming socially problematic.

본 발명은 종래 소각로에서 사용하는 연소용 공기대신 순산소와 탄산가스의 혼합기체를 연소용 기체로 사용하는 산소부화(酸素富化)에 의한 폐기물 중 무기물은 1200℃이상에서 융용시켜 재활용토록 하고, 유기물은 1,2차 연소후 생성되는 연소가스를 정화하고 남게되는 98%이상의 탄산가스를 최대한 1차 재활용하고, 잉여 탄산가스는 고체인 석회석 또는 탄산염으로 전환하여 시멘트, 소석회 등으로 2차 활용하거나, 무공해물로 자연에 방출하는 굴뚝없는 소각로를 실현하여 대기오염과 민원의 표적이 되는 굴뚝을 원천적으로 해소하고 동시에 지구 온난화 물질의 배출을 원천봉쇄하는 경제적인 소각로를 제공하는 것을 목적으로 한다.The present invention is to recycle the inorganic material in the waste by oxygen enrichment using a mixed gas of pure oxygen and carbonic acid gas as combustion gas instead of the combustion air used in the conventional incinerator to melt and recycle at 1200 ℃ or more, Organic materials purify the combustion gas generated after the 1st and 2nd combustion, and recycle the remaining 98% of the carbon dioxide as much as possible first, and convert the surplus carbon dioxide into solid limestone or carbonate and utilize it as cement, slaked lime, etc. It aims to provide an economical incinerator that eliminates the chimneys that are the targets of air pollution and civil complaints and at the same time blocks the discharge of global warming materials by realizing the chimney-free incinerators that emit into nature as pollution-free.

도 1은 본 발명에 의한 폐기물 소각장치의 전체 구조 및 공정도,1 is the overall structure and process of the waste incineration apparatus according to the present invention,

도 2는 본 발명에 의한 1차 용융-열분해 소각로의 상세구조도,2 is a detailed structural diagram of a primary melt-pyrolysis incinerator according to the present invention;

도 3은 본 발명의 소각로에서 생산된 탄산가스의 활용 시스템 설명도이다.3 is an explanatory diagram of a utilization system of carbon dioxide gas produced in an incinerator of the present invention.

※ 도면의 주요부분에 대한 부호의 설명※ Explanation of code for main part of drawing

1 : 저장조 2 : 전처리기1: reservoir 2: preprocessor

3 : 탈취기 4 : 1차 소각로3: deodorizer 4: primary incinerator

5 : 용융물 처리기 6 : 2차 소각로5: melt processor 6: secondary incinerator

7 : 액체산소 저장조 8 : 보일러7: liquid oxygen storage tank 8: boiler

9 : 산성가스 제거기 10 : 집진기9: acid gas remover 10: dust collector

11 : 흡착탑 12 : 탄산가스 저장조11: adsorption tower 12: carbon dioxide gas storage tank

13 : 탄산가스 고화기 14 : 정수기13 carbon dioxide gas solidifier 14 water purifier

15 : 흡착탑 21 : 공급기15: adsorption tower 21: feeder

22 : 소각로 본체 23 : 건조대22: incinerator body 23: drying rack

24 : 저온 열분해대 25 : 연소대24: low temperature pyrolysis zone 25: combustion zone

26 : 용융대 27 : 용융물 출구26 melt zone 27 melt outlet

28 : 상부 출구 31 : 가압기28 upper outlet 31 pressurizer

32 : 제습기 33 : 흡착정제기32: dehumidifier 33: adsorption purifier

34 : 응축기 35 : 액체탄산 저장조34 condenser 35 liquid carbonic acid reservoir

36 : 고체탄산 제조기 37 : 열교환기36: solid carbonate manufacturer 37: heat exchanger

도 1은 본 발명의 소각장치를 도시한 것으로, 이는 전처리부(A), 융용-완전 연소부(B), 후처리부(C)로 이루어져 있으며, 이의 구성과 기능을 설명하면 다음과 같다.1 shows an incineration apparatus of the present invention, which is composed of a pretreatment unit (A), a melt-complete combustion unit (B), and a post-treatment unit (C).

폐기물의 전처리공정(전처리부);Waste pretreatment process (pretreatment unit);

전처리부(A)는 폐기물 저장조(1)와 전처리기(2), 그리고 탈취기(3), 밀봉 등의 부속장치로 구성되어 있다.The pretreatment unit (A) is composed of a waste storage tank (1), a pretreatment unit (2), and accessories such as a deodorizer (3) and a seal.

상기 폐기물 저장조(1)는 반입되는 폐기물과 본 공정에서 발생하는 폐활성탄, 소량의 석회석을 혼합.저장하는 기능을 하며, 전처리기(2)는 폐기물을 일부 파쇄하여 다음 공정으로 공급해주는 기능을 한다. 상기 폐기물 저장조(1)에 소량의 석회석을 주입하는 이유는 폐기물 중에 함유하는 유황성분을 일부 석고로 전환 제거하고, 연소부(4) 최하부에서 배출되는 융용물의 융점을 조절하기 위한 것이다.The waste storage tank (1) mixes and stores the incoming waste and waste activated carbon generated in this process and a small amount of limestone, and the pretreatment (2) functions to partially crush the waste and supply it to the next process. . The reason for injecting a small amount of limestone into the waste storage tank 1 is to convert and remove the sulfur component contained in the waste into some gypsum and to control the melting point of the melt discharged from the lower part of the combustion section 4.

상기 전처리기(2)로는 다음 공정으로 공기의 유입이 없도록 적정량의 탄산가스를 주입하여 폐기물과 함께 유입한 공기와 발생하는 악취를 모두 불어내어 흡착제(주로 활성탄)를 충진한 흡착탑과 같은 탈취기(3)에서 흡착 제거하고, 포화된 흡착제는 가온 탄산가스로 탈취하여 재생사용하며, 재생시 탈취한 기체는 후술하는 소각로로 보내어 연소처리된다.The pretreatment unit 2 is a deodorizer such as an adsorption tower filled with an adsorbent (mainly activated carbon) by injecting an appropriate amount of carbon dioxide gas so that no air is introduced into the next process, blowing out the air introduced with the waste and the odor generated. 3) The adsorbed and desorbed in 3), and the saturated adsorbent is deodorized with warm carbonic acid gas for regeneration, and the gas deodorized during regeneration is sent to the incinerator described later for combustion.

한편, 전처리 공정의 처리과정에서 유출되는 침출수는 여과하여 여액은 소각로 고온부위에 분사-연소처리하고, 여재는 폐기물과 함께 혼합 처리한다.On the other hand, the leachate flowing out of the pretreatment process is filtered, the filtrate is spray-burned in the incinerator hot part, and the filter medium is mixed with the waste.

소각공정(용융-완전연소부);Incineration process (melt-to-burn);

용융-완전연소부(B)는 1차 소각로(4)와 2차 소각로(6)로 구성되어 있는데, 1차 소각로(4)는 본 발명의 핵심장치로서 이의 구조는 도 2에 상세히 도시되어 있다.The melt-complete combustion section B is composed of a primary incinerator 4 and a secondary incinerator 6, the primary incinerator 4 being the core device of the present invention and its structure is shown in detail in FIG. .

도시된 바와 같이, 1차 소각로(4)상부에서는 전처리한 폐기물이 공급장치(21)에 의하여 공급되며, 하부에서는 적정비율로 혼합한 연소용 산소-탄산가스 혼합기체를 불어 넣는다. 1차 소각로(4)로 투입된 폐기물은 상부로부터 건조-기화-열분해-부분연소-용융 등의 순으로, 고형물은 하향으로 흘러내려가면서 단계적으로 대부분 기체로 전환되어 상방으로 흘러 올라가고, 마지막까지 잔류하는 불연성 무기물과 금속류는 최하부에서 용융배출된다.As shown, in the upper part of the primary incinerator 4, the pretreated waste is supplied by the feeder 21, and in the lower part, the combustion oxygen-carbon gas mixture gas mixed at an appropriate ratio is blown in. The waste introduced into the primary incinerator (4) is dried, vaporized, pyrolyzed, partially combusted, melted, etc. from the top, and the solids flow downwardly and are mostly converted to gas and flow upwards. Incombustible inorganics and metals are melt discharged at the bottom.

본 발명의 또하나의 특징은 연소용 공기대신 산소-탄산가스의 혼합기체를 사용하는 것으로, 이는 폐기물의 특성에 따라 산소농도를 용이하게 조절할 수 있으므로 연소상태를 항상 최적의 조건으로 안전하고 안정되게 유지할 수 있고, 고농도 산소에 의한 위험성을 배제할 수 있으며, 질소의 유입이 전무하므로 연소과정에서 공해물질인 질소산화물의 생성이 원천적으로 봉쇄되고, 연소후 최종 잔류물인 탄산가스의 순도를 98%이상 유지할 수 있어 그 활용에 대단히 유익하며, 이로 인해 본 발명에 의한 공정의 경제성을 제고시켜 줄 수 있는 것이다.Another feature of the present invention is to use a mixed gas of oxygen-carbonate gas instead of combustion air, which can easily adjust the oxygen concentration according to the characteristics of the waste, so that the combustion conditions are always safe and stable under optimum conditions. It can maintain and eliminate the risk of high concentration of oxygen, and since there is no nitrogen inflow, the production of nitrogen oxide, a pollutant, is blocked at the source during combustion, and the purity of carbon dioxide gas, the final residue after combustion, is over 98%. It is possible to maintain and very useful for its utilization, thereby improving the economics of the process according to the present invention.

한편, 전처리된 폐기물은 공급기(21)에 의해 1차 소각로(4)의 상부로 공급되며, 폐기물은 상부로부터, 건조대(23), 저온 열분해대(24), 부분 연소대(25), 용융대(26)를 차례로 거처 내려가면서, 모든 유기물은 부분산화와 기화-저온 열분해되어 500-600℃정도의 온도에서 상부 출구(28)를 거쳐 2차 소각로(5)로 보내고, 모든 무기물과 금속류는 최하부에서 1500-1800℃의 고온에서 용융되어 용융물 출구(27)에서 배출, 용융물 처리기(5)로 보내어, 무기물은 유리질화 되어 무공해 골재로 활용하고, 금속류는 제련소의 원료로 활용한다.On the other hand, the pretreated waste is supplied to the upper portion of the primary incinerator 4 by the feeder 21, and the waste is dried from the top 23, the low temperature pyrolysis zone 24, the partial combustion zone 25, and the melting zone. Down through (26), all organics are partially oxidized and vaporized-low temperature pyrolyzed and sent to the secondary incinerator (5) via the upper outlet (28) at a temperature of around 500-600 ° C., with all minerals and metals at the bottom. It melts at a high temperature of 1500-1800 ° C. and is discharged from the melt outlet 27 and sent to the melt processor 5, and the inorganic material is vitrified and used as pollution-free aggregates, and metals are used as raw materials for smelters.

용융대(26)에서 용융상태를 최적의 조건으로 조절하기 위해서, 필요에 따라 소량의 연료를 주입하거나, 폐기물 주입시에 소량의 코오크스 등의 고체연료를 투입할 수도 있다. 그러나 폐기물 중에 무기물 함유량이 적거나, 용융할 필요성이 없는 경우에는 용융대(26)의 온도를 1000℃정도로 낮추고, 소량의 불연성 고형물 제거장치로 간편하게 대체할 수도 있다.In order to adjust the molten state to the optimum conditions in the melting zone 26, a small amount of fuel may be injected as needed, or a small amount of solid fuel such as coke may be added at the time of waste injection. However, if there is little inorganic content in the waste or there is no need for melting, the temperature of the melting zone 26 may be lowered to about 1000 ° C., and a small amount of non-combustible solids removal device may be easily replaced.

한편, 1차 소각로(4)상부에서 배출되는 저온 열분해 기체는 2차소각로(6)에서 적정비율로 혼합한 산소-탄산가스 공급에 의해 고온에서 완전연소 시키는데, 산소-탄산가스의 혼합비율은 소각로의 연소온도를 최소 1200℃이상 되도록, 그리고 연소후 잔류산소의 농도가 최고 2%를 넘지 않는 범위에서 자동 조절한다.On the other hand, the low-temperature pyrolysis gas discharged from the upper part of the primary incinerator 4 is completely burned at a high temperature by supplying oxygen-carbon gas mixed in an appropriate ratio in the secondary incinerator 6, and the mixing ratio of oxygen-carbon gas is incinerator. The temperature of combustion is automatically adjusted to at least 1200 ℃ and the residual oxygen concentration after combustion does not exceed 2%.

1,2차 소각로(4)(6)에 필요한 산소는 대량의 공기액화 공장에서 액체산소로 공급 받아 저장조(7)에 저장하였다가 필요한 양만큼 기화시켜 상온의 적정압력으로공급한다. 이 경우 액체산소의 기화시에 발생하는 냉열은 도 3에 도시한 바와 같이 액체탄산을 제조할 때 필요한 냉열로 유용하게 사용하여, 액체탄산 제조시 소요동력을 약 1/3로 절감 시킨다.Oxygen required for the first and second incinerators (4) and (6) is supplied as liquid oxygen from a large number of air liquefaction plants, stored in the storage tank (7), and vaporized as necessary, and supplied at an appropriate pressure at room temperature. In this case, the cold heat generated during vaporization of the liquid oxygen is usefully used as the cold heat required when preparing the liquid carbonic acid, as shown in FIG.

후처리 공정(후처리부);Post-treatment process (post-treatment section);

후처리부(C)는 2차 소각로(6)에서 배출하는 고온의 연소가스를 우선 공정수를 미분사하는 급냉장치(도시안됨)에서 1000℃ 이하로 냉각된 다음, 연관형 보일러(8)에서 수증기를 생산하고 약 200℃전후로 냉각되어, 반건식 산성가스(SOx, HCl 등) 제거기(9)에서 소석회 스러지에 의해 대부분의 산성가스(SOx, HCl 등)를 제거하고, 집진기(10)에서 고형분을 제거한 다음, 상온으로 냉각하여 활성탄을 충진한 흡착탑(11)에서 미량의 불순물을 흡착 제거 하고 탄산가스 저장조(12)에 저장된다.The after-treatment unit C is first cooled to 1000 ° C. or less in a quenching device (not shown), which firstly sprays high temperature combustion gas discharged from the secondary incinerator 6 and then sprays the process water, and then steam in the associated boiler 8. Is produced and cooled to about 200 ° C to remove most of the acid gases (SOx, HCl, etc.) by slaked sludge in the semi-dry acid gas (SOx, HCl, etc.) remover (9), and remove the solids in the dust collector (10) Next, a small amount of impurities are adsorbed and removed from the adsorption tower 11 filled with activated carbon by cooling to room temperature, and stored in the carbon dioxide storage tank 12.

보일러(8)에서 생산되는 수증기는 자체용 또는 외부의 열원으로, 또는 발전용 등에 활용하며, 집진기(10)에서 포집한 고형물은 폐기물 저장조(1)로 돌려보내어, 폐기물과 함께 처리되고, 집진기(10)를 거친 연소가스는 흡착탑(11)에서 불순물이 흡착/제거되고, 흡착제는 주기적으로 가온 탄산가스로 재생하여 사용한다.Water vapor produced in the boiler 8 is utilized for internal or external heat sources, or for power generation, and the solid matter collected in the dust collector 10 is returned to the waste storage tank 1 to be treated together with the waste, and the dust collector ( The combustion gas passed through 10) is adsorbed / removed from the adsorption tower 11, and the adsorbent is periodically regenerated and used as warm carbonic acid gas.

흡착제의 재생시에 발생하는 불순물을 함유하는 기체는 순환 탄산가스와 함께 1,2차 소각로(4)(6)로 돌려보내어 연소처리하며, 폐활성탄은 폐기물 저장조(1)로 돌려보내어 연소처리한다.The gas containing impurities generated during regeneration of the adsorbent is returned to the first and second incinerators 4 and 6 for combustion with circulating carbon dioxide, and the waste activated carbon is returned to the waste storage tank 1 for combustion.

냉각과정에서 생성되는 응축수는 분리하여 정수기(14)에서 그 수질과 용도에 따라 중화, 침전 등의 화학처리, 정밀여과(Micro-Filtration), 한외여과(Ultra-Filtration), 역삼투막(Reverse Osmosis)처리, 이온교환수지 처리 등의 정제방법 중 필요한 과정을 거친 다음, 보일러 용수, 냉각수, 생활용수 등 필요한 용도에 사용하고 잉여량은 배수 한다.The condensate generated during the cooling process is separated and neutralized and precipitated by chemical treatment, micro-filtration, ultra-filtration, ultra-filtration, and reverse osmosis treatment according to the water quality and use in the water purifier 14. After the necessary process among purification methods such as ion exchange resin treatment, it is used for necessary purposes such as boiler water, cooling water, household water, and the surplus is drained.

상기한 본 발명의 소각장치에서 생성된 탄산가스를 활용하는 시스템이 도 3에 도시되어 있는데, 이는 소각로에서 생성된 탄산가스는 요소비료와 각종 탄산염의 원료로 사용하며 또한 액체산소의 기화 냉열을 이용하여 액체탄산, 고체탄산, 냉동 및 냉장고, 지역 냉방 등에 아래와 같은 방법으로 활용할 수 있도록 한 것이다.The system using the carbon dioxide gas generated in the incinerator of the present invention described above is shown in FIG. 3, which is used as a raw material for urea fertilizers and various carbonates, and also uses vaporizing cold heat of liquid oxygen. It is to be used in the following ways, such as liquid carbonic acid, solid carbonic acid, refrigeration and refrigerator, district cooling.

탄산가스의 활용분야를 나누어 설명하면 다음과 같다.The application fields of carbon dioxide are divided into the following.

액체탄산의 제조 ;Preparation of liquid carbonic acid;

액체탄산은 고체탄산(Dry Ice)의 원료인 동시에, 용접용 불활성가스, 소화기용, 음료수 첨가용, 식물의 성장촉진용 등에 광범하게 사용되며, 우리나라에서는 연간 20∼30만톤의 수요가 있다. 기존의 제조방법은 대부분 석유화학 공장, 암모니아 공장 등에서 부산물로 발생하는 순도 98%이상의 탄산가스를 약 25기압으로 압축후 암모니아 냉동기에 의해 -25℃로 냉각-응축시켜 생산하고 있으며, 액체탄산 1톤당 소요동력은 약 200kw소요된다. 그러나 본 발명에서는 본 공정에서 필요한 액체산소를 기화하는 과정에서 발생하는 냉열을 이용할 수 있기 때문에, 가압기(31)에서 약 6기압 정도의 저압으로 가압한 다음, 수분의 동결방지를 위한 제습기(32), 고도정제를 위한 흡착 정제기(33)를 거쳐 응축기(34)에서 액체산소의 증발잠열을 이용하여 액화시켜 액체 탄산가스 저장조(35)에 저장한 후, 필요한 용도에 따라 출하한다. 이 과정에서 액체탄산 1톤당 소요되는 액체산소 증발량은 1.2톤 정도이며, 동력은 기존의 일반 제조공정에서 필요한 동력의 약 1/3인 60kw 정도로 낮은 것이 특징이다. 이와같이 저렴한 액체탄산이 생산되면, 그 수요처는 기존의 수요처 외에도 광범한 용도가 예상된다.Liquid carbonic acid is a raw material for solid carbonic acid (Dry Ice), and is widely used for welding inert gas, fire extinguisher, beverage addition, plant growth promotion, etc. In Korea, there is a demand of 20-300,000 tons per year. Conventional manufacturing methods produce carbon dioxide with a purity of 98% or more generated as a by-product from petrochemical plants and ammonia plants at about 25 atm, and then cooled and condensed to -25 ° C by an ammonia freezer. The required power is about 200kw. However, in the present invention, since the cold heat generated in the process of vaporizing the liquid oxygen required in the present process can be used, the pressurizer 31 is pressurized to a low pressure of about 6 atm, and then a dehumidifier 32 for preventing freezing of water. After the adsorption purifier 33 for high purification, the condenser 34 is liquefied using the latent heat of evaporation of liquid oxygen and stored in the liquid carbon dioxide storage tank 35, and then shipped according to the required use. In this process, the amount of liquid oxygen evaporated per ton of liquid carbonate is about 1.2 tons, and the power is about 60 kw, which is about one third of the power required in the existing general manufacturing process. When such inexpensive liquid carbonate is produced, its demand is expected to be widely used in addition to the existing demand.

고체탄산의 제조Preparation of Solid Carbonate

고체탄산은 액체탄산을 밀폐된 고체탄산 제조기(36)에서 상압으로 분사하여 생성하는 고체탄산 결정입자를 고압으로 성형하여 제조하는 -78℃의 성형고체로서, 식료품의 저온 냉동저장 등에 특히, 하절기에 널리 사용된다. 액체탄산 1톤당 고체탄산의 생산량은 약 0.5톤 전후이며, 이때 기화한 탄산가스는 회수하여 가압기(31)의 흡입구로 순환시킨다. 고체탄산의 제조는 기존의 제조방법을 그대로 적용하되, 원료인 액체탄산의 생산가가 저렴하므로 기존의 고체탄산 보다 저렴한 가격으로 생산-공급이 가능하다.Solid carbonic acid is a -78 ° C. forming solids produced by molding liquid carbonic acid crystal grains produced by injecting liquid carbonic acid at a high pressure in a closed solid carbonic acid manufacturing machine at a high pressure. Widely used. The amount of solid carbonic acid per ton of liquid carbonate is about 0.5 ton, and the vaporized carbon dioxide is recovered and circulated to the suction port of the pressurizer 31. The production of solid carbonic acid is applied as it is, but the production cost of liquid carbonic acid as a raw material is cheaper, so it is possible to produce and supply at a lower price than the existing solid carbonic acid.

대규모 냉열생산Large-scale cold heat production

본 발명에 의한 탄산가스 활용시스템에서 액체탄산 1톤을 제조하는데 소요되는 동력은 약 60kw이며, 액체탄산 1톤을 증발시킬때 얻을 수 있는 -40℃의 냉열은 약80,000 kcal, 0℃의 냉열은 90,000kcal로서, 결국 동력 1kw에서 -40℃의 냉열 약 1,330 kcal, 0℃의 냉열은 1,500kcal를 얻을 수 있는 셈이며, 이는 기존의 방법으로 냉열을 생산할때 소요되는 동력과 대등하지만, 액체탄산을 심야전력을 이용하는 냉열저장수단으로 이용할 수 있다는 점, -40℃까지의 저온을 얻을 수 있다는 점 등이 유리하며, 대형 냉동저장고, 냉장고, 냉동 및 냉각산업, 지역냉방 등에 광범하게 활용할 수 있다.In the carbon dioxide gas utilization system according to the present invention, the power required to produce one ton of liquid carbonate is about 60 kW, and the cold heat of -40 ° C. which is obtained when evaporating one ton of liquid carbonate is about 80,000 kcal, and the cold heat of 0 ° C. It is 90,000 kcal, which means that at 1 kW of power, about 1,330 kcal of -40 ° C of cold heat and 1,500 kcal of heat of 0 ° C can be obtained, which is equivalent to the power required to produce cold heat by the conventional method, It can be used as a cold heat storage means using the midnight power, it can be advantageous to obtain a low temperature up to -40 ℃, and can be widely used in large freezers, refrigerators, refrigeration and cooling industry, regional cooling.

요소비료의 제조Preparation of Urea Fertilizer

요소비료는 암모니아와 탄산가스로 제조되는 중성 질소질의 대표적인 비료이며, 그 1톤당 탄산가스의 소요량은 약 0.8톤으로, 우리 나라에서는 연간 100만톤의 생산능력을 가지고 있으며, 그 제조방법은 나프타를 열분해해서 생산되는 수소로 암모니아를 만들고 동시에 부생하는 탄산가스와 합성하여 요소비료를 제조하고 있다. 그러나 비산유국인 우리나라에서는 나프타를 수입해서 암모니아를 제조하는 것보다, 산유국에서 천연가스로 제조한 암모니아를 직접 수입하는 편이 훨신 경제적이다. 이런 경우에 저렴한 가격으로 수입한 암모니아는 대량의 탄산가스 공급원만 있으면, 저렴한 요소비료를 생산할 수 있다. 이에 본 발명에서 생산되는 저렴한 탄산가스의 대량 수요처로서는 최적의 활용 분야가 된다. 다만 탄산가스의 수송문제로 그 생산지와 요소비료 공장은 인접한 지역에 있어야 하는 제약이 있다.Urea fertilizer is a representative fertilizer of neutral nitrogen produced by ammonia and carbon dioxide gas, and the required amount of carbon dioxide gas per ton is about 0.8 tons, and in Korea, it has a production capacity of 1 million tons per year. It produces urea fertilizer by making ammonia with hydrogen produced and synthesizing with by-product carbon dioxide. However, it is much more economical to import ammonia made from natural gas directly from oil producing countries than to import naphtha to produce ammonia. In this case, ammonia imported at low prices can produce cheap urea fertilizers if only a large source of carbon dioxide is supplied. As a result, it is an optimal application field for mass demand of inexpensive carbon dioxide produced in the present invention. However, due to the transportation of carbon dioxide, the place of production and the urea fertilizer plant are limited to be in the adjacent area.

한편, 상기와 같은 방법으로 최대한 활용하고 남는 잉여 탄산가스는 도 1의 고화기(13)에서 알칼리 수용액(주로 소석회수)으로 흡수, 고화처리하여 탄산염(석회석, 소다회등)으로 고화시켜 방출 또는 재활용한다. 이때, 탄산가스에 함유하는 비응축성 기체인 과잉산소, 미량의 질소가스 등은 소각로(4)(6)로 회송시킨다. 만일 비응축성 가스에 질소와 같은 불연성 가스가 누적되면 이는 간헐적으로 소형 흡착탑(15)을 거쳐 질소가스에 동반하는 극미량의 불순가스를 흡착 제거하고 대기로 방출한다.On the other hand, the surplus carbon dioxide remaining and utilized to the maximum in the above manner is absorbed and solidified by an aqueous alkali solution (mainly hydrated lime) in the solidifier 13 of FIG. 1 to be solidified by carbonate (limestone, soda ash, etc.) to be released or recycled. do. At this time, excess oxygen which is a non-condensable gas contained in carbon dioxide gas, trace amount of nitrogen gas, etc. is returned to incinerator 4,6. If non-combustible gas such as nitrogen accumulates in the non-condensable gas, it intermittently passes through the small adsorption tower 15 to adsorb and remove the trace amount of impurity gas accompanying the nitrogen gas to the atmosphere.

한편, 초기 투자비를 절감하기 위해 탄산가스 고화기(13)를 생략하고, 잉여탄산가스를 그대로 대기에 방출할 수도 있으며, 이런 경우에도 기존의 소각로 보다는 방출하는 기체량이 기존 소각로의 1/10이하로 매우 적고, 질소가스의 유입이 없으므로 공해물질인 질소산화물은 함유하지 않으며, 최소 1200℃이상의 고온에서 완전연소/정제한 기체이므로 다이옥신, 일산화탄소 등의 유해물 함유량이 극히 적어 무시할 수 있고, 방출기체중에 함유하는 미세 먼지의 함량도 방출량에 비례해서 기존 소각로의 1/10 이하로 현격히 적으며, 필요한 시기에 언제라도 탄산가스의 활용시설과, 고화장치를 추가할 수 있는 장점이 있다.On the other hand, in order to reduce the initial investment cost, the carbon dioxide gasifier 13 may be omitted and surplus carbon dioxide may be discharged to the atmosphere as it is, and in this case, the amount of gas emitted is less than 1/10 of the existing incinerator. It is very small and does not contain nitrogen gas, so it does not contain nitrogen oxide, which is a pollutant.It is a gas that is completely burned / refined at a high temperature of at least 1200 ℃, so it has negligible content of harmful substances such as dioxins and carbon monoxide. In addition, the amount of fine dust is significantly less than 1/10 of the existing incinerator in proportion to the emission amount, and there is an advantage that it is possible to add a carbon dioxide utilization facility and a solidification device at any time.

이하에서는 전형적인 폐기물 표본 3가지에 대하여, 본 발명의 소각장치를 적용한 경우와 기존의 소각방법을 적용한 경우를 각각 시산하여 그 특징을 비교해 보면 다음과 같다.Hereinafter, three typical waste samples are compared with the characteristics of the case where the incinerator of the present invention is applied and the case where the conventional incineration method is applied.

폐기물 표본의 물성 ; (조성 ; 중량%)Physical properties of the waste sample; (Composition:% by weight)

표본-A ;Sample-A;

조성 ; 유기물 45%(탄소분 ; 34.5%. 수소분 ; 7.9%, 산소분 ;57.6 %).Furtherance ; 45% organic matter (carbon fraction; 34.5%. Hydrogen fraction; 7.9%; oxygen fraction; 57.6%).

수분 45%,Moisture 45%,

무기물 10%(금속류, 무기물류)10% minerals (metals, inorganics)

저위 발열량 ; 1030 kcal/kgLow calorific value; 1030 kcal / kg

표본-B ;Sample-B;

조성 ; 유기물 45%(탄소분 ; 55.7%. 수소분 ; 3.1%, 산소분 ; 41.2 %).Furtherance ; 45% organic matter (carbon fraction; 55.7%; hydrogen fraction; 3.1%; oxygen fraction; 41.2%).

수분 45%,Moisture 45%,

무기물 10%(금속류, 무기물류)10% minerals (metals, inorganics)

저위 발열량 ; 1880 kcal/kgLow calorific value; 1880 kcal / kg

표본-C ;Sample-C;

조성 ; 유기물 95%(탄소분 ; 89.6%. 수소분 ; 3.7%, 산소분 ; 6.6 %).Furtherance ; 95% organic matter (carbon content; 89.6%. Hydrogen content; 3.7%, oxygen content: 6.6%).

수분 5%,Moisture 5%,

저위 발열량 ; 6530 kcal/kgLow calorific value; 6530 kcal / kg

연소조건Combustion conditions

본 발명의 소각방법 ;Incineration method of the present invention;

(1) 연소온도를 최소 1200 ℃ 이상으로 한다.(1) The combustion temperature is to be at least 1200 ℃.

(2) 연소용 기체중 산소농도를 30-80 vol % 범위로 한다.(2) The oxygen concentration in the gas for combustion is in the range of 30-80 vol%.

(3) 연소후 잔류산소의 농도를 2 vol %로 한다.(3) The concentration of residual oxygen after combustion is 2 vol%.

(4) 연소열 회수량은 연소온도에서 200 ℃까지의 현열의 90%로 한다.(4) The recovery heat of combustion is 90% of the sensible heat from the combustion temperature to 200 ℃.

기존의 소각방법 ;Conventional incineration methods;

(1) 연소온도를 최소 800℃ 이상으로 한다.(1) The combustion temperature is to be at least 800 ℃.

(2) 연소용 기체는 공기(산소농도 ; 21 vol. %)로 한다.(2) Combustion gas shall be air (oxygen concentration: 21 vol.%).

(3) 연소후 잔류 산소농도를 10 vol.%로 한다.(3) The residual oxygen concentration after combustion is 10 vol.%.

(4) 연소열 회수량은 연소온도에서 200 ℃까지의 현열의 90%로 한다.(4) The recovery heat of combustion is 90% of the sensible heat from the combustion temperature to 200 ℃.

(5) 보조연료는 연소온도 800℃ 미달시에 800℃ 까지 올리는데 필요한, 저위 발 열량 10,000 kcal/kg 의 중유로 한다.(5) Auxiliary fuels shall be heavy oil with a low calorific value of 10,000 kcal / kg, necessary to raise to 800 ° C when the combustion temperature is below 800 ° C.

표본 - ASample-A

표본 - BSample-B

표본 - CSample-C

상기 시산결과에서와 같이 본 발명은 다음과 같은 특징을 갖는다.As in the above calculation results, the present invention has the following features.

첫째, 본 발명의 1,2차 연소로에서 완전 연소 후에 최종 배출되는 기체 유량은 종래의 연소로와 비교할 때 유량 대비1/8.1 내지 1/13.5로 대폭 감소되고, 이에 따라 배출되는 탄산가스를 재활용하지 않고 그대로 방출하여도 환경에 미치는 영향을 격감시킬수 있다. 더구나 본 발명에서는 연소 수 생성되는 기체와 융용물을 전량 재 자원화 할 수 있으므로 굴뚝없는 무방출(zero-emission) 폐기물 처리 장치를 제공하게 된다.First, the final gas flow rate after the complete combustion in the first and second combustion furnace of the present invention is significantly reduced to 1 / 8.1 to 1 / 13.5 compared to the flow rate compared to the conventional combustion furnace, thereby recycling the carbon dioxide gas discharged accordingly If you do not do so, you can reduce the impact on the environment. Furthermore, in the present invention, it is possible to re-resource all the gases and melts generated from the combustion water, thereby providing a chimney-free zero-emission waste treatment apparatus.

둘째, 1,2차 연소로에서 배출되는 연소가스의 유량이 대폭 감소됨에 따라 단위장치의 크기를 감소시킬 수 있어 건설비와 소요부지의 절감을 가져오게 된다.Second, as the flow rate of the combustion gas discharged from the first and second combustion furnaces is drastically reduced, the size of the unit can be reduced, resulting in a reduction in construction cost and required site.

셋째, 산소를 공급하여야 하는 데 드는 추가 비용은 탄산가스의 재활용과 폐기물 처리에 드는 사회적 비용 절감을 감안하여 볼 때 충분히 상쇄될 수 있다.Third, the additional cost of supplying oxygen can be sufficiently offset by considering the social cost savings of carbon dioxide recycling and waste disposal.

이상 설명한 바와 같이 본 발명은 산소부화에 의한 폐기물의 완전 융용배출(무기물)과 완전연소(유기물)가 가능하고, 배출기체가 오직 탄산가스 뿐이므로 이를 재활용 할 수 있으며, 1차 재활용 한 후 잔류 탄산가스는 소석회수 등으로 흡수 석회석으로 전환하여 시멘트 등의 원료로 2차 재활용 할 수도 있으며, 그대로 대기중으로 방출시키더라도 그 양은 기존 소각로의 1/10∼1/20정도에 지나지 않고, 연소중 질소가스의 유입이 없어 질소산화물은 원천적으로 생성되지 않으며, 연소후의 배출기체량이 격감되어 그 처리공정에 소요되는 장치비와 운전비가 대폭 절감된다. 아울러, 본 발명은 기존 소각로와 대비하여 추가로 소요되는 산소공급비용, 탄산가스 고화에 필요한 석회석 비용 등은 저렴한 액체탄산의 판매대가로 충분히 보상되고 남으며, 민원의 표적이 되어 왔던 굴뚝을 없앨 수 있어 피해보상과 행정력 낭비 등의 사회적 비용이 원천적으로 해소되고, 탄산가스의 대기방출을 대폭 삭감 또는 봉쇄할 수 있어 지구온난화 방지효과와 이로 인한 지대한 국제적 파급효과를 갖는다.As described above, the present invention is capable of completely melting discharge (inorganic matter) and complete combustion (organic matter) of the waste by oxygen enrichment, and since the exhaust gas is only carbon dioxide, it can be recycled, and residual carbonic acid after the first recycling The gas can be converted into absorbed limestone with slaked lime and recycled to raw materials such as cement, and even if released into the atmosphere, the amount is only about 1/10 to 1/20 of the existing incinerator. There is no inflow of nitrogen oxides, and since the amount of exhaust gas after combustion is reduced, the equipment cost and operation cost for the treatment process are greatly reduced. In addition, the present invention, compared to the existing incinerator, the additional cost of oxygen supply, limestone cost required to solidify carbon dioxide gas is sufficiently compensated by the sale price of cheap liquid carbonate, and can eliminate the chimney that has been the target of civil complaints Social costs such as compensation for damage and waste of administrative power are fundamentally eliminated, and the carbon dioxide emissions can be greatly reduced or blocked, which has the effect of preventing global warming and the enormous international ripple effect.

Claims (4)

반입되는 폐기물과 폐활성탄, 소량의 석회석을 혼합 저장하는 폐기물 저장조(1),폐기물을 일부 파쇄하여 다음 공정으로 공급해 주는 전처리기(2) 및 탈취기(3)로 이루어진 전처리부(A);A pretreatment unit (A) consisting of a waste storage tank (1) for mixing and storing imported waste and activated activated carbon and a small amount of limestone, a pretreatment unit (2) and a deodorizer (3) for partially crushing the waste and supplying it to the next process; 1차 소각로(4)와 2차소각로(6)를 포함하며, 전처리된 폐기물이 공급기(21)에 의해 1차 소각로(4)의 상부로 공급되고 폐기물은 상부로부터, 건조대(23), 저온 열분해대(24), 부분 연소대(25), 용융대(26)를 차례로 거처 내려가면서, 모든 유기물은 부분산화와 열분해되어 500-600℃정도의 온도에서 상부 출구(28)를 거쳐 2차 소각로(6)로 보내지고, 모든 무기물과 금속류는 최하부에서 1500-1800℃의 고온에서 용융되어 용융물 출구(27)에서 배출되어 용융물 처리기(5)로 보내지며, 1차 소각로(4)상부에서 배출되는 저온 열분해 기체는 2차소각로(6)에서 적정비율로 혼합한 산소-탄산가스 공급에 의해 고온에서 완전연소 시키는 융용-완전 연소부(B); 및A primary incinerator (4) and a secondary incinerator (6), the pretreated waste being fed to the top of the primary incinerator (4) by a feeder (21) and the waste from the top, drying rack (23), low temperature pyrolysis. While going down the stage 24, the partial combustion zone 25, and the melting zone 26, all the organic matter is partially oxidized and pyrolyzed to pass through the upper inlet 28 at the temperature of about 500-600 ° C. 6), all inorganics and metals are melted at a high temperature of 1500-1800 ° C. at the bottom, discharged from the melt outlet 27 and sent to the melt processor 5, and discharged from the upper part of the primary incinerator 4. The pyrolysis gas is a melting-complete combustion unit (B) for completely burning at high temperature by supplying an oxygen-carbonate gas mixed at an appropriate ratio in the secondary incinerator (6); And 상기 2차 소각로(6)에서 배출하는 고온의 연소가스를 급냉장치에서 1000℃ 이하로 냉각시킨 다음, 연관형 보일러(8)에서 수증기를 생산하고 약 200℃전후로 냉각되어, 반건식 산성가스(SOx, HCl 등) 제거기(9)에서 소석회 스러지에 의해 대부분의 산성가스(SOx, HCl 등)를 제거하고, 집진기(10)에서 고형분을 제거한 다음, 상온으로 냉각하여 활성탄을 충진한 흡착탑(11)에서 미량의 불순물을 흡착 제거 하고 탄산가스 저장조(12)에 저장하는 후처리부(C)로 이루어진 것을 특징으로 하는폐기물 소각장치.After cooling the high-temperature combustion gas discharged from the secondary incinerator 6 to 1000 ° C. or less in a quenching device, water vapor is produced in the associated boiler 8 and cooled around 200 ° C., and the semi-dry acid gas (SOx, HCl, etc.) Removed most of the acid gases (SOx, HCl, etc.) by the slaked sludge from the remover (9), removed the solids from the dust collector (10), and then cooled to room temperature in a adsorption tower (11) filled with activated carbon. Waste incineration device, characterized in that consisting of after-treatment (C) to adsorb and remove impurities in the carbon dioxide storage tank (12). ⅰ) 순산소에 연소후 발생되는 순도 98%이상의 탄산가스의 일부를 적정비율로 혼합하여,Iii) A portion of carbon dioxide gas with purity of 98% or higher generated after combustion in pure oxygen is mixed at an appropriate ratio, ⅱ 폐기물의 특성에 따라 상기 ⅰ)단계의 산소/탄산가스 혼합가스의 산소농도를 30∼80vol%로 부화(富化)한 기체로 폐기물을 1,200℃ 이상에서 연소시키는 단계;Ii combusting the waste at 1,200 ° C. or higher with a gas enriched in the oxygen concentration of the oxygen / carbon gas mixture gas of step iii) in the range of 30 to 80 vol% according to the characteristics of the waste; ⅲ) 연소 후 생성되는 기체는 열회수 장치, 산성가스(SOx, HCl 등) 제거장치, 제진장치를 통하여 정화하는 단계;Iii) purifying the gas produced after combustion through a heat recovery device, an acid gas (SOx, HCl, etc.) removal device, a vibration damper; ⅳ) 상기 ⅲ)단계를 거친 후 생성되는 유일한 기체인 탄산가스의 전부 또는 일부를 연소로로 순환, 산소와 혼합, 연소로의 연소용 기체로 사용하는 단계;Iii) circulating, mixing with oxygen, and using combustion gas of the combustion furnace as a whole or part of carbon dioxide gas which is the only gas generated after the step iii); ⅴ) 상기 ⅳ)단계에 사용되지 않는 최종 잔류 탄산가스는 모두 알카리 수용액으로 흡수하여 무공해물인 고체의 탄산염으로 전환시키는 단계를 포함하는 것을 특징으로하는 폐기물 소각방법.And v) converting the final residual carbonic acid gas which is not used in the step iii) into an aqueous alkali solution and converting it into a solid carbonate which is a pollution-free waste. ⅰ) 순산소에 연소후 발생되는 순도 98%이상의 탄산가스의 일부를 적정비율로 혼합하여,Iii) A portion of carbon dioxide gas with purity of 98% or higher generated after combustion in pure oxygen is mixed at an appropriate ratio, ⅱ 폐기물의 특성에 따라 상기 ⅰ)단계의 산소/탄산가스 혼합가스의 산소농도를 30∼80vol%로 부화(富化)한 기체로 폐기물을 1,200℃ 이상에서 연소시키는 단계;Ii combusting the waste at 1,200 ° C. or higher with a gas enriched in the oxygen concentration of the oxygen / carbon gas mixture gas of step iii) in the range of 30 to 80 vol% according to the characteristics of the waste; ⅲ) 연소 후 생성되는 기체는 열회수 장치, 산성가스(SOx, HCl 등) 제거장치, 제진장치를 통하여 정화하는 단계;Iii) purifying the gas produced after combustion through a heat recovery device, an acid gas (SOx, HCl, etc.) removal device, a vibration damper; ⅳ) 상기 ⅲ)단계를 거친 후 생성되는 유일한 기체인 탄산가스의 전부 또는 일부를 액체탄산, 고체탄산(dry Ice), 요소비료, 탄산염의 제조용 원료로 사용하는 단계;Iii) using all or part of the carbon dioxide gas which is the only gas generated after the step iii) as a raw material for producing liquid carbonic acid, solid carbonic acid (dry ice), urea fertilizer and carbonate; ⅴ) 상기 ⅳ)단계에 사용되지 않는 최종 잔류 탄산가스는 모두 알카리 수용액으로 흡수하여 무공해물인 고체의 탄산염으로 전환시키는 단계를 포함하는 것을 특징으로하는 폐기물 소각방법.And v) converting the final residual carbonic acid gas which is not used in the step iii) into an aqueous alkali solution and converting it into a solid carbonate which is a pollution-free waste. ⅰ) 순산소에 연소후 발생되는 순도 98%이상의 탄산가스의 일부를 적정비율로 혼합하여,Iii) A portion of carbon dioxide gas with purity of 98% or higher generated after combustion in pure oxygen is mixed at an appropriate ratio, ⅱ 폐기물의 특성에 따라 상기 ⅰ)단계의 산소/탄산가스 혼합가스의 산소농도를 30∼80vol%로 부화(富化)한 기체로 폐기물을 1,200℃ 이상에서 연소시키는 단계;Ii combusting the waste at 1,200 ° C. or higher with a gas enriched in the oxygen concentration of the oxygen / carbon gas mixture gas of step iii) in the range of 30 to 80 vol% according to the characteristics of the waste; ⅲ) 연소 후 생성되는 기체는 열회수 장치, 산성가스(SOx, HCl 등) 제거장치, 제진장치를 통하여 정화하는 단계;Iii) purifying the gas produced after combustion through a heat recovery device, an acid gas (SOx, HCl, etc.) removal device, a vibration damper; ⅳ) 상기 ⅲ)단계를 거친 후 생성되는 유일한 기체인 탄산가스의 전부 또는 일부를 심야전력을 이용하여 액체탄산화시키고, 이를 대형 냉동저장고, 냉장고, 냉동 및 냉각산업, 지역냉방용 냉열저장수단으로 활용하는 단계;Iv) liquid carbonation of all or part of carbon dioxide gas, which is the only gas generated after the above step iv), using midnight electric power, and used it as a large freezer, refrigerator, freezing and cooling industry, and cold storage means for district cooling Making; ⅴ) 상기 ⅳ)단계에 사용되지 않는 최종 잔류 탄산가스는 모두 알카리 수용액으로 흡수하여 무공해물인 고체의 탄산염으로 전환시키는 단계를 포함하는 것을 특징으로하는 폐기물 소각방법.And v) converting the final residual carbonic acid gas which is not used in the step iii) into an aqueous alkali solution and converting it into a solid carbonate which is a pollution-free waste.
KR1019980032409A 1998-08-10 1998-08-10 Oxygen Enriched Waste Incinerator and Incineration Method KR100317999B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980032409A KR100317999B1 (en) 1998-08-10 1998-08-10 Oxygen Enriched Waste Incinerator and Incineration Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980032409A KR100317999B1 (en) 1998-08-10 1998-08-10 Oxygen Enriched Waste Incinerator and Incineration Method

Publications (2)

Publication Number Publication Date
KR20000013513A KR20000013513A (en) 2000-03-06
KR100317999B1 true KR100317999B1 (en) 2002-04-22

Family

ID=19546847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980032409A KR100317999B1 (en) 1998-08-10 1998-08-10 Oxygen Enriched Waste Incinerator and Incineration Method

Country Status (1)

Country Link
KR (1) KR100317999B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101872893B1 (en) * 2016-12-29 2018-06-29 주식회사 에체 Incineration System using high purity oxygen and its method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467801B1 (en) * 2001-08-31 2005-01-24 재단법인 포항산업과학연구원 Method and Device for high temperature incineration and thermal decomposition of wastes
KR100508856B1 (en) * 2001-12-22 2005-08-17 재단법인 포항산업과학연구원 Method and Device for high temperature incineration and thermal decomposition of wastes
KR20040009151A (en) * 2002-07-22 2004-01-31 박무현 System and method for alternative energy producing from incineration of waste matters
KR101495546B1 (en) * 2013-06-25 2015-02-26 주식회사 멘도타 Processing Method of Radwaste Spent Activated Carbon
KR102618724B1 (en) * 2021-10-28 2023-12-29 성신양회 주식회사 Manufacturing method of cement using combustion gas of cyclonic combustor and discharge gas of furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101872893B1 (en) * 2016-12-29 2018-06-29 주식회사 에체 Incineration System using high purity oxygen and its method

Also Published As

Publication number Publication date
KR20000013513A (en) 2000-03-06

Similar Documents

Publication Publication Date Title
JP3723061B2 (en) Complete resource recycling method for waste without chimney using oxygen-enriched gas
US4353713A (en) Integrated gasification process
US4448588A (en) Integrated gasification apparatus
US7611576B2 (en) Method and plant for processing waste
US20040228788A1 (en) Carbon dioxide absorption and fixation method for flue gas
CN110201975A (en) A kind of abraum salt recycling treatment disposal system and application
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
CN111234880A (en) Clean resource treatment method for solid waste and hazardous waste
CN110201976A (en) A kind of abraum salt recycling treatment processing system and application
WO2001005489A1 (en) Apparatus and method for cleaning acidic gas
KR20090019816A (en) A gas conditioning system
EA021616B1 (en) Gasification of combustible organic materials
JP2008504110A (en) Recycling method and system for municipal solid waste, and method for using solid waste recovered fuel
KR100256401B1 (en) Device & method for recycling scrapped material with hydrogen oxygen plasma torch
CN110201514A (en) A kind of abraum salt recycling treatment exhaust treatment system and application
CN101126035A (en) Phenol water closed operation high-conversion coal gasification production technique
CN210523360U (en) Processing system for waste salt resourceful treatment
KR101475785B1 (en) The carbon capture and storage apparatus from waste using plasma pyrolysis device
KR100317999B1 (en) Oxygen Enriched Waste Incinerator and Incineration Method
CN101725988B (en) Integrated method for treating and utilizing refuse
KR100881757B1 (en) Process of fully utilizable resource recovery system with various waste under emission free basis
CN103134054A (en) Vehicle prying type oily sludge intelligent module processing system
RU2475677C1 (en) Method of processing solid household and industrial wastes using synthesis gas
KR102400718B1 (en) Biogas purification method
KR100554009B1 (en) Method and apparatus for removing organic sludge

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
N231 Notification of change of applicant
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091208

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee