KR100316052B1 - Method for forming NMOS type varactor - Google Patents

Method for forming NMOS type varactor Download PDF

Info

Publication number
KR100316052B1
KR100316052B1 KR1019990064637A KR19990064637A KR100316052B1 KR 100316052 B1 KR100316052 B1 KR 100316052B1 KR 1019990064637 A KR1019990064637 A KR 1019990064637A KR 19990064637 A KR19990064637 A KR 19990064637A KR 100316052 B1 KR100316052 B1 KR 100316052B1
Authority
KR
South Korea
Prior art keywords
gate insulating
insulating film
forming
varactor
manufacturing
Prior art date
Application number
KR1019990064637A
Other languages
Korean (ko)
Other versions
KR20010064440A (en
Inventor
황정웅
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990064637A priority Critical patent/KR100316052B1/en
Publication of KR20010064440A publication Critical patent/KR20010064440A/en
Application granted granted Critical
Publication of KR100316052B1 publication Critical patent/KR100316052B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/93Variable capacitance diodes, e.g. varactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • H01L21/02049Dry cleaning only with gaseous HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

본 발명은 NMOS형 바렉터 제조 방법에 관한 것으로서, 특히 이 제조 방법은 반도체 기판의 n-웰 상부에 주파수 튜닝값을 증가시키기 위하여 질산화막으로 이루어진 게이트절연막을 형성하고, 그 위에 도전체로 이루어진 게이트전극을 형성한 후에 게이트절연막 에지 하부의 n-웰 내에 n+형 불순물이 주입된 소오스/드레인 접합을 형성한다. 그러므로, 본 발명은 게이트절연막의 두께를 변경하지 않고서도 NMOS형 바렉터의 주파수 튜닝 범위를 넓게 확보할 수 있다.The present invention relates to a method for manufacturing an NMOS type varactor, and in particular, the manufacturing method forms a gate insulating film made of an oxynitride film on the n-well of a semiconductor substrate to increase the frequency tuning value, and a gate electrode made of a conductor thereon. After forming the N-type impurity implanted into the n-well under the edge of the gate insulating layer, a source / drain junction is formed. Therefore, the present invention can secure a wide frequency tuning range of the NMOS type selector without changing the thickness of the gate insulating film.

Description

NMOS형 바렉터 제조 방법{Method for forming NMOS type varactor}NMOS type varactor manufacturing method {Method for forming NMOS type varactor}

본 발명은 반도체 수동 소자 제조 방법에 관한 것으로서, 특히 역 바이어스(reverse bias) 다이오드인 NMOS형 바렉터(varactor) 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor passive device, and more particularly, to a method for manufacturing an NMOS type varactor, which is a reverse bias diode.

위상 동기 루프(phase locked loop)를 갖는 주파수 합성장치는 주로 무선 수신기에 사용되고 VCO(Voltage Controlled Oscillator)는 그 제작에 있어 가장 중요한 핵심 소자이다. 여기에서 가장 중요한 파라메터는 VCO의 주파수 튜닝 범위를 결정하는 바렉터이다.Frequency synthesizers with phase locked loops are commonly used in wireless receivers, and voltage controlled oscillators (VCOs) are the most important key components in their fabrication. The most important parameter here is the selector that determines the frequency tuning range of the VCO.

대개 VCO의 주파수 튜닝(tuning)은 실리콘 회로의 역 바이어스(reverse bias) 하의 pn 접합 다이오드나 디플렉션-인버젼(depletion-inversion) 영역의 모스 커패시터, GaAs의 쇼키트 다이오드의 가변 커패시턴스에 의해 행해진다. 일반적인 CMOS/BiCMOS 프로세스에서 pn접합 다이오드의 커패시턴스 튜닝 범위는 매우 좁아 VCO의 튜닝 범위로 사용하는데 어렵다.Usually, the tuning of the VCO is done by the pn junction diode under the reverse bias of the silicon circuit, the MOS capacitor in the deflation-inversion region, and the variable capacitance of the schottky diode in GaAs. . In a typical CMOS / BiCMOS process, the capacitance tuning range of the pn junction diode is very narrow, making it difficult to use as the tuning range of the VCO.

그러므로, 최근에는 축적-디플렉션(accumulation-depletion) 영역에서 NMOS형 구조에 기초한 바렉터 또는 pn 접합 다이오드 대신에 합성 커패시터를 이용하여 제한된 튜닝 범위를 해결하고자 하는 연구가 이루어지고 있다.Therefore, in recent years, research has been made to solve a limited tuning range by using a composite capacitor instead of a pn junction diode or a selector based on an NMOS type structure in an accumulation-depletion region.

또, 토포로지가 낮은 크기로 축소됨에 따라 최대 회로내 공급 전압과 최대 사용가능한 다이오드 역전압도 낮아지고 있다. 이로 인해 pn 접합 바렉터를 사용할 경우 컨트롤 전압이 2V이하면 가능한 주파수 튜닝 범위는 중심값에서 10%이하이다. 이 주파수 튜닝 범위는 일반적인 값에 비해 커패시턴스와 인덕턴스의 변화를 보상하기에 충분하지 않다.In addition, as topologies shrink to lower magnitudes, the maximum in-circuit supply voltage and the maximum usable diode reverse voltage are also lowered. Because of this, with a pn junction varistor, if the control voltage is below 2V, the possible frequency tuning range is less than 10% from the center. This frequency tuning range is not enough to compensate for changes in capacitance and inductance over typical values.

일반적으로, NMOS형 구조의 바렉터는 p형 기판 대신에 n-웰에 제조한다는 점을 제외하고는 n채널 MOSFET와 유사하다. 즉, 게이트전극은 캐패시터의 상부 플레이트노드로서의 역할을 하며, 게이트전극 아래의 웰(well)은 캐패시터의 하부 스토리지노드로서의 역할을 한다. 그리고 게이트 절연막은 절연체 역할을 한다.In general, an NMOS-type structure's collector is similar to an n-channel MOSFET except that it is fabricated in an n-well instead of a p-type substrate. That is, the gate electrode serves as the upper plate node of the capacitor, and the well under the gate electrode serves as the lower storage node of the capacitor. The gate insulating film serves as an insulator.

하지만, p-웰에 p채널 MOSFET를 사용하는 구조는 캐리어 이동 수가 때문에 질적으로 열악하다. 그러나, NMOS형 바렉터의 경우에는 Cmax(최대 커패시턴스)이며, Cmin(최소 커패시턴스)이 중심값에서 30%의 튜닝 범위를 확보할 수 있는 이점이 있어 PMOS형 바렉터보다는 이를 많이 사용하고 있다.However, the structure using p-channel MOSFETs in p-wells is poor in quality due to the number of carrier shifts. However, the NMOS type selector is Cmax (maximum capacitance), and Cmin (minimum capacitance) has the advantage of securing a tuning range of 30% from the center value, so it is used more than the PMOS type selector.

그러나, NMOS형 바렉터의 경우 더 넓은 튜닝 범위를 확보하기 위해서는 게이트 절연막인 산화막의 두께를 더 낮추어야 하나, 소자의 전기적 특성에 맞추어 설계된 n-웰 농도, 산화막의 두께등을 다시 제조 공정시 변경한다는 것은 매우 어려운 일이다.However, in order to secure a wider tuning range, the NMOS type selector needs to further reduce the thickness of the oxide film, which is a gate insulating film, but changes the n-well concentration, oxide thickness, etc., designed for the electrical characteristics of the device, during the manufacturing process. It is very difficult.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 습식 산화법에 의한 게이트절연막대신에 질산화막으로 대체하므로써 더 넓은 주파수 튜닝 범위를 확보할 수 있어 소자의 전기적 특성을 높일 수 있는 NMOS형 바렉터 제조 방법을 제공하는데 있다.An object of the present invention is to replace the gate insulating film by the wet oxidation method in order to solve the problems of the prior art as described above by replacing the nitric oxide film with a wider frequency tuning range can be secured NMOS type bar to improve the electrical characteristics of the device It is to provide a method of manufacturing a collector.

도 1은 본 발명에 따른 질산화(NO) 게이트절연막을 갖는 반도체 수동소자 NMOS형 바렉터 제조 방법을 설명하기 위한 단면도,1 is a cross-sectional view for explaining a method for manufacturing a semiconductor passive device NMOS type varactor having a nitric oxide (NO) gate insulating film according to the present invention;

도 2는 본 발명의 질산화 게이트절연막을 갖는 바렉터와 종래 습식 산화에 의한 게이트절연막을 갖는 바렉터의 전기적 특성을 비교한 그래프.2 is a graph comparing the electrical characteristics of a varactor having a nitrate gate insulating film of the present invention and a varactor having a gate insulating film by conventional wet oxidation.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10: 반도체 기판10: semiconductor substrate

12: n-웰12: n-well

14: 질산화 게이트절연막14: nitric oxide gate insulating film

16: 게이트전극16: gate electrode

18: 소오스/드레인 접합18: source / drain junction

상기 목적을 달성하기 위하여 본 발명은 반도체 수동소자 바렉터 제조 방법에 있어서, 반도체 기판의 n-웰 상부에 주파수 튜닝값을 증가시키기 위하여 질산화막으로 이루어진 게이트절연막을 형성하는 단계와, 게이트절연막 상부에 도전체로 이루어진 게이트전극을 형성하는 단계와, 게이트절연막 에지 하부의 n-웰 내에 n+형 불순물이 주입된 소오스/드레인 접합을 형성하는 단계를 포함한다.In order to achieve the above object, the present invention provides a method for manufacturing a semiconductor passive device varactor, the method comprising: forming a gate insulating film made of an oxynitride film to increase a frequency tuning value on an n-well of a semiconductor substrate; Forming a gate electrode made of a conductor, and forming a source / drain junction in which n + -type impurities are implanted into the n-well under the edge of the gate insulating layer.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 질산화(NO) 게이트절연막을 갖는 반도체 수동소자 NMOS형 바렉터 제조 방법을 설명하기 위한 단면도이다.1 is a cross-sectional view for explaining a method for manufacturing a semiconductor passive device NMOS type varactor having a nitric oxide (NO) gate insulating film according to the present invention.

이를 참조하면, 본 발명의 NMOS형 바렉터 제조 공정은 반도체 기판으로서 실리콘기판(10)에 n-웰(12)을 형성한다. 그리고, 게이트절연막 제조 공정을 진행하기에 앞서 N2분위기에서 HF 세정 공정을 진행하여 기판의 자연 산화막을 제거한다.Referring to this, the NMOS type varactor manufacturing process of the present invention forms the n-well 12 in the silicon substrate 10 as a semiconductor substrate. In addition, the HF cleaning process is performed in an N 2 atmosphere prior to the gate insulating film manufacturing process to remove the native oxide film of the substrate.

그리고, 실리콘기판(10)의 n-웰(12) 표면에 주파수 튜닝값을 증가시키기 위하여 질산화막(NO)으로 이루어진 게이트절연막(14)을 형성한다.In order to increase the frequency tuning value on the surface of the n-well 12 of the silicon substrate 10, a gate insulating film 14 made of a nitric oxide film NO is formed.

여기서, 질산화막(NO) 형성은 700℃∼800℃에서 습식 산화를 진행하고 800℃∼900℃에서 NO 가스를 공급하면서 어닐링(annealing)한다. 이때, 어닐링 공정은 10분∼30분동안 진행하고, NO 가스의 공급은 0.2l∼1l이다.Here, the nitric oxide (NO) formation is subjected to wet oxidation at 700 ° C to 800 ° C and annealed while supplying NO gas at 800 ° C to 900 ° C. At this time, the annealing process proceeds for 10 to 30 minutes, and the supply of NO gas is 0.2l to 1l.

이로 인해, 본 발명은 습식 산화 공정만을 진행하여 게이트절연막을 형성했을때보다 더 넓은 주파수 튜닝 범위를 확보할 수 있다.For this reason, the present invention can secure a wider frequency tuning range than when the gate insulating film is formed only by the wet oxidation process.

그 다음, 상기 게이트절연막(14) 상부에 도전체로서 도프트 폴리실리콘을 증착하고 이를 패터닝하여 게이트전극(16)을 형성한다.Next, doped polysilicon is deposited on the gate insulating layer 14 as a conductor and patterned to form a gate electrode 16.

그리고, 상기 게이트전극(16)에 맞추어 게이트절연막(14)을 패터닝한다.The gate insulating film 14 is patterned according to the gate electrode 16.

이어서, n+ 불순물을 이온 주입하여 게이트절연막(14) 에지 하부의 n-웰(12) 내에 n+형 불순물이 주입된 소오스/드레인 접합(18)을 형성한다.Next, n + impurities are ion-implanted to form a source / drain junction 18 into which n + -type impurities are implanted in the n-well 12 under the edge of the gate insulating layer 14.

상술한 제조 공정에 따라 완성된 본 발명의 NMOS형 바렉터의 동작은 다음과 같다.The operation of the NMOS type varactor of the present invention completed according to the above-described manufacturing process is as follows.

즉, 게이트전극(16)에 플랫밴드(flat band) 전압 이상으로 인가되면 실리콘 기판 표면에는 소오스/드레인 접합(18)에서 공급된 전자에 의해 축적된다. 이때 게이트전극 측면의 커패시턴스는 게이트절연막의 커패시턴스값이다. 그리고, 게이트전극의 전압이 플랫밴드 전압쪽으로 감소함에 따라 실리콘 기판에는 전자 축적이 감소하게 되고 플랫밴드에서는 챠지-프리(charge-free)가 되고 그 이후에는 디플렉션(depletion)이 일어난다. 깊은 축적에서 강한 디플렉션까지 커패시턴스는 최대값(Cmax)에서 최소값(Cmin)으로 변동된다. 축적시 전체 커패시턴스는 게이트절연막의 커패시턴스와 기판에서의 커패시턴스의 결합으로 나타난다.That is, when applied to the gate electrode 16 above the flat band voltage (flat band) voltage is accumulated on the surface of the silicon substrate by the electrons supplied from the source / drain junction 18. At this time, the capacitance of the side of the gate electrode is the capacitance of the gate insulating film. As the voltage of the gate electrode decreases toward the flat band voltage, electron accumulation decreases in the silicon substrate, becomes charge-free in the flat band, and then deflation occurs. From deep accumulation to strong reflection, the capacitance varies from the maximum value Cmax to the minimum value Cmin. During accumulation, the total capacitance is represented by the combination of the capacitance of the gate insulating film and the capacitance in the substrate.

그러므로, 본 발명은 고유전율의 질화물질을 추가 사용하여 질산화막으로 게이트절연막을 형성하기 때문에 최대 커패시턴스와 최소 커패시턴스의 중심에서 ±30%이상의 주파수 튜닝 범위를 확보할 수 있다.Therefore, in the present invention, since the gate insulating film is formed of the nitric oxide film by further using a high dielectric constant nitride material, a frequency tuning range of ± 30% or more can be secured at the center of the maximum capacitance and the minimum capacitance.

도 2는 본 발명의 질산화 게이트절연막을 갖는 바렉터와 종래 습식 산화에의한 게이트절연막을 갖는 바렉터의 전기적 특성을 비교한 그래프이다.2 is a graph comparing the electrical characteristics of the varactor having the nitrate gate insulating film of the present invention and the varactor having the gate insulating film by conventional wet oxidation.

도 2를 참조하면, 종래 900℃에서 습식 산화공정을 진행하여 게이트절연막을 형성했을 때 전체 커패시턴스는 최대 및 최소 커패시턴스의 중심값에서 ±25% 정도 확보할 수 있다. 반면에 본 발명은 800℃∼900℃에서 질산화 공정으로 게이트절연막을 형성함에 따라 전체 커패시턴스가 상기 중심값에서 ±30% 이상을 확보할 수 있어 종래보다 약 10% 이상의 VCO의 주파수 튜닝 범위를 얻을 수 있다.Referring to FIG. 2, when the gate insulating layer is formed by performing a wet oxidation process at 900 ° C., the total capacitance may be about ± 25% from the center of the maximum and minimum capacitances. On the other hand, according to the present invention, as the gate insulating film is formed by nitrification at 800 ° C. to 900 ° C., the total capacitance can secure ± 30% or more from the center value, thereby obtaining a frequency tuning range of about 10% or more of the VCO. have.

즉, 전기적 두께가 30Å인 본 발명의 질산화 게이트절연막과 종래 습식산화 게이트절연막의 바이어스 전압대 커패시턴스를 비교하면, 본 발명의 게이트절연막이 종래에 비해 낮은 바이어스 전압하에서 높은 커패시턴스를 얻을 수 있어 더 넓은 주파수 튜닝 범위를 조정할 수 있다.That is, comparing the bias voltage vs. capacitance of the nitride oxide gate insulating film of the present invention having an electrical thickness of 30 Hz and the conventional wet oxide gate insulating film, the gate insulating film of the present invention can obtain a higher capacitance at a lower bias voltage than the conventional wider frequency. The tuning range can be adjusted.

상기한 바와 같이 본 발명은, 게이트절연막의 두께를 변경하지 않고서도 NMOS형 바렉터의 주파수 튜닝 범위를 넓게 확보할 수 있어 반도체장치의 전기적 특성을 크게 향상시킬 수 있는 효과가 있다.As described above, the present invention can secure a wide frequency tuning range of the NMOS type selector without changing the thickness of the gate insulating film, so that the electrical characteristics of the semiconductor device can be greatly improved.

Claims (4)

반도체 수동소자 바렉터 제조 방법에 있어서,In the semiconductor passive element varactor manufacturing method, 반도체 기판의 n-웰 상부에 주파수 튜닝값을 증가시키기 위하여 질산화막으로 이루어진 게이트절연막을 형성하는 단계;Forming a gate insulating film made of an oxynitride film to increase a frequency tuning value on the n-well of the semiconductor substrate; 상기 게이트절연막 상부에 도전체로 이루어진 게이트전극을 형성하는 단계; 및Forming a gate electrode made of a conductor on the gate insulating film; And 상기 게이트절연막 에지 하부의 n-웰 내에 n+형 불순물이 주입된 소오스/드레인 접합을 형성하는 단계를 포함하여 이루어진 것을 특징으로 하는 NMOS형 바렉터 제조 방법.And forming a source / drain junction in which n + -type impurities are implanted into the n-well under the edge of the gate insulating layer. 제 1항에 있어서, 상기 질산화막의 게이트절연막 제조 공정은 700℃∼800℃에서 습식 산화를 진행하고 800℃∼900℃에서 NO 가스를 공급하면서 어닐링하는 것을 특징으로 하는 NMOS형 바렉터 제조 방법.The NMOS type varactor manufacturing method according to claim 1, wherein the gate insulating film production process of the nitric oxide film is annealed while wet oxidation is performed at 700 ° C to 800 ° C and NO gas is supplied at 800 ° C to 900 ° C. 제 2항에 있어서, 상기 어닐링 공정은 10분∼30분동안 진행하고, NO 가스의 공급은 0.2l∼1l인 것을 특징으로 하는 NMOS형 바렉터 제조 방법.The method of claim 2, wherein the annealing process is performed for 10 minutes to 30 minutes, and the supply of NO gas is 0.21 to 1l. 제 1항에 있어서, 상기 질산화막의 게이트절연막을 형성하기전에 HF 세정 공정을 진행하되, N2분위기에서 실시하는 것을 특징으로 하는 NMOS형 바렉터 제조 방법.The method of claim 1, wherein the HF cleaning process is performed prior to forming the gate insulating film of the nitric oxide film, but performed in an N 2 atmosphere.
KR1019990064637A 1999-12-29 1999-12-29 Method for forming NMOS type varactor KR100316052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990064637A KR100316052B1 (en) 1999-12-29 1999-12-29 Method for forming NMOS type varactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990064637A KR100316052B1 (en) 1999-12-29 1999-12-29 Method for forming NMOS type varactor

Publications (2)

Publication Number Publication Date
KR20010064440A KR20010064440A (en) 2001-07-09
KR100316052B1 true KR100316052B1 (en) 2001-12-12

Family

ID=19631907

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990064637A KR100316052B1 (en) 1999-12-29 1999-12-29 Method for forming NMOS type varactor

Country Status (1)

Country Link
KR (1) KR100316052B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593444B1 (en) 2004-02-12 2006-06-28 삼성전자주식회사 Semiconductor device having MOS varistor and method for manufacturing same
KR100710195B1 (en) * 2005-12-28 2007-04-20 동부일렉트로닉스 주식회사 Method for fabricating of mos varactor

Also Published As

Publication number Publication date
KR20010064440A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US7135375B2 (en) Varactors for CMOS and BiCMOS technologies
KR101013251B1 (en) Mos varactor using isolation well
KR100552916B1 (en) Electrical devices and a method of manufacturing the same
US7700453B2 (en) Method for forming hyper-abrupt junction varactors
US6667203B2 (en) Method of fabricating a MOS capacitor
US7560798B2 (en) High performance tapered varactor
US20140110761A1 (en) Monolithic HBT with Wide-Tuning Range Varactor
US6686640B2 (en) Varactor having improved Q-factor and method of fabricating the same using SiGe heterojunction bipolar transistor
US6320474B1 (en) MOS-type capacitor and integrated circuit VCO using same
US6653716B1 (en) Varactor and method of forming a varactor with an increased linear tuning range
EP1981087B1 (en) Electrical device comprising a voltage dependant capacitance and method for manufacturing the same
US6949440B2 (en) Method of forming a varactor
US7345354B2 (en) Increased quality factor of a varactor in an integrated circuit via a high conductive region in a well
KR100316052B1 (en) Method for forming NMOS type varactor
JP4107362B2 (en) MOS type capacitor and semiconductor integrated circuit device
US7025615B2 (en) Fabrication method, varactor, and integrated circuit
KR101146224B1 (en) Mos varactor and voltage controlled oscillator comprising the same
US6906904B2 (en) Integrated, tunable capacitance
KR100486114B1 (en) Varactor device and method for fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151019

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20191016

Year of fee payment: 19