KR100315252B1 - Alternative Refrigerants for CarAircone/Household Refrigerator - Google Patents

Alternative Refrigerants for CarAircone/Household Refrigerator Download PDF

Info

Publication number
KR100315252B1
KR100315252B1 KR1019990019672A KR19990019672A KR100315252B1 KR 100315252 B1 KR100315252 B1 KR 100315252B1 KR 1019990019672 A KR1019990019672 A KR 1019990019672A KR 19990019672 A KR19990019672 A KR 19990019672A KR 100315252 B1 KR100315252 B1 KR 100315252B1
Authority
KR
South Korea
Prior art keywords
weight
cfc12
refrigerant
less
compressor
Prior art date
Application number
KR1019990019672A
Other languages
Korean (ko)
Other versions
KR20000075201A (en
Inventor
오석재
정동수
Original Assignee
김선태
(주)테크노 켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김선태, (주)테크노 켐 filed Critical 김선태
Priority to KR1019990019672A priority Critical patent/KR100315252B1/en
Publication of KR20000075201A publication Critical patent/KR20000075201A/en
Application granted granted Critical
Publication of KR100315252B1 publication Critical patent/KR100315252B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/32The mixture being azeotropic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/42Type R12

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

본 발명은 CFC12를 대체할 수 있는 혼합냉매에 있어서, 1,1,1,2-테트라플루오로에탄 4.99∼89.73 Weight% 미만, 1,1-디플루오로에탄 5∼74.95 Weight 미만, Trifluoroiodo methane 5∼69.60 Weigh미만 및 첨가제 0.07∼0.5 Weight 로 구성된 근공비성 혼합냉매와 1,1,1,2-테트라플루오로에탄 5∼89.65 Weigh미만, Dimethylether 5∼89.04 Weight 미만, Trifluoroiodomethane 5∼69.7 Weight 미만 및 첨가제 0.05∼0.4 Weight로 구성된 근공비성 혼합냉매와 및 Dimethylether 5∼94.93 Weight 미만, Trifluoroiodomethane 5∼94.05 Weight 미만 및 첨가제 0.05∼0.31 Weight로 구성된 근공비성 혼합냉매에 관한 것이다. 본 발명의 혼합냉매는 오존파괴 가능성이 전혀 없으며 기존의 냉장고 및 자동차용 공조기에서 지금까지 널리 사용되어온 CFC12의 대체냉매로서 냉동성능계수 및 압축기의 냉동체적용량 등에서 우수한 효과를 나타내며 압축기나 윤활유를 바꾸지 않고도 CFC12를 효과적으로 대체할 수 있다.The present invention is a mixed refrigerant that can replace CFC12, 1,1,1,2-tetrafluoroethane less than 4.99 to 89.73 Weight%, 1,1-difluoroethane 5 to less than 74.95 Weight, Trifluoroiodo methane 5 Near azeotropic mixed refrigerant consisting of less than -69.60 Weigh and additives 0.07-0.5 Weight, less than 5-89.65 Weigh of 1,1,1,2-tetrafluoroethane, less than 5-89.04 Weight of Dimethylether, less than 5-69.7 Weight of Trifluoroiodomethane It relates to a near azeotropic mixed refrigerant composed of 0.05 to 0.4 weight and to a near azeotropic mixed refrigerant composed of less than 5 to 94.93 weight of dimethylether, less than 5 to 94.05 weight of trifluoroiodomethane, and 0.05 to 0.31 weight of additive. The mixed refrigerant of the present invention has no possibility of ozone depletion, and is an alternative refrigerant of CFC12, which has been widely used in conventional refrigerators and air conditioners for automobiles, and shows an excellent effect on the freezing performance coefficient and the freezing volume of the compressor, without changing the compressor or lubricant. It can effectively replace CFC12.

Description

자동차 에어컨/가정용 냉장고용 대체냉매{Alternative Refrigerants for CarAircone/Household Refrigerator}Alternative Refrigerants for CarAircone / Household Refrigerator}

본 발명은 복수의 수소화불화탄소, 디메틸에테르, 불화요드화탄소 등으로 구성된 대체냉매에 관한 것이다. 좀더 구체적으로는 자동차 에어컨 및 가정용 냉장고 등에 냉매로 적용되어온 디클로디플루오로메탄(CCI2F2:이하 CFC12라 한다)을 대체할 수 있는 혼합냉매에 관한 것이다.The present invention relates to an alternative refrigerant composed of a plurality of hydrofluorocarbons, dimethyl ether, carbon fluoride iodide and the like. More specifically, the present invention relates to a mixed refrigerant capable of replacing dichlorodifluoromethane (CCI 2 F 2 : hereinafter referred to as CFC12) that has been applied as a refrigerant in automobile air conditioners and household refrigerators.

지금까지는 냉동기, 공기조화기, 열펌프 등의 냉매로서 메탄 또는 에탄에서 유도한 염화불화탄소(Chloro-Fluoro-Carbon: 이하 CFC라 한다)와 수소를 함유하는 '수소화염화불화탄소'(Hydro- Chloro-Fluoro-Carbon: 이하 HCFC라 한다)를 주로 사용해 왔으며, 특히 자동차용 에어컨 및 가정용 냉장고 등에는 비등점이 -29.79℃이고 분자 질량이 120.93kg/kmol인 CFC12를 가장 많이 사용해 왔다.Until now, hydrochlorinated fluorocarbons (Chloro-Fluoro-Carbon: hereinafter referred to as CFC) and hydrogen derived from methane or ethane as refrigerants such as refrigerators, air conditioners and heat pumps (Hydro-Chloro) Fluoro-Carbon (hereinafter referred to as HCFC) has been mainly used, and CFC12, which has a boiling point of -29.79 ° C and a molecular mass of 120.93 kg / kmol, is used most frequently in automobile air conditioners and household refrigerators.

그런데 최근에는 CFC에 의한 성층권 내 오존층의 파괴가 중요한 지구환경 보호문제로 대두됨으로써 완전히 할로겐화되어 성층권 오존파괴 가능성이 높은 CFC의 사용 및 생산이 몬트리얼 의정서에 의해 크게 제한 받고 있다. CFC12는 오존파괴지수(ODP, CFC11의 ODP를 1.0으로 해서 기준으로 사용함)가 CFC 계열의 냉매 중 가장 큰 편에 속하는 것으로(CFC12의 ODP=0.9) 몬트리얼 의정서에 의거하여 그 생산 및 사용이 금지되었다. 따라서 현재는 대부분의 국가들이 HCFC와 같이 ODP가 낮아서 0.0에 가깝거나 HFC와 같이 ODP가 0.0인 대체냉매를 사용하려하고 있고 이들을 개발하기 위해 많은 연구 및 개발 투자를 하고 있다.Recently, the destruction of the ozone layer in the stratosphere by CFCs has emerged as an important global environmental protection problem, and the use and production of CFCs, which are completely halogenated and have a high possibility of stratospheric ozone depletion, are greatly restricted by the Montreal Protocol. CFC12 is the one with the largest ozone depletion index (ODP, OFC of CFC11 as 1.0), which is the largest among CFC series refrigerants (ODP = 0.9 of CFC12) .The production and use of CFC12 is prohibited according to the Montreal Protocol. . As a result, most countries are currently using alternative refrigerants with low ODPs, such as HCFCs, which are close to 0.0 or ODPs, such as HFCs, and are investing heavily in research and development to develop them.

CFC12의 대체냉매로서 유용하려면, 우선 기존의 CFC12 압축기를 크게 개조하지 않고도 적용할 수 있도록 CFC12와 비슷한 증기압을 가져야 하며 또한 유사한 냉동성능계수(Coefficient of performance : 이하 COP라 한다)를 가져야만 한다. 여기에서 냉동성능계수(COP)란 압축기에 가한 일과 대비한 총 냉동효과를 의미하는 것으로서 COP가 클수록 냉동기의 에너지 효율이 좋다고 할 수 있다.To be useful as an alternative to CFC12, it must first have a similar vapor pressure as CFC12 and have a similar Coefficient of Performance (COP) so that it can be applied without major modifications to existing CFC12 compressors. Here, the COP means the total refrigeration effect compared to the work applied to the compressor, and the greater the COP, the better the energy efficiency of the freezer.

한편 냉동/공조기 설계시 COP와 더불어 가장 중요하게 생각하는 인자는 체적능력(Volumetric capacity : 이하 VC라 한다)이다. VC는 단위 체적당 냉동 효과를 의미하는 변수로 단위는 kJ/m3이다. VC는 증기압에 비례하며 압축기의 크기를 나타내주는 인자이다. 대체냉매가 기존의 CFC12의 냉동 능력을 낼 수 있다면 제조업체나 소비자의 입장에서 볼 때에 압축기의 크기를 바꾸지 않고도 냉동/공조기를 제작할 수 있어 매우 유리하다 할 수 있다.On the other hand, the most important factor along with COP in refrigeration / air conditioner design is volumetric capacity (VC). VC is a variable representing the freezing effect per unit volume, the unit is kJ / m 3 . VC is a factor that indicates the size of the compressor, which is proportional to the vapor pressure. If the alternative refrigerant can achieve the refrigeration capacity of the existing CFC12, it can be very advantageous to manufacture a refrigeration / air conditioner without changing the size of the compressor from the standpoint of the manufacturer or consumer.

지금까지의 연구 결과를 살펴보면, 현재 알려진 순수냉매로 CFC12를 대체하는 경우 그 대체 순수냉매의 체적용량(VC)이 CFC12와 다르므로 필연적으로 압축기를 교환해야만 하며 또한 CFC12와 비슷한 성능계수(COP)를 내기가 어렵다는 것이 밝혀졌다. 이를 해결할 수 있는 유용한 방법 가운데 하나가 바로 혼합냉매를 이용하는 것이다. 혼합냉매의 특성은 조성을 잘 배합하여 기존의 냉매와 같은 증기압을 내게 할 수 있으며 동시에 기존에 쓰던 동일한 윤활유를 사용하므로 압축기를 바꿀 필요가 없다는 것이다. 이런 특성 때문에 지난 몇 년간 CFC12의 대체물로서 여러 가지 혼합냉매가 제안된바 있다.The results of the research so far indicate that in the case of replacing CFC12 with the currently known pure refrigerant, the volumetric capacity (VC) of the replacement pure refrigerant is different from that of CFC12, and thus, the compressor must be replaced and a coefficient of performance (COP) similar to that of CFC12 is required. It turns out that it is difficult to bet. One useful way to solve this problem is to use mixed refrigerants. The characteristic of the mixed refrigerant is that the composition can be well blended to give the same vapor pressure as the existing refrigerant, and at the same time, it is not necessary to change the compressor because it uses the same lubricating oil. Because of this, several mixed refrigerants have been proposed in the last few years as a replacement for CFC12.

미국의 듀퐁사에서는 HCFC와 HFC로 구성된 MP-39(53%CFC22/34%CFC124/In DuPont, USA, MP-39 (53% CFC22 / 34% CFC124 /

13%CFC152a),MP-66(61%CFC22/28%CFC124/11%CFC152a),MP-52(33%CFC22/52%CFC124/13% CFC152a), MP-66 (61% CFC22 / 28% CFC124 / 11% CFC152a), MP-52 (33% CFC22 / 52% CFC124 /

15%CFC152a) 등의 3원 혼합냉매를 개발하여 현재 시판하고 있고, Monroe Air Tech사는 HCFC와 탄화수소로 구성된 GHG-X3(65%CFC22/4%R600a/31%CFC142b)라는 3원 혼합냉매를 개발하여 시판하고 있으며, IGC와 Pennzoil사 역시 HCFC와 HFC 그리고 탄화수소로 구성된FRIGC(39%CFC124/59%CFC134a/2% R600)이라는 3원 혼합냉매를 개발하여 시판하고 있다. 이 외에도 여러 가지 혼합냉매가 특정한 냉방/공조기에 적용되고 있다.Three-way mixed refrigerants such as 15% CFC152a) have been developed and marketed now.Monroe Air Tech has developed a three-way mixed refrigerant called GHG-X3 (65% CFC22 / 4% R600a / 31% CFC142b) composed of HCFC and hydrocarbons. IGC and Pennzoil have also developed and marketed a three-way mixed refrigerant called FRIGC (39% CFC124 / 59% CFC134a / 2% R600) consisting of HCFC, HFC and hydrocarbons. In addition, various mixed refrigerants are applied to a specific cooling / air conditioner.

본 발명의 목적은 오존파괴지수(ODP)가 0.0이라 성층권의 오존층에 전혀 영향을 미치지 않으며 동시에 압축기나 윤활유 등을 바꾸지 않고도 자동차 에어컨, 가정용 냉장고 등과 같은 냉동/공조기에서 CFC12의 대체물로 유용하게 사용할 수 있는 혼합냉매를 제공하는데 있다.The object of the present invention is that since the ODP is 0.0, it does not affect the ozone layer of the stratosphere at all, and at the same time, it can be usefully used as a substitute for CFC12 in refrigeration / air conditioners such as automobile air conditioners and household refrigerators without changing compressors or lubricants. To provide a mixed refrigerant.

본 발명은 HFC134a, HFC152a, RE170(Dimethylether), CF3I(Trifluoroiodomethane) 등으로 구성된 2원 및 3원 혼합냉매에 관한 것이다. 좀 더 구체적으로 말하자면, 본 발명은 이미 상용화되어 있는 CFC12 대체 혼합매체에 비해 CFC12의 COP와 VC에 더 접근하거나 대개의 경우 그것들보다 더 좋으며 환경 지수가 월등하게 좋아서 환경문제를 거의 일으키지 않는 근공비성 혼합냉매(Near-azeotropic refrigerant mixture)에 관한 것이다.The present invention relates to binary and tertiary mixed refrigerants composed of HFC134a, HFC152a, RE170 (Dimethylether), CF 3 I (Trifluoroiodomethane) and the like. More specifically, the present invention is a near azeotropic mixture that has more access to COP and VC of CFC12 or better than most of them, compared to already commercially available CFC12 alternative mixture media, and the environmental index is so good that it rarely causes environmental problems. It relates to a near-azeotropic refrigerant mixture.

CFC12 대체냉매를 개발하기 위하여, 본 발명자는 먼저 냉동/공조기의 성능을 모사하는 프로그램을 만들었다. 제 1도는 본 발명에서 사용한 일반적인 냉동/공조기의 구성도로서 증발기, 응축기, 압축기, 팽창 밸브 등으로 구성되어 있다. 프로그램에서는 먼저 냉동/공조기를 구성하는 요소들, 예를 들어, 열교환기 및 압축기 등에 대한 열역학 및 열전달적 해석을 수행하였고, 최종적으로 이들 모두를 조합한 전체 프로그램을 개발했다. 이렇게 개발한 프로그램의 정확도를 결정하는 중요한 인자 중 하나는 냉매들의 물성치이다. 본 프로그램에서는 미국 및 일본 등에서 표준으로 삼고 있는 Carnahan-Starling-De Santis(CSD) 상태 방정식을 사용하여 모든 냉매의 물성치를 계산했다. 이 CSD 상태 방정식은 미국 표준 연구소(National Institute of Standards and Technology)에서 개발한 것으로 여러 제조사와 연구소 학교등의 연구 프로그램을 통해 이미 그 정확성 및 적용성 등이 증명된 것이다. 이번에 만든 냉동/공조기 프로그램의 개발 및 실행을 위한 설계 및 입력 데이터는 가능한 한 현존하는 실제 데이터를 사용했다.In order to develop CFC12 alternative refrigerants, we first created a program that simulates the performance of a refrigeration / air conditioner. 1 is a block diagram of a general refrigeration / air conditioner used in the present invention, and is composed of an evaporator, a condenser, a compressor, an expansion valve, and the like. The program first carried out thermodynamic and heat transfer analysis of the components that make up the refrigeration / air conditioner, such as heat exchangers and compressors, and finally developed a full program that combined them all. One of the important factors that determine the accuracy of this program is the properties of the refrigerants. In this program, the properties of all refrigerants were calculated using the Carnahan-Starling-De Santis (CSD) state equation, which is standard in the United States and Japan. The CSD state equation was developed by the National Institute of Standards and Technology and has already been proven in accuracy and applicability through research programs by manufacturers and research schools. The design and input data for the development and implementation of the refrigeration / air conditioner program we created used actual data as existing as possible.

본 발명자는 냉동/공조기용 CFC12 대체냉매의 오존파괴지수가 매우 낮아야만 한다는 판단 하에, 염소를 전혀 포함하지 않는 HFC134a와 HFC152a 그리고 자연 냉매인 RE170, 그리고 최근에 개발되어 오존층 파괴를 일으키지 않으며 지구 온난화 지수가 매우 낮은 것으로 판명된 CF3I를 조합한 혼합냉매를 개발하여 효과적으로 CFC12를 대체할 수 있도록 했다. 표 1은 몇몇 순수냉매의 환경 지수를 보여주는데, 여기서 ODP는 CFC11의 ODP를 1.0으로 했을 때의 상대적인 값이며 GWP는 이산화탄소의 GWP를 1.0으로 했을 때의 상대적인 값이다.The inventors have determined that the ozone depletion index of CFC12 replacement refrigerant for refrigeration / air conditioner should be very low, HFC134a and HFC152a which do not contain any chlorine and RE170 which is a natural refrigerant, and recently developed do not cause ozone layer destruction and the global warming index. We have developed a mixed refrigerant that combines CF 3 I, which is found to be very low, to effectively replace CFC12. Table 1 shows the environmental indices of some pure refrigerants, where ODP is relative to CFC11's ODP of 1.0 and GWP to carbon dioxide's GWP of 1.0.

몇몇 순수냉매의 환경지수Environmental Index of Some Pure Refrigerants 냉매Refrigerant ODP(오존파괴지수)ODP (Ozone Destruction Index) GWP(지구온난화지수)Global Warming Index (GWP) CFC12CFC12 0.90.9 8,5008,500 HFC134aHFC134a 0.00.0 1,3001,300 HFC152aHFC152a 0.00.0 450450 CF3ICF 3 I 0.00.0 5 이하5 or less RE170RE170 0.00.0 3 이하3 or less PropanePropane 0.00.0 3 이하3 or less

표 2는 자동차 공조기 사용 조건하에서 전산해석 사이클 프로그램을 이용하여 계산한 결과들을 요약한 것으로 기준이 되는 CFC12와 본 발명자가 제안하는 CFC12 대체 혼합냉매들의 성능 지수들을 보여준다. 표 2를 통해 알 수 있듯이, 예 1부터 예 3의 모든 냉매들이 거의 대부분의 조성에서 기존의 CFC12에 비해 냉동능력과 성능계수 면에서 비슷하거나 큰 것으로 나타났다. 또한 온도구배차도 최대 1.26℃이고 대부분은 0.0℃에 가까워 모두 근공비성이다. 한편 오존파괴지수(ODP)는 모두 0.0이므로 오존층 보존 측면에서도 매우 우수하다고 할 수 있다. 끝으로 이 냉매들의압력비도 CFC12와 비슷하여 압축기에 전혀 문제가 없게 나타났다.Table 2 shows the performance indices of CFC12 and CFC12 alternative mixed refrigerants proposed by the present inventors based on a summary of the results calculated using the computational analysis cycle program under the condition of the vehicle air conditioner. As can be seen from Table 2, all of the refrigerants of Examples 1 to 3 were found to be similar or greater in terms of freezing capacity and coefficient of performance than in conventional CFC12 in almost all compositions. In addition, the temperature gradient is up to 1.26 ℃ and most of them are close to 0.0 ℃, so they are all azeotropic. On the other hand, the ozone depletion index (ODP) is all 0.0, so it can be said to be very excellent in terms of preservation of the ozone layer. Finally, the pressure ratio of these refrigerants is similar to that of CFC12, which shows no problem for the compressor.

위의 이론적 결과들을 증명하기 위해 실제로 냉동 시스템을 제작하여 자동차 공조기 조건하에서 실험을 수행했다. 그림 2는 CFC12 대체 혼합냉매의 성능을 측정하기 위한 공조기의 구성도를 개략적으로 보여준다. 본 실험에서 증발기와 응축기로 사용한 열교환기는 내경 19.01mm, 외경 25.4mm, 길이 740mm의 이중관 형태의 동관을 8개씩 직렬로 연결하여 만들었다. 본 실험 장치의 압축기로는 현재 수송용 냉동탑차의 압축기로 쓰이는 개방형 왕복동식 압축기를 전기 모터와 인버터에 연결하여 사용하였다. 이런 식으로 시스템을 만들면, 실제의 자동차 공조기처럼 인버터를 이용하여 속도 조절을 할 수 있다는 장점이 있다. 증발기로 들어가는 냉매의 양과 압력을 조절하기 위해 미세조절이 가능한 수동식 팽창밸브를 사용하였다.To demonstrate the above theoretical results, a refrigeration system was actually built and tested under the condition of a car air conditioner. Figure 2 shows a schematic diagram of an air conditioner for measuring the performance of a CFC12 alternative mixed refrigerant. In this experiment, the heat exchanger used as the evaporator and the condenser was made by connecting two copper tubes of 19.01mm inner diameter, 25.4mm outer diameter and 740mm length in series. As a compressor of this experimental apparatus, an open-type reciprocating compressor, which is currently used as a compressor for a transportation refrigeration truck, was connected to an electric motor and an inverter. Creating a system in this way has the advantage that the speed can be adjusted using an inverter like a real car air conditioner. Manual expansion valves were used to control the amount and pressure of refrigerant entering the evaporator.

증발기 및 응축기 내에서 냉매 및 물의 온도를 측정하기 위해 각각 20 개 이상의 T-type 열전대를 열교환기 연결 부위의 냉매 및 물이 흐르는 관속에 삽입하였고, 모든 열전대는 사용에 앞서 정도 0.01℃의 정밀 온도계로 보정했다. 증발기의 용량을 결정하기 위해서는 증발기로 흐르는 2차유체의 유량 및 온도차를 정확히 측정해야한다. 2차유체 측의 온도차를 정확히 측정하기 위해 6 개의 열전대를 연결하여 Thermopile을 제작했고 이 역시 정밀 온도계로 보정한 뒤 물 측 입출구에 삽입하여 직접 온도차를 측정하였다. 압축기의 흡입온도와 토출온도도 측정하여 압축기의 안정성이나 냉매의 혼합비에 따른 변화도 살펴보았다.In order to measure the temperature of the refrigerant and water in the evaporator and condenser, more than 20 T-type thermocouples were inserted into the refrigerant and water flow pipes at the connection of the heat exchanger, respectively. All thermocouples were precision thermometers of 0.01 ° C prior to use. Corrected. In order to determine the capacity of the evaporator, it is necessary to accurately measure the flow rate and temperature difference of the secondary fluid flowing through the evaporator. In order to accurately measure the temperature difference on the secondary fluid side, six thermocouples were connected to make a thermopile, which was also calibrated with a precision thermometer and inserted into the water inlet and outlet to measure the temperature difference directly. The suction and discharge temperatures of the compressor were also measured, and the changes in the stability of the compressor and the mixing ratio of the refrigerant were also examined.

CFC12 및 대체 혼합냉매의 이론적 성능 비교Theoretical Performance Comparison of CFC12 and Alternative Mixed Refrigerants 냉매Refrigerant 조성(%)Furtherance(%) COPCOP VC(kJ/m3)VC (kJ / m 3 ) GTD(℃)GTD (℃) ODPODP PRPR COP 차(%)COP difference (%) VC 차 (%)VC car (%) R134aR134a R152aR152a RE170RE170 CF3ICF3I 첨가제additive CFC12CFC12 2.422.42 22872287 0.000.00 0.900.90 3.113.11 0.00.0 0.00.0 본발명의실시 예 1Embodiment 1 of the present invention 55 2020 7575 2.462.46 24392439 0.520.52 0.000.00 3.123.12 1.71.7 6.66.6 55 69.8769.87 2525 0.130.13 2.482.48 23592359 1.141.14 0.000.00 3.303.30 2.52.5 3.23.2 55 88.9388.93 66 0.070.07 2.452.45 22312231 0.340.34 0.000.00 3.413.41 1.21.2 -2.4-2.4 1010 64.8564.85 2525 0.150.15 2.482.48 23692369 1.181.18 0.000.00 3.303.30 2.42.4 3.63.6 1010 74.9274.92 1515 0.080.08 2.442.44 22962296 0.890.89 0.000.00 3.393.39 0.70.7 0.40.4 1515 1515 69.5469.54 0.470.47 2.462.46 25102510 0.440.44 0.000.00 3.113.11 1.71.7 9.89.8 1515 59.859.8 2525 0.200.20 2.482.48 23792379 1.231.23 0.000.00 3.303.30 2.42.4 4.04.0 2020 44.6844.68 3535 0.320.32 2.482.48 24532453 1.261.26 0.000.00 3.243.24 2.42.4 7.37.3 2525 2525 49.549.5 0.500.50 2.462.46 25442544 0.630.63 0.000.00 3.173.17 1.71.7 11.211.2 34.834.8 34.834.8 3030 0.400.40 2.472.47 24712471 1.421.42 0.000.00 3.253.25 2.12.1 8.08.0 4040 5454 5.925.92 0.080.08 2.452.45 22702270 0.480.48 0.000.00 3.413.41 1.21.2 -0.7-0.7 89.7389.73 55 55 0.270.27 2.432.43 24122412 0.670.67 0.000.00 3.373.37 0.40.4 5.55.5 본발명의 실시 예 2Embodiment 2 of the present invention 55 5.95.9 89.0589.05 0.050.05 2.482.48 21612161 2.652.65 0.000.00 3.143.14 2.52.5 -5.5-5.5 55 89.0489.04 5.95.9 0.060.06 2.472.47 21992199 0.200.20 0.000.00 3.343.34 2.12.1 -3.8-3.8 11.811.8 49.0149.01 4040 0.090.09 2.482.48 23302330 0.610.61 0.000.00 3.243.24 2.52.5 1.91.9 1515 1515 69.769.7 0.300.30 2.482.48 24522452 0.850.85 0.000.00 3.123.12 2.52.5 7.27.2 1515 54.954.9 3030 0.100.10 2.482.48 23372337 0.680.68 0.000.00 3.253.25 2.62.6 2.22.2 15.3415.34 54.954.9 29.629.6 0.160.16 2.492.49 23752375 0.750.75 0.000.00 3.233.23 2.92.9 3.93.9 24.9224.92 2525 49.649.6 0.480.48 2.482.48 25062506 0.610.61 0.000.00 3.153.15 2.52.5 9.69.6 24.7824.78 5050 2525 0.220.22 2.492.49 23902390 0.760.76 0.000.00 3.243.24 2.92.9 4.54.5 3030 39.739.7 3030 0.300.30 2.492.49 24502450 0.770.77 0.000.00 3.213.21 2.92.9 7.27.2 34.5634.56 3535 3030 0.440.44 2.492.49 24882488 0.730.73 0.000.00 3.203.20 2.92.9 8.88.8 34.7334.73 5050 1515 0.270.27 2.492.49 24092409 0.690.69 0.000.00 3.253.25 2.92.9 5.35.3 39.6639.66 4040 2020 0.340.34 2.492.49 24662466 0.690.69 0.000.00 3.233.23 2.92.9 7.87.8 39.7939.79 5555 5.95.9 0.310.31 2.492.49 24542454 0.540.54 0.000.00 3.203.20 2.92.9 7.37.3 89.6589.65 55 55 0.350.35 2.382.38 24672467 0.540.54 0.000.00 3.393.39 -1.7-1.7 7.97.9

냉매Refrigerant 조성(%)Furtherance(%) COPCOP VC(kJ/m3)VC (kJ / m 3 ) GTD(℃)GTD (℃) ODPODP PRPR COP 차(%)COP difference (%) VC 차 (%)VC car (%) R134aR134a R152aR152a RE170RE170 CF3ICF3I 첨가제additive 본발명의 실시 예 3Embodiment 3 of the present invention 55 94.9594.95 0.050.05 2.422.42 19621962 1.361.36 0.000.00 3.243.24 0.00.0 -14.2-14.2 1515 84.784.7 0.30.3 2.452.45 21822182 0.490.49 0.000.00 3.183.18 1.21.2 4.64.6 2020 79.7779.77 0.230.23 2.452.45 22282228 0.150.15 0.000.00 3.193.19 1.21.2 2.62.6 2525 74.8274.82 0.180.18 2.452.45 22542254 0.020.02 0.000.00 3.203.20 1.21.2 1.41.4 3030 69.8769.87 0.130.13 2.452.45 22672267 0.010.01 0.000.00 3.213.21 1.21.2 0.80.8 3535 64.964.9 0.120.12 2.452.45 22732273 0.060.06 0.000.00 3.223.22 1.21.2 0.60.6 49.8549.85 49.1549.15 0.100.10 2.462.46 22642264 0.260.26 0.000.00 3.253.25 1.71.7 -1.0-1.0 59.859.8 4040 0.200.20 2.472.47 22482248 0.320.32 0.000.00 3.273.27 2.02.0 1.71.7 64.7864.78 3434 0.220.22 2.472.47 22382238 0.320.32 0.000.00 3.293.29 2.02.0 2.22.2 69.7769.77 3030 0.230.23 2.472.47 22272227 0.310.31 0.000.00 3.303.30 2.02.0 2.62.6 74.7574.75 2525 0.250.25 2.472.47 22162216 0.280.28 0.000.00 3.313.31 2.02.0 3.13.1 79.7379.73 2020 0.270.27 2.472.47 22052205 0.240.24 0.000.00 3.323.32 2.02.0 3.63.6 94.9394.93 55 0.070.07 2.462.46 21722172 0.070.07 0.000.00 3.353.35 1.71.7 -5.0-5.0

○ COP : 냉동성능계수(Coefficient of performance) = ○ COP: Coefficient of performance =

○ VC : 압축기의 냉동체적 용량(Volumetric capacity)○ VC: Volumetric capacity of the compressor

○ GTD : 온도구배차(Gliding temperature difference, 9℃ 이하이면 실제 시○ GTD: When the temperature is below 9 ℃

스템에 적용시 문제가 없음)No problem when applied to the stem)

○ ODP: : 오존파괴지수(오존층 파괴를 막기 위해 가능하면 낮을수록 좋다)ODP: Ozone depletion index (lower is better to avoid ozone depletion)

○ PR : 압축기 토출압력과 흡입압력의 비(기준 냉매와 비슷한 것이 좋음)○ PR: ratio of compressor discharge pressure and suction pressure (similar to standard refrigerant)

○ COP 차 : CFC12 대비 냉동성능계수의 차이○ COP difference: difference in freezing performance coefficient compared to CFC12

○ VC 차 : CFC12 대비 압축기 냉동체적용량의 차이○ VC difference: difference between compressor refrigeration volume and CFC12

한편 증발기와 응축기의 입출구에는 모세관을 삽입하여 압력 측정포트를 만들었고, 정도가 0.1% 미만인 정밀 압력 변환계를 이용하여 냉매 측 압력을 측정하였다. 압축기의 소요동력은 정도가 0.2% 미만인 정밀 토크 미터를 이용하여 측정하였다.공조기의 용량을 정확히 결정하기 위해서는 증발기 측 2차유체의 질량유량을 정확하게 측정해야 하며 냉매 측 및 2차유체 측의 에너지 균형이 맞는 가를 살펴보기 위해서는 냉매 측의 유량을 측정해야 한다. 이를 위해 본 연구에서는 코리올리스 힘의 원리를 이용하여 점도나 밀도 등 유체의 물성치에 영향을 받지 않고 0.2%의 고정도를 갖는 질량 유량계를 이용하여 증발기 측 2차유체의 유량과 시스템 내부를 순환하는 냉매의 유량을 정확하게 측정하였다. 끝으로 온도, 압력, 유량 등의 데이터는 PC와 HP3852 Data Logger를 상호 연결하여 15-30초 간격으로 수집하였으며, 이렇게 수집한 데이터는 PC의 하드디스크에 저장하여 추후에 데이터 해석을 위한 프로그램을 이용하여 분석할 수 있게 했다.On the other hand, a capillary tube was inserted into the inlet and outlet of the evaporator and condenser to make a pressure measurement port, and the pressure on the refrigerant side was measured using a precision pressure transducer having a degree of less than 0.1%. The required power of the compressor was measured using a precision torque meter with less than 0.2% accuracy. To accurately determine the air conditioner capacity, the mass flow rate of the secondary fluid on the evaporator must be accurately measured and the energy balance on the refrigerant side and the secondary fluid side. To see if this is true, the flow rate on the refrigerant side must be measured. For this purpose, this study uses the principle of Coriolis force and uses a mass flowmeter with a high accuracy of 0.2% without being influenced by the viscosity or density of the fluid, and the refrigerant circulating inside the system and the flow rate of the secondary fluid in the evaporator. The flow rate of was measured accurately. Finally, data such as temperature, pressure, and flow rate were collected at 15-30 second intervals by connecting the PC and HP3852 Data Logger.The collected data is stored on the PC's hard disk to use the program for data interpretation later. To be analyzed.

표 3은 실험 결과를 요약하여 보여준다. 실험을 수행할 때는 이론적으로 계산한 각각의 냉매 그룹에서 대표성을 띤 조성의 냉매만을 취하여 그 성능을 측정했다. 표 3을 통해 알 수 있듯이, 본 발명의 예1, 예2, 예3 냉매는 성능계수와 용량 면에서 모두 다 CFC12에 비해 좋은 것으로 나타났으며 압축기 토출온도는 CFC12에 비해 비슷하거나 조금 더 높기 때문에 시스템의 성능에 전혀 영향을 미치지 않을 것으로 생각된다. 특히 RE170과 CF3I 등이 들어가게 되면 냉동 윤활유와의 호환성이 좋아져서 성능계수, 용량 등이 크게 증가하는 것으로 나타났다.Table 3 summarizes the experimental results. When the experiment was conducted, only the refrigerant having a representative composition was taken from each theoretically calculated refrigerant group, and its performance was measured. As can be seen from Table 3, the refrigerants of Examples 1, 2 and 3 of the present invention have been shown to be better than CFC12 in terms of both performance coefficient and capacity, and the compressor discharge temperature is similar to or slightly higher than that of CFC12. It is not expected to affect the performance of the system at all. Particularly, the addition of RE170 and CF 3 I resulted in greater compatibility with refrigeration lubricating oil, which significantly increased performance coefficient and capacity.

CFC12 및 그 대체 혼합냉매의 실험적 성능 비교Experimental Performance Comparison of CFC12 and Its Alternative Mixed Refrigerants 냉매Refrigerant 조성(%)Furtherance(%) COPCOP 용량(W)Capacity (W) 토출온도(℃)Discharge temperature (℃) COP 차이(%)COP Difference (%) 용량 차이 (%)Capacity difference (%) R134aR134a R152aR152a RE170RE170 CF3ICF3I CFC12CFC12 2.152.15 36223622 81.581.5 0.00.0 0.00.0 본발명 예 1Inventive Example 1 1010 7575 1515 2.512.51 43444344 90.490.4 16.516.5 19.919.9 본발명 예 2Inventive Example 2 3030 4040 3030 2.592.59 38993899 79.979.9 20.420.4 7.77.7 본발명 예 3Inventive Example 3 7070 3030 2.762.76 43394339 83.183.1 28.328.3 19.819.8

○ 용량 : 동일한 압축기를 사용할 때 얻을 수 있는 증발기 용량○ Capacity: Evaporator capacity available when using the same compressor

○ 토출온도 : 압축기 토출온도(기준이 되는 냉매에 비해 ±10℃ 내에 들면○ Discharge temperature: Compressor discharge temperature (within ± 10 ℃ compared to standard refrigerant)

문제가 없음.)No problem.)

도1의 구성도도면의 주요부분에 대한 부호의 설명)Explanation of symbols for the main parts of the construction drawing of FIG. 1)

Qc : 응축기에서의 열흐름 방향(냉매 → 공기)Qc: direction of heat flow in the condenser (from refrigerant to air)

Qe : 증발기에서 열흐름 방향(공기 → 냉매)Qe: Heat flow direction in the evaporator (air → refrigerant)

TS1 : 증발기 공기 입구온도, TS7 : 증발기 공기 출구온도TS1: Evaporator air inlet temperature, TS7: Evaporator air outlet temperature

TS3 : 응축기 공기 출구온도, TS6 : 응축기 공기 입구온도TS3: condenser air outlet temperature, TS6: condenser air inlet temperature

도 1.냉동/공조기의 일반적구성도Fig. 1 is a general diagram of a refrigeration / air conditioner

도 2.냉동/공조기 실험 장치의 개략도2.Schematic diagram of a refrigeration / air conditioner experiment apparatus

CH3 CH 3 CH3 CH 3 CH3 CH 3 H3CH 3 C SiSi OO SiSi OO SiSi CH3 CH 3 CH3 CH 3 CH3 CH 3 nn CH3 CH 3

화학식 1.실리콘 첨가제의 화학적 구성도Chemical Formula of Silicon Additives

비록 지난 몇 년에 걸쳐 여러 종류의 혼합냉매가 CFC-12를 대체하기 위하여 제안된 바 있으나 이들은 모두 성능의 저하, 환경 문제, 단기적 사용 문제 등을 안고 있어 궁극적인 대체품이 되기 어려웠다. 그러나 본 발명에서 제안하는 바 수소화불화탄소, 디메틸에테르, 불화요드화탄소 등으로 구성된 대체냉매는 오존층붕괴를 전혀 일으키지 않으며 독성도 없고 특히 기존의 냉매에 비해 열효율이 15%정도 높으므로 자동차 에어컨 및 냉장고 등을 사용함으로 인해 필연적으로 발생하는 지구 온난화 문제를 크게 경감시킬 수 있다는 장점을 가지고 있다. 앞으로 교토 의정서 등에 의해 이산화탄소 배출량 규제가 시작되므로 에너지 효율이 높은 냉매를 선정하는 것은 극히 필수적인 일이다. 한편, 이런 장점이 있다하더라도 냉매의 가격이 너무 비싸다든지 혹은 기존의 부품 및 윤활유를 바꾸어야 한다든지 하면 제조업체의 입장에서 이를 제품에 적용하기가 매우 어려운 것이 사실이다. 그러나 본 발명의 냉매들은 가격도 기존의 HFC134a냉매나 다른 혼합 냉매와 비슷하고 또한 기존의 자동차 에어컨 부품 및 윤활유를 그대로 사용할 수 있으므로 생산 원가에 전혀 영향을 미치지 않고 따라서 자동차 제조업체로 하여금 경쟁력을 갖게 만들 수 있다.Although several types of mixed refrigerants have been proposed to replace CFC-12 over the past few years, they all suffer from poor performance, environmental problems and short-term use, making it difficult to be the ultimate replacement. However, as proposed in the present invention, the alternative refrigerant composed of fluorocarbon, dimethyl ether, and fluoride iodide does not cause ozone decay at all, and has no toxicity, and in particular, the thermal efficiency is 15% higher than that of a conventional refrigerant, such as an automobile air conditioner and a refrigerator. It has the advantage that it can greatly reduce the global warming problem that occurs inevitably. In the future, regulations on carbon dioxide emissions will be initiated by the Kyoto Protocol. On the other hand, even with this advantage, if the price of the refrigerant is too expensive or if the existing parts and lubricants need to be replaced, it is very difficult for the manufacturer to apply it to the product. However, the refrigerants of the present invention are similar in price to conventional HFC134a refrigerants or other mixed refrigerants, and can also use existing automotive air conditioner parts and lubricants without affecting production costs, thus making automobile manufacturers competitive. have.

Claims (2)

CF3I를 함유하는 냉동/공조기용 혼합냉매에 있어서 1,1,1,2-테트라플루오로에탄 8∼13 Weight%, 1,1-디플루오로에탄 72∼78 weight%, Trifluoroiodomethane 13∼18 weight%로 구성된 근공비성 혼합냉매.8-13% by weight of 1,1,1,2-tetrafluoroethane, 72-78 weight% of 1,1-difluoroethane, and 13-18 weight% of trifluoroiodomethane in a mixed refrigerant for refrigeration / air conditioner containing CF3I Azeotropic mixed refrigerant consisting of CF3I를 함유하는 냉동/공조기용 혼합냉매에 있어서 1,1,1,2-테트라플루오로에탄 28∼32 weight%, Dimethylether 38∼42 weight%, Trifluoroiodomethane 28∼32 weight%로 구성된 근공비성 혼합냉매.A mixed azeotropic refrigerant comprising 28 to 32 weight% of 1,1,1,2-tetrafluoroethane, 38 to 42 weight% of dimethylether, and 28 to 32 weight% of trifluoroiodomethane in CF3I containing refrigerants.
KR1019990019672A 1999-05-31 1999-05-31 Alternative Refrigerants for CarAircone/Household Refrigerator KR100315252B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990019672A KR100315252B1 (en) 1999-05-31 1999-05-31 Alternative Refrigerants for CarAircone/Household Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990019672A KR100315252B1 (en) 1999-05-31 1999-05-31 Alternative Refrigerants for CarAircone/Household Refrigerator

Publications (2)

Publication Number Publication Date
KR20000075201A KR20000075201A (en) 2000-12-15
KR100315252B1 true KR100315252B1 (en) 2001-11-26

Family

ID=19588666

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990019672A KR100315252B1 (en) 1999-05-31 1999-05-31 Alternative Refrigerants for CarAircone/Household Refrigerator

Country Status (1)

Country Link
KR (1) KR100315252B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305630A (en) * 2019-05-31 2019-10-08 珠海格力电器股份有限公司 A kind of novel refrigerant suitable for refrigeration heat pump system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20121099A1 (en) * 2012-12-18 2014-06-19 Tazzetti S P A NEW ENVIRONMENTAL REFRIGERATING MIXTURES
US11344761B2 (en) 2018-10-15 2022-05-31 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and 1,1,1,2,2,3,3,-heptafluoropropane (HFC-227ca)
US10647644B2 (en) 2018-10-15 2020-05-12 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and hexafluoropropene (HFP)
US10647645B2 (en) 2018-10-15 2020-05-12 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and 1,1,3,3,3,-pentafluoropropene (HFO-1225zc)
US10662135B2 (en) 2018-10-15 2020-05-26 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroiodomethane (CF3I) and hexafluoroacetone (HFA)
US11318338B2 (en) 2018-10-15 2022-05-03 Honeywell International Inc. Azeotrope or azeotrope-like compositions of trifluoroidomethane (CF3I) and 1,1,1,3,3,3-hexafluoropropane (HFC-236fa)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323294A (en) * 1991-04-22 1992-11-12 Daikin Ind Ltd Fluid for heat transfer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323294A (en) * 1991-04-22 1992-11-12 Daikin Ind Ltd Fluid for heat transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305630A (en) * 2019-05-31 2019-10-08 珠海格力电器股份有限公司 A kind of novel refrigerant suitable for refrigeration heat pump system

Also Published As

Publication number Publication date
KR20000075201A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
Park et al. Thermodynamic performance of HCFC22 alternative refrigerants for residential air-conditioning applications
JP5849338B2 (en) Hydrocarbon mixed refrigerant
TW201439297A (en) Low GWP heat transfer compositions
US6958126B2 (en) Non-flammable, non-ozone depleting refrigerant mixtures suitable for use in mineral oil (GHGX9)
Yana Motta et al. Analysis of LGWP alternatives for small refrigeration (plugin) applications
Park et al. Performance of R170/R1270 mixture under air-conditioning and heat pumping conditions
KR100315252B1 (en) Alternative Refrigerants for CarAircone/Household Refrigerator
Park et al. Performance of R290 and R1270 for R22 applications with evaporator and condenser temperature variation
Park et al. A ‘drop-in’refrigerant R431A for replacing HCFC22 in residential air-conditioners and heat pumps
Bolaji Performance of A R22 split-air-conditioner when retrofitted with ozone friendly refrigerants (R410A and R417A)
KR100261459B1 (en) Composition of refrigerant mixtures for refrigerator/ air conditioner
KR100398093B1 (en) Refrigerant for air conditioner and refrigerator
KR0184083B1 (en) Refrigerant mixtures
Sami et al. Energy efficiency analysis of a new ternary HFC alternative
EP3045509A1 (en) Process for producing refrigeration in low temperature refrigeration systems
KR101572757B1 (en) Ternary refrigerant mixture composed of R32, RC270, R1234yf
KR100669091B1 (en) Near azeotropic mixed refrigerant
Maczek et al. Ternary zeotropic mixture with CO2 component for R22 heat pump application
Sami et al. Performance evaluation of a new four-component HFC blend in a vapour-compression heat pump system
KR100492174B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100616772B1 (en) Near azeotropic mixed refrigerant
Ndlovu Commissioning of a refrigerant test unit and assessing the performance of refrigerant blends.
KR100212117B1 (en) Cooling system with mixing refrigerant
KR100633733B1 (en) Near azeotropic mixed refrigerant
KR100633731B1 (en) R12 and r134a substitute mixed refrigerant

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121108

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee