KR100669091B1 - Near azeotropic mixed refrigerant - Google Patents

Near azeotropic mixed refrigerant Download PDF

Info

Publication number
KR100669091B1
KR100669091B1 KR1020060062370A KR20060062370A KR100669091B1 KR 100669091 B1 KR100669091 B1 KR 100669091B1 KR 1020060062370 A KR1020060062370 A KR 1020060062370A KR 20060062370 A KR20060062370 A KR 20060062370A KR 100669091 B1 KR100669091 B1 KR 100669091B1
Authority
KR
South Korea
Prior art keywords
refrigerant
mixed refrigerant
weight
parts
present
Prior art date
Application number
KR1020060062370A
Other languages
Korean (ko)
Other versions
KR20060096953A (en
Inventor
함윤식
정혜미
Original Assignee
함윤식
정혜미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 함윤식, 정혜미 filed Critical 함윤식
Priority to KR1020060062370A priority Critical patent/KR100669091B1/en
Publication of KR20060096953A publication Critical patent/KR20060096953A/en
Application granted granted Critical
Publication of KR100669091B1 publication Critical patent/KR100669091B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 증기 압축식 냉동기 또는 공조기에서 사용되는 혼합냉매 및 이를 사용한 냉동시스템에 관한 것으로, 더욱 상세하게는 프로필렌(R1270)과 프로판(R290)으로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 1,1,1-트리플로로에탄(R143a)을 혼합하여 구성되거나, 1,1-디플로로에탄(R152a)과 디메틸에테르(DME)로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 프로필렌(R1270)을 혼합하여 구성되는 냉동/공조기용 냉매로서 증발 시 온도구배(TG)가 3℃이내인 근공비성 3원 혼합냉매와 이를 사용한 냉동시스템에 관한 것이다. 본 발명에 따른 혼합냉매는 오존층에 전혀 영향을 미치지 않으면서도 순수냉매처럼 사용할 수 있는 장점이 있다.The present invention relates to a mixed refrigerant used in a vapor compression refrigerator or an air conditioner and a refrigeration system using the same, and more specifically, any one selected from propylene (R1270) and propane (R290) and pentafluoroethane (R125). ) And 1,1,1-trifluoroethane (R143a), or pentafluoroethane with any one selected from 1,1-difluoroethane (R152a) and dimethyl ether (DME). (R125) and a propylene (R1270) is a refrigerant for refrigeration / air conditioning consisting of a mixture of the three-dimensional near-air azeotropic three-way mixed refrigerant having a temperature gradient (TG) when evaporated and a refrigeration system using the same. The mixed refrigerant according to the present invention has an advantage that it can be used like a pure refrigerant without affecting the ozone layer at all.

냉매, 냉동기, 공조기, 혼합냉매, 지구온난화, 대체냉매, 근공비, 펜타플로로에탄, 1,1,1-트리플로로에탄, 프로필렌, 프로판, 1,1-디플로로에탄, 디메틸에테르 Refrigerant, freezer, air conditioner, mixed refrigerant, global warming, alternative refrigerant, near-air fuel ratio, pentafluoroethane, 1,1,1-trifluoroethane, propylene, propane, 1,1-difluoroethane, dimethyl ether

Description

근공비성 3원 혼합냉매{NEAR AZEOTROPIC MIXED REFRIGERANT}Near-air azeotropic three-way mixed refrigerant {NEAR AZEOTROPIC MIXED REFRIGERANT}

도 1은 비공비 혼합냉매의 온도-조성 선도이다.1 is a temperature-composition diagram of an azeotropic mixed refrigerant.

도 2는 본 발명의 실시 예 1에 따른 R125/R143a/R1270 3원 혼합냉매의 온도구배선도이다.2 is a temperature gradient diagram of the R125 / R143a / R1270 three-way mixed refrigerant according to the first embodiment of the present invention.

도 3은 본 발명의 실시 예 2에 따른 R125/R143a/R290 3원 혼합냉매의 온도구배선도이다.3 is a temperature gradient diagram of the R125 / R143a / R290 three-way mixed refrigerant according to the second embodiment of the present invention.

도 4는 본 발명의 실시 예 3에 따른 R125/R1270/R152a 3원 혼합냉매의 온도구배선도이다.4 is a temperature gradient diagram of the R125 / R1270 / R152a three-way mixed refrigerant according to the third embodiment of the present invention.

도 5는 본 발명의 실시 예 4에 따른 R125/R1270/DME 3원 혼합냉매의 온도구배선도이다.5 is a temperature gradient diagram of the R125 / R1270 / DME three-way mixed refrigerant according to the fourth embodiment of the present invention.

도 6은 본 발명에서 사용한 일반적인 냉동/공조기의 구성도이다.Figure 6 is a block diagram of a general refrigeration / air conditioner used in the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

Qc: 응축기에서의 열 흐름 방향(냉매℃공기)Qc: direction of heat flow in the condenser (refrigerant ℃ air)

Qe: 증발기에서 열 흐름 방향(공기℃냉매)Qe: Heat flow direction in the evaporator (air coolant)

TS1: 증발기 공기 입구온도, TS7: 증발기 공기 출구온도TS1: evaporator air inlet temperature, TS7: evaporator air outlet temperature

TS3: 응축기 공기 출구온도, TS6: 응축기 공기 입구온도TS3: condenser air outlet temperature, TS6: condenser air inlet temperature

Evaporator: 증발기, Compressor: 압축기Evaporator: Compressor: Compressor

Condenser: 응축기, Expansion Valve: 팽창밸브Condenser: Condenser, Expansion Valve: Expansion Valve

본 발명은 저온용 냉동고 및 수송용 냉동기, 가정용 에어컨, 상업용 칠러 등에 널리 사용될 수 있는 3원 혼합냉매와 이를 사용한 냉동시스템에 관한 것으로, 본 발명의 3원 혼합냉매는 프로필렌(R1270)과 프로판(R290)으로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 1,1,1-트리플로로에탄(R143a)을 혼합하여 구성되거나, 1,1-디플로로에탄(R152a)과 디메틸에테르(DME)로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 프로필렌(R1270)을 혼합하여 구성되는 것으로 증발 시 온도구배(TG)가 3℃이내인 것을 특징으로 한다.The present invention relates to a three-way mixed refrigerant and a refrigeration system using the same, which can be widely used in low-temperature freezers and transport refrigerators, domestic air conditioners, commercial chillers, etc., the three-way mixed refrigerant of the present invention is propylene (R1270) and propane (R290) ) Or any one selected from the group selected from pentafluoroethane (R125) and 1,1,1-trifluoroethane (R143a), or 1,1-difluoroethane (R152a) and dimethyl ether It is composed of any one of the group selected as (DME) and pentafluoroethane (R125) and propylene (R1270) characterized in that the temperature gradient (TG) during evaporation is within 3 ℃.

냉매(Refrigerant, 이하 R이라 한다)란 냉동사이클의 작동유체로서 저온의 물체에서 열을 빼앗아 고온의 물체로 열을 운반해 주는 매체를 총칭하는 것으로, 저렴하면서도 화학적으로 안정하며 효율이 좋은 염화불화탄소(Chlorofluorocarbon, 이하 CFC라 한다)와 수소화염화불화탄소(Hydrochlorofluorocarbon, 이하 HCFC라 한다)가 주로 사용되어 왔다. 그러나 최근에는 CFC와 HCFC에 의한 성층권 내 오존층 파괴가 중요한 지구환경문제로 대두되었고 이로 인해 성층권내 오존을 파괴하는 CFC와 HCFC의 생산과 사용은 1987년에 채택된 몬트리올 의정서에 의해 규제되고 있다. 따라서 전 세계 대부분의 국가가 오존파괴지수(ODP)가 0.0인 대체냉매를 사용 하려 하고 있다.Refrigerant (hereinafter referred to as R) is a working fluid of a refrigeration cycle, which refers to a medium that takes heat away from a low temperature object and transfers heat to a high temperature object. Chlorofluorocarbon (hereinafter referred to as CFC) and Hydrochlorofluorocarbon (hereinafter referred to as HCFC) have been mainly used. Recently, however, the destruction of the stratospheric ozone layer by CFCs and HCFCs has emerged as an important global environmental problem, and therefore the production and use of stratospheric ozone-depleting CFCs and HCFCs is regulated by the Montreal Protocol adopted in 1987. Therefore, most countries around the world are trying to use alternative refrigerants with an ODP of 0.0.

어떤 물질이 기존 냉매의 대체냉매로 유용하기 위해서는 기존 냉매와 유사한 성능계수(Coefficient of performance, COP)를 가져 기존의 냉매와 유사한 냉동효과를 나타내고, 또한 기존 냉매와 유사한 증기압을 가지는 것(궁극적으로 기존의 냉매와 비슷한 체적용량을 제공할 수 있음)이 압축기 바꾸거나 크게 개조하지 않고도 냉동/공조기를 제조할 수 있어 유리하다. 그러나 지금까지의 연구결과 순수 물질로 기존 냉매를 대체하는 경우에는 대체냉매의 체적용량이 달라서 필연적으로 압축기를 바꾸거나 크게 개조하여야 하며 또 기존 냉매와 비슷한 성능계수를 내기가 어렵다는 것이 밝혀졌다.In order for a substance to be useful as a substitute for a conventional refrigerant, it has a coefficient of performance (COP) similar to that of a conventional refrigerant, and thus exhibits a refrigerating effect similar to that of a conventional refrigerant, and also has a vapor pressure similar to that of a conventional refrigerant. Can provide a volumetric capacity similar to that of refrigerants), which makes it possible to manufacture refrigeration / air conditioners without changing compressors or making major modifications. However, the results of the previous studies have shown that in case of replacing the existing refrigerant with pure material, the volume of the replacement refrigerant is different, so it is inevitable to change or largely modify the compressor, and it is difficult to obtain a similar coefficient of performance as the existing refrigerant.

이러한 문제점을 해결할 수 있는 방법 중 하나가 혼합 냉매를 이용하는 것이다. 혼합냉매의 특성은 조성을 잘 배합하여 성능계수(COP)를 기존의 냉매와 비슷하게 하고 동시에 기존의 냉매와 비슷한 체적용량을 내게 할 수 있으므로, 압축기를 개조할 필요가 없는 장점이 있다. 이런 특성 때문에 지난 몇 년간 CFC와 HCFC의 대체물로 여러 종류의 혼합냉매가 제안된 바 있다. One way to solve this problem is to use a mixed refrigerant. The characteristic of the mixed refrigerant is that the composition coefficient is good to make the coefficient of performance (COP) similar to the existing refrigerant and at the same time give a volume capacity similar to the existing refrigerant, there is an advantage that does not need to modify the compressor. Because of these characteristics, several mixed refrigerants have been proposed in the past few years as a replacement for CFCs and HCFCs.

두 개 이상의 순수냉매를 혼합하여 혼합냉매를 만드는 경우에는 비공비 혼합냉매(Non-azeotropic refrigerant mixtures, NARMs)가 생성되거나 공비 혼합냉매(Azeotropic refrigerant mixtures, ARMs)가 생성될 수 있는데, 도 1에서 볼 수 있듯이 비공비 혼합냉매는 순수냉매와 달리 주어진 조성에서 증발이 시작되면서 (point ①) 증발온도가 증가하기 시작하여 증발이 끝날 때(point ②)까지 특정한 온도 증가를 보인다. 이 같은 현상을 온도구배(Temperature glide, TG)라 한다. 도 1에서는 비등에 생기면서 기포가 발생하는 모든 점을 전 조성에 대해 이어 기포선(Bubble line)을 구하고, 기체가 응축하면서 생기면서 기포가 발생하는 모든 점을 전 조성에 대해 이어 이슬선(Dew line)을 구하였으며, 도 1에 표현된 조성은 세계적인 표준 규약에 따라 비등점이 낮은 냉매 즉 증기압이 높은 냉매의 중량부로 표현한 것이다. When mixing two or more pure refrigerants to produce a mixed refrigerant, non-azeotropic refrigerant mixtures (NARMs) or azeotropic refrigerant mixtures (ARMs) may be produced, as shown in FIG. 1. As can be seen, non-azeotropic mixed refrigerants, unlike pure refrigerants, begin to evaporate at a given composition (point ①) and begin to increase in evaporation temperature until the end of evaporation (point ②). This phenomenon is called temperature gradient (TG). In FIG. 1, a bubble line is obtained for all compositions in which bubbles are generated while boiling, and a dew line is obtained for all compositions in which bubbles are generated as gases are condensed. 1), and the composition shown in FIG. 1 is expressed in parts by weight of a refrigerant having a low boiling point, that is, a refrigerant having a high vapor pressure, according to a global standard.

이러한 온도구배는 혼합냉매를 구성하는 순수물질의 종류와 그 조성에 따라 값이 크게 변한다. 비공비 혼합냉매의 경우 온도구배가 크면 상변화시 냉매조성이 변하므로 냉동시스템을 불안정하게 만들 수 있고, 냉동시스템에 누설이 생길 경우 증기압이 높은 냉매가 먼저 누설되어 시스템 내의 조성 분리로 인한 불균형이 생길 수 있으며 또 큰 온도 구배로 말미암아 열전달계수가 감소하여 열교환기를 크게 해야 하는 문제점이 있다. 따라서 대부분의 냉매회사들은 온도구배(TG)가 3℃이하인 근공비성 혼합냉매(Near azeotropic refrigerant mixtures)를 만들려고 한다. 예를 들면 미국의 듀퐁사와 하니웰사 등에서는 R570A라는 공비혼합냉매(50%R125/50%R143a, TG=0.0℃)와 R410A라는 근공비 혼합냉매(50%R32/50%R125, TG=0.2℃ 정도)를 개발하여 판매하고 있다. 또한 이러한 회사들은 이전에 R407C 등과 같은 비공비 혼합냉매도 개발하여 판매하였지만 R407C의 온도구배는 7℃나 되어 시스템에 누출이 있는 경우 조성분리현상이 생기므로 이제는 대부분 온도구배 3℃이하의 근공비 혼합냉매 만을 개발하고 있는 실정이다.This temperature gradient varies greatly depending on the type and composition of the pure materials constituting the mixed refrigerant. In the case of non-azeotropic mixed refrigerants, if the temperature gradient is large, the composition of the refrigerant changes during phase change, which may make the refrigeration system unstable.If a leak occurs in the refrigeration system, the refrigerant having a high vapor pressure leaks first, resulting in an imbalance due to composition separation in the system. Also, there is a problem in that the heat transfer coefficient is increased due to a decrease in heat transfer coefficient due to a large temperature gradient. Therefore, most refrigerant companies are trying to make near azeotropic refrigerant mixtures with a temperature gradient (TG) of less than 3 ° C. For example, in DuPont and Honeywell, USA, the azeotropic mixed refrigerant called R570A (50% R125 / 50% R143a, TG = 0.0 ℃) and the aerosol mixed refrigerant called R410A (50% R32 / 50% R125, TG = 0.2 ℃ Develop and sell. In addition, these companies had previously developed and sold non-azeotropic mixed refrigerants such as R407C, but the temperature gradient of R407C is 7 ℃, so that the composition separation occurs when there is a leak in the system. Only the refrigerant is being developed.

따라서 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 오존층파괴지수(ODP)가 0.0이므로 성층권 내 오존층에 전혀 영향을 미치지 않으면서도 기존의 순수 냉매처럼 사용할 수 있는 새로운 근공비성 3원 혼합 냉매와 이러한 냉매를 사용하는 냉동/공조기를 제공하는 것이다. Therefore, the present invention has been made to solve the above problems of the prior art, the object of the present invention is the Ozone Depletion Index (ODP) is 0.0 so that it can be used as a conventional pure refrigerant without any effect on the ozone layer in the stratosphere. It is to provide a new near azeotropic ternary mixed refrigerant and a refrigeration / air conditioner using the refrigerant.

상기한 본 발명의 목적은 프로필렌(R1270)과 프로판(R290)으로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 1,1,1-트리플로로에탄(R143a)을 혼합한 냉동/공조기용 냉매로서 증발 시 온도구배(TG)가 3℃ 이내인 것을 특징으로 하는 근공비성 3원 혼합냉매에 의해 달성할 수 있다. An object of the present invention described above is refrigeration / mixed with any one of the group selected from propylene (R1270) and propane (R290) and pentafluoroethane (R125) and 1,1,1-trifluoroethane (R143a) As the refrigerant for the air conditioner can be achieved by the near-azeotropic ternary mixed refrigerant, characterized in that the temperature gradient (TG) during evaporation within 3 ℃.

상기한 목적을 달성하기 위한 3원 혼합냉매는 펜타플로로에탄(R125) 0.1 내지 99.8 중량부, 1,1,1-트리플로로에탄(R143a) 0.1 내지 99.8 중량부 그리고 프로필렌(R1270) 0.1 내지 99.8 중량부로 구성되는 것이 바람직하다. Three-way mixed refrigerant for achieving the above object is 0.1 to 99.8 parts by weight of pentafluoroethane (R125), 0.1 to 99.8 parts by weight of 1,1,1-trifluoroethane (R143a) and 0.1 to 99.8 parts by weight of propylene (R1270). It is preferably composed of 99.8 parts by weight.

상기한 목적을 달성하기 위한 3원 혼합냉매는 펜타플로로에탄(R125) 0.1 내지 99.8 중량부, 1,1,1-트리플로로에탄(R143a) 0.1 내지 99.8 중량부 그리고 프로판(R290) 0.1 내지 99.8 중량부로 구성되는 것 중 온도구배가 3℃ 이내인 소정의 중량부로 구성되는 것이 바람직하다. Three-way mixed refrigerant for achieving the above object is 0.1 to 99.8 parts by weight of pentafluoroethane (R125), 0.1 to 99.8 parts by weight of 1,1,1-trifluoroethane (R143a) and 0.1 to 99.8 parts by weight of propane (R290). Among 99.8 parts by weight, it is preferable that the temperature gradient is constituted by a predetermined part by weight within 3 ° C.

상기한 본 발명의 목적은 1,1-디플로로에탄(R152a)과 디메틸에테르(DME 혹은 RE170)로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 프로필렌(R1270)을 혼합한 냉동/공조기용 냉매로서 증발 시 온도구배(TG)가 3℃ 이내인 것을 특징으로 하는 근공비성 3원 혼합냉매에 의해 달성할 수 있다. The object of the present invention described above is a refrigeration mixture of pentafluoroethane (R125) and propylene (R1270) with any one selected from 1,1-difluoroethane (R152a) and dimethyl ether (DME or RE170). It can be achieved by the near-azeotropic ternary mixed refrigerant, characterized in that the temperature gradient (TG) at the time of evaporation as a refrigerant for the air conditioner.

상기한 목적을 달성하기 위한 3원 혼합냉매는 펜타플로로에탄(R125) 0.1 내지 99.8 중량부, 프로필렌(R1270) 0.1 내지 99.8 중량부 그리고 1,1-디플로로에탄(R152a) 0.1 내지 42 중량부로 구성되는 것이 바람직하다. Three-way mixed refrigerant to achieve the above object is pentafluoroethane (R125) 0.1 to 99.8 parts by weight, propylene (R1270) 0.1 to 99.8 parts by weight and 1,1-difluoroethane (R152a) 0.1 to 42 weight It is preferable that it consists of parts.

상기한 목적을 달성하기 위한 3원 혼합냉매는 펜타플로로에탄(R125) 0.1 내지 99.8 중량부, 프로필렌(R1270) 0.1 내지 99.8 중량부 그리고 디메틸에테르(DME) 0.1 내지 34 중량부로 구성되는 것이 바람직하다. The three-way mixed refrigerant for achieving the above object is preferably composed of 0.1 to 99.8 parts by weight of pentafluoroethane (R125), 0.1 to 99.8 parts by weight of propylene (R1270) and 0.1 to 34 parts by weight of dimethyl ether (DME). .

상기한 본 발명의 목적은 상기에 열거한 냉매들로 구성되는 군 중 선택된 어느 하나를 냉동/공조기의 작동냉매로 사용하는 것에 의해 달성할 수 있다. The above object of the present invention can be achieved by using any one selected from the group consisting of the above-mentioned refrigerants as the operating refrigerant of the refrigerating / air conditioner.

본 발명의 그 밖의 목적, 특이한 장점 및 신규한 특징들은 첨부한 도면과 연관되어지는 이하의 상세한 설명과 바람직한 실시 예들로부터 더욱 분명해질 것이다.Other objects, specific advantages, and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments associated with the accompanying drawings.

이하에서는 첨부한 도면을 참조하여, 본 발명의 바람직한 실시 예에 따른 근공비성 3원 혼합냉매 및 이를 사용한 냉동시스템의 구성에 대하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail with respect to the configuration of a near azeotropic three-way mixed refrigerant and a refrigeration system using the same according to an embodiment of the present invention.

본 발명은 저온용 냉동고 및 수송용 냉동기, 가정용 에어컨, 상업용 칠러 등에 널리 사용될 수 있는 3원 혼합냉매와 이를 사용한 냉동시스템에 관한 것으로, 본 발명의 3원 혼합냉매는 프로필렌(R1270)과 프로판(R290)으로 선택되는 군 중 어 느 하나와 펜타플로로에탄(R125) 및 1,1,1-트리플로로에탄(R143a)을 혼합하여 구성되거나, 1,1-디플로로에탄(R152a)과 디메틸에테르(DME)로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 프로필렌(R1270)을 혼합하여 구성되는 것으로 증발 시 온도구배(TG)가 3℃이내인 것이다.The present invention relates to a three-way mixed refrigerant and a refrigeration system using the same, which can be widely used in low-temperature freezers and transport refrigerators, domestic air conditioners, commercial chillers, etc., the three-way mixed refrigerant of the present invention is propylene (R1270) and propane (R290) ), Pentafluoroethane (R125) and 1,1,1-trifluoroethane (R143a) or a mixture of 1,1-difluoroethane (R152a) and dimethyl It is composed by mixing any one of the group selected as ether (DME) and pentafluoroethane (R125) and propylene (R1270) is a temperature gradient (TG) when evaporation is within 3 ℃.

본 발명의 목적은 오존층파괴지수(ODP)가 0.0이므로 성층권 내 오존층에 전혀 영향을 미치지 않으면서도 기존의 순수 냉매처럼 사용할 수 있는 근공비성 3원 혼합 냉매를 제공하는 것이다. It is an object of the present invention to provide a near azeotropic ternary mixed refrigerant that can be used like a conventional pure refrigerant without affecting the ozone layer in the stratosphere because the ODP is 0.0.

근공비성 대체 혼합냉매를 개발하기 위하여 본 발명자는 냉동/공조기의 성능을 모사하는 미국 표준 연구소(National Institute of Standards and Technology, NIST)에서 개발한 냉매상태 방정식을 이용하여 여러 냉매에 대해 기포가 생기는 기포점(Bubble Point)과 기체가 응축하여 이슬점을 만드는 이슬점(Dew Point)을 계산하고 근공비성 3원 혼합냉매의 온도구배선도를 만들었다. 보통 PEFPROP으로 널리 알려진 Carnahan-Starling-De Santis(CSD) 냉매 상태방정식은 미국표준연구소(NIST)에서 계발한 것으로 정확성 및 적용성이 이미 입증되어 전 세계 냉동/공조 관련 유수기업, 연구소, 대학에서 가장 널리 사용되는 프로그램이다. In order to develop a near azeotropic alternative mixed refrigerant, the present inventors use the refrigerant state equation developed by the National Institute of Standards and Technology (NIST) to simulate the performance of refrigeration and air conditioning. Bubble Point and the dew point at which the gas condenses to produce the dew point were calculated and a temperature gradient diagram of the near azeotropic ternary mixed refrigerant was made. The Carnahan-Starling-De Santis (CSD) refrigerant state equation, commonly known as PEFPROP, was developed by the National Institute of Standards and Technology (NIST) and has been proven to be the most accurate and applicable in the world of leading refrigeration and air conditioning companies, research institutes and universities. It is a widely used program.

본 발명자는 본 발명의 혼합냉매가 냉동/공조기용 대체냉매로서 오존파괴지수(ODP)가 반드시 0.0이어야 한다는 판단 하에 R125(Pentafluoroethane, 펜타플로로에탄), R143a(1,1,1-Trifluoroethane, 1,1,1-트리플로로에탄), R1270(Propylene, 프로필렌), R290(Propane, 프로판), R152a(1,1-Difluoroethane, 1,1-디플로로에탄) 그리고 DME(혹은 RE170)(Dimethyl ether, 디메틸에테르)을 혼합하여 구성되는 오존 층을 파괴할 염려가 없는 근공비성 3원 혼합냉매를 개발하였다.The present inventors have determined that the mixed refrigerant of the present invention is an alternative refrigerant for refrigeration / air conditioning, and the ozone depletion index (ODP) must be 0.0. R125 (Pentafluoroethane, pentafluoroethane), R143a (1,1,1-Trifluoroethane, 1 , 1,1-trifluoroethane), R1270 (Propylene, propylene), R290 (Propane, propane), R152a (1,1-Difluoroethane, 1,1-difluoroethane) and DME (or RE170) (Dimethyl We have developed a near azeotropic ternary mixed refrigerant that does not have to worry about destroying the ozone layer formed by mixing ether and dimethyl ether.

[본 발명의 실시 예에 따른 조성표][Composition table according to an embodiment of the present invention] 실시 예Example 조성Furtherance 조성비(중량%=중량부)Composition ratio (weight% = weight part) 1One R125/R143a/R1270R125 / R143a / R1270 R125R125 R143aR143a R1270R1270 0.1∼99.80.1 to 99.8 0.1∼99.80.1 to 99.8 0.1∼99.80.1 to 99.8 22 R125/R143a/R290R125 / R143a / R290 R125R125 R143aR143a R290R290 0.1∼99.80.1 to 99.8 0.1∼99.80.1 to 99.8 0.1∼99.80.1 to 99.8 33 R125/R1270/R152aR125 / R1270 / R152a R125R125 R1270R1270 R152aR152a 0.1∼99.80.1 to 99.8 0.1 ∼99.80.1 to 99.8 0.1∼420.1-42 44 R125/R1270/DMER125 / R1270 / DME R125R125 R1270R1270 DMEDME 0.1∼99.80.1 to 99.8 0.1∼99.80.1 to 99.8 0.1∼340.1 to 34

[표 1]은 본 발명의 실시 예에 따른 3원 혼합 냉매의 조성 및 조성비를 나타낸 표이다. [Table 1] is a table showing the composition and composition ratio of the three-way mixed refrigerant according to an embodiment of the present invention.

도 2 내지 도 5는 본 발명자가 개발한 근공비성 3원 혼합냉매들의 온도구배선도를 보여준다. 2원 냉매와 달리 3원 냉매가 되면 세가지 구성성분이 변하므로 도 1과 같은 온도-조성 선도를 그리는 것이 어려우므로 본 발명자는 도 2 내지 도 5와 같이 동일한 온도구배를 나타내는 선들(Contours)을 그려서 어떤 조성의 조합에서도 3원 혼합냉매의 온도구배를 알 수 있도록 하였다.2 to 5 show a temperature gradient diagram of the near azeotropic ternary mixed refrigerants developed by the present inventors. Unlike the two-way refrigerant, when the three-way refrigerant changes three components, it is difficult to draw a temperature-composition diagram as shown in Figure 1, so the present inventors draw contours representing the same temperature gradient as shown in Figures 2 to 5 In any combination, the temperature gradients of the three-way mixed refrigerants were known.

[본 발명의 실시 예 1][Example 1 of the present invention]

도 2는 본 발명의 실시 예 1에 따른 R125/R143a/R1270 3원 혼합냉매의 온도구배선도를 나타낸 도면이다. 도 2를 참조하여 설명하면, 본 발명의 실시 예 1에 따른 3원 혼합냉매는 R125(펜타플로로에탄), R143a(1,1,1-트리플로로에탄) 그리고 R1270(프로필렌)이 어떠한 조성으로 혼합되더라도 온도구배(TG)가 1.6℃이하임을 알 수 있다. 따라서 R125/R143a/R1270 3원 혼합냉매는 근공비성 냉매로서 순수냉매와 유사하게 다룰 수 있다. 2 is a diagram showing a temperature gradient diagram of the R125 / R143a / R1270 three-way mixed refrigerant according to the first embodiment of the present invention. Referring to Figure 2, the three-way mixed refrigerant according to the first embodiment of the present invention is a composition of R125 (pentafluoroethane), R143a (1,1,1-trifluoroethane) and R1270 (propylene) Even when mixed as can be seen that the temperature gradient (TG) is less than 1.6 ℃. Therefore, the R125 / R143a / R1270 ternary mixed refrigerant can be treated similarly to pure refrigerant as a near azeotropic refrigerant.

[본 발명의 실시 예 2][Example 2 of the present invention]

도 3은 본 발명의 제 2실시 예에 따른 R125/R143a/R290 3원 혼합냉매의 온도구배선도를 나타낸 도면이다. 도 3을 참조하여 설명하면, 본 발명의 실시 예 2에 따른 3원 혼합냉매는 R125와 R143a 그리고 R290의 조성이 각각 0.1 내지 99.8 중량부인 역역 중 소정의 영역에서 온도구배가 3℃ 이하인 것으로 나타나고 있는데, 예를 들면, R125의 조성이 20 중량부이고 R143a의 조성이 50 중량부이며, R290(프로판)의 조성이 30 중량부인 혼합냉매의 경우, 온도구배가 약 1℃로서 근공비성 혼합냉매가 된다. 그러나 R32가 20 중량부인 경우라 하더라도 R143a가 10 중량부 이고 R290이 70 중량부인 경우에는 온도구배가 약 6℃ 정도로 상당한 차이가 있다. 따라서 R125/R143a/R290 3원 혼합냉매는 온도구배가 3℃이하인 근공비성 혼합냉매영역(도 3의 표시부분) 내에 속하는 조성비를 갖는 경우 순수냉매와 같이 취급할 수 있다. 본 명세서에서 사용된 중량부는 중량%를 의미한다.3 is a diagram showing a temperature gradient diagram of the R125 / R143a / R290 three-way mixed refrigerant according to the second embodiment of the present invention. Referring to FIG. 3, the three-way mixed refrigerant according to the second embodiment of the present invention shows that the temperature gradient is 3 ° C. or less in a predetermined region of the range of 0.1 to 99.8 parts by weight of R125, R143a, and R290, respectively. For example, in the case of a mixed refrigerant having a composition of R125 of 20 parts by weight, a composition of R143a of 50 parts by weight, and a composition of R290 (propane) of 30 parts by weight, a temperature gradient of about 1 ° C. results in a near azeotropic mixed refrigerant. . However, even when R32 is 20 parts by weight, there is a significant difference in temperature gradient of about 6 ° C when R143a is 10 parts by weight and R290 is 70 parts by weight. Therefore, the R125 / R143a / R290 ternary mixed refrigerant can be treated like a pure refrigerant when it has a composition ratio belonging to the near azeotropic mixed refrigerant region (shown in FIG. 3) having a temperature gradient of 3 ° C or lower. As used herein, parts by weight means weight percent.

[본 발명의 실시 예 3][Example 3 of the present invention]

도 4는 본 발명의 제 3실시 예에 따른 R125/R1270/R152a 3원 혼합냉매의 온도구배선도를 나타낸 도면이다. 도 4를 참조하여 설명하면, 본 발명의 실시 예 3에 따른 3원 혼합냉매는 R125 및 R1270의 조성이 0.1 내지 99.8 중량부이고 R152a의 조성이 0.1 내지 42 중량부인 소정의 영역(도 4의 표시부분)에서 온도구배가 3℃를 넘지 않는 근공비성 혼합냉매로 혼합될 수 있다. 예를 들면, R125가 50 중량부이고 R1270이 40 중량부 그리고 R152a가 10 중량부인 경우의 온도구배는 2℃이다. 따라서 R125/R1270/R152a 3원 혼합냉매를 순수냉매와 같이 취급할 수 있다. 그리나 상기 근공비성 혼합냉매영역을 벗어난 경우에는 온도구배가 급격히 상승하는 것을 알 수 있는데, R125가 50 중량부인 경우라 할지라도 R1270이 19 중량부이고 R152a가 31 중량부인 경우에는 온도구배가 8℃로서, 이러한 조성을 가진 혼합냉매는 상변화 혹은 냉매유출 시 조성변화가 크게 나타나므로 순수냉매와 같이 취급할 수 없다. 4 is a diagram showing a temperature gradient diagram of the R125 / R1270 / R152a three-way mixed refrigerant according to the third embodiment of the present invention. Referring to Figure 4, the three-way mixed refrigerant according to the third embodiment of the present invention is a predetermined region of 0.1 to 99.8 parts by weight of the composition of R125 and R1270 and 0.1 to 42 parts by weight of the composition of R152a (indicated in Figure 4 Part) and may be mixed with a near azeotropic mixed refrigerant whose temperature gradient does not exceed 3 ° C. For example, when R125 is 50 parts by weight, R1270 is 40 parts by weight and R152a is 10 parts by weight, the temperature gradient is 2 ° C. Therefore, the R125 / R1270 / R152a ternary mixed refrigerant can be treated like a pure refrigerant. However, it can be seen that the temperature gradient rises sharply when it is out of the near azeotropic mixed refrigerant zone. Even though R125 is 50 parts by weight, when R1270 is 19 parts by weight and R152a is 31 parts by weight, the temperature gradient is 8 ° C. However, a mixed refrigerant having such a composition cannot be treated like a pure refrigerant because of a large change in composition during phase change or refrigerant leakage.

[본 발명의 실시 예 4][Example 4 of the present invention]

도 5는 본 발명의 제 4실시 예에 따른 R125/R1270/DME 3원 혼합냉매의 온도구배선도를 나타낸 도면이다. 도 5를 참조하여 설명하면, 본 발명의 실시 예 4에 따른 3원 혼합냉매는 R125와 R1270의 조성이 각각 0.1 내지 99.8 중량부이고 DME의 조성이 0.1 내지 34 중량부인 영역 중 소정의 영역에서 온도구배가 3℃ 이하인 것으로 나타나고 있다. 예를 들면, R125의 조성이 30 중량부이고 R1270의 조성이 60 중량부이며, DME(디메틸에테르)의 조성이 10 중량부인 혼합냉매의 경우, 온도구배가 2℃로서 근공비성 혼합냉매가 된다. 그러나 R125가 30 중량부인 경우라 하더라도 R1270이 31 중량부이고 DME가 39 중량부인 경우에는 온도구배가 약 8℃ 정도로 상당한 차이가 있다. 따라서 R125/R1270/DME 3원 혼합냉매의 조성비가 온도구배 3℃이하인 근공비성 혼합냉매영역(도 5의 표시부분) 내에 속하는 경우 순수냉매와 같이 취급할 수 있다.5 is a diagram showing a temperature gradient diagram of the R125 / R1270 / DME ternary mixed refrigerant according to the fourth embodiment of the present invention. Referring to Figure 5, the three-way mixed refrigerant according to the fourth embodiment of the present invention is a temperature in a predetermined region of the region of the composition of R125 and R1270 of 0.1 to 99.8 parts by weight and DME of 0.1 to 34 parts by weight, respectively The gradient is shown to be 3 degrees C or less. For example, in the case of a mixed refrigerant having a composition of R125 of 30 parts by weight, a composition of R1270 of 60 parts by weight, and a composition of DME (dimethyl ether) of 10 parts by weight, the temperature gradient is 2 ° C., resulting in a near azeotropic mixed refrigerant. However, even when R125 is 30 parts by weight, there is a significant difference in temperature gradient of about 8 ° C. when R1270 is 31 parts by weight and DME is 39 parts by weight. Therefore, when the composition ratio of the R125 / R1270 / DME ternary mixed refrigerant falls within the near azeotropic mixed refrigerant region (shown in FIG. 5) having a temperature gradient of 3 ° C. or less, it can be treated like a pure refrigerant.

도 6은 본 발명에서 사용한 일반적인 냉동/공조기의 구성도이다. 도 6에 도시된 바와 같이, 냉동/공조기는 일반적으로 증발기, 응축기, 압축기, 팽창 밸브 등을 포함하여 구성된다. 상기한 본 발명의 실시 예 1내지 4에 따른 근공비성 3원 혼합 냉매를 사용하면, 일반적인 순수냉매를 사용하는 경우와 같이 냉매의 누출 등에도 불구하고 그 조성 및 열전달 계수 등의 변화가 없어 일반적인 냉동/공조기를 개조하지 않고도 사용할 수 있는 장점이 있다.Figure 6 is a block diagram of a general refrigeration / air conditioner used in the present invention. As shown in FIG. 6, the refrigeration / air conditioner generally comprises an evaporator, a condenser, a compressor, an expansion valve, and the like. When the near azeotropic ternary mixed refrigerants according to Embodiments 1 to 4 of the present invention are used, there is no change in the composition and heat transfer coefficients in spite of leakage of the refrigerant as in the case of using a general pure refrigerant. It has the advantage that it can be used without modifying the air conditioner.

본 발명의 명세서 전체에 걸쳐 사용된 용어인 냉동시스템은 냉동기/공조기의 의미로 사용되는 것으로서 특별히 구분하지 않은 이상 양자는 동일한 의미로 사용된 것임에 유의할 필요가 있다.It is to be noted that the term "refrigeration system" used throughout the specification of the present invention is used in the meaning of a refrigerator / air conditioner, unless otherwise specified, that both are used in the same meaning.

상기한 구성을 갖는 본 발명의 바람직한 실시 예에 따른 혼합냉매 및 이를 사용한 냉동시스템에 의하면 혼합냉매를 구성하는 물질의 오존층파괴지수가 0.0이므로 냉매의 유출이 있거나 냉매를 폐기하는 경우에도 지구의 오존층파괴를 방지할 수 있는 현저한 효과가 있다.According to the mixed refrigerant and the refrigeration system using the same according to the preferred embodiment of the present invention having the above-described configuration, since the ozone layer destruction index of the material constituting the mixed refrigerant is 0.0, even when the refrigerant flows out or discards the refrigerant, There is a significant effect that can be prevented.

또한 본 발명에 따른 혼합냉매는 근공비를 이루는 3원 혼합냉매이므로 상변화에 따른 조성의 변화가 없어, 순수 냉매를 사용하는 경우와 같이 냉동시스템을 안정적으로 사용할 수 있고, 냉매 유출시의 조성 분리 현상이 방지되는 현저한 효 과가 있다.In addition, since the mixed refrigerant according to the present invention is a three-way mixed refrigerant constituting the near-air ratio, there is no change in composition according to the phase change, so that the refrigeration system can be used stably as in the case of using pure refrigerant, and the composition is separated when the refrigerant flows out. There is a significant effect that the phenomenon is prevented.

비록 본 발명이 상기 언급된 바람직한 실시 예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (2)

삭제delete 1,1-디플로로에탄(R152a)과 디메틸에테르(DME 혹은 RE170)으로 선택되는 군 중 어느 하나와 펜타플로로에탄(R125) 및 프로필렌(R1270)을 혼합한 것이며 증발 시 온도구배가 3℃ 이내인 냉동/공조기용 냉매중에서, 1,1-difluoroethane (R152a) and dimethyl ether (DME or RE170) of any one selected from the group mixed with pentafluoroethane (R125) and propylene (R1270), the temperature gradient during evaporation is 3 ℃ Among the refrigerants for refrigeration and air conditioning that are within 펜타플로로에탄(R125) 0.1 내지 99.8 중량부, 프로필렌(R1270) 0.1 지 99.8 중량부 및 디메틸에테르(DME) 0.1 내지 34 중량부로 구성된 것을 특징으로 하는 근공비성 3원 혼합냉매.Pentafluoroethane (R125) 0.1 to 99.8 parts by weight, propylene (R1270) 0.1 g 99.8 parts by weight and dimethyl ether (DME) 0.1 to 34 parts by weight of the azeotropic three-way mixed refrigerant, characterized in that consisting of.
KR1020060062370A 2006-07-04 2006-07-04 Near azeotropic mixed refrigerant KR100669091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060062370A KR100669091B1 (en) 2006-07-04 2006-07-04 Near azeotropic mixed refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060062370A KR100669091B1 (en) 2006-07-04 2006-07-04 Near azeotropic mixed refrigerant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020050018862A Division KR100616771B1 (en) 2005-03-07 2005-03-07 Near azeotropic mixed refrigerant

Publications (2)

Publication Number Publication Date
KR20060096953A KR20060096953A (en) 2006-09-13
KR100669091B1 true KR100669091B1 (en) 2007-01-16

Family

ID=37624359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060062370A KR100669091B1 (en) 2006-07-04 2006-07-04 Near azeotropic mixed refrigerant

Country Status (1)

Country Link
KR (1) KR100669091B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289648A (en) * 2013-05-06 2013-09-11 陈振乐 Environmentally-friendly energy-saving refrigerant capable of substituting R134a

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072966A (en) * 1999-09-08 2001-03-21 Matsushita Electric Ind Co Ltd Mixed coolant and refrigeration cycle device using it
JP2002105441A (en) 2000-09-04 2002-04-10 Atofina Composition that can be used as refrigerant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072966A (en) * 1999-09-08 2001-03-21 Matsushita Electric Ind Co Ltd Mixed coolant and refrigeration cycle device using it
JP2002105441A (en) 2000-09-04 2002-04-10 Atofina Composition that can be used as refrigerant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
13072966

Also Published As

Publication number Publication date
KR20060096953A (en) 2006-09-13

Similar Documents

Publication Publication Date Title
CN109971433A (en) A kind of Diversity refrigerant
CN101270275B (en) Mixed refrigerant
KR100492169B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100616770B1 (en) Near azeotropic mixed refrigerant including r32
KR100616773B1 (en) Azeotropic and near azeotropic mixed refrigerant including r32
KR100669091B1 (en) Near azeotropic mixed refrigerant
KR100616771B1 (en) Near azeotropic mixed refrigerant
KR100633733B1 (en) Near azeotropic mixed refrigerant
KR100616772B1 (en) Near azeotropic mixed refrigerant
KR100616769B1 (en) Azeotropic and near azeotropic mixed refrigerant including r143a
KR101572757B1 (en) Ternary refrigerant mixture composed of R32, RC270, R1234yf
KR100492171B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540285B1 (en) R12 and r22 substitute mixed refrigerant and refrigeration system using thereof
CN113046029B (en) Composition containing fluoroolefin and preparation method thereof
KR100540279B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR101296520B1 (en) Mixed refrigerant
KR100648412B1 (en) Low temperature alternative refrigerant composition
KR20220010339A (en) Refrigerant composition and air conditioner using the same
KR101572758B1 (en) Ternary refrigerant mixture composed of R32, RC270, R152a
KR20220010909A (en) Refrigerant composition and air conditioner using the same
KR20220010340A (en) Refrigerant composition and air conditioner using the same
KR100633730B1 (en) R12 substitute mixed refrigerant
KR20220010908A (en) Refrigerant composition and air conditioner using the same
KR100540284B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540282B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee