KR100314831B1 - Open alkali zinc secondary battery - Google Patents

Open alkali zinc secondary battery Download PDF

Info

Publication number
KR100314831B1
KR100314831B1 KR1019940028342A KR19940028342A KR100314831B1 KR 100314831 B1 KR100314831 B1 KR 100314831B1 KR 1019940028342 A KR1019940028342 A KR 1019940028342A KR 19940028342 A KR19940028342 A KR 19940028342A KR 100314831 B1 KR100314831 B1 KR 100314831B1
Authority
KR
South Korea
Prior art keywords
battery
secondary battery
open
hydrazine
electrolyte
Prior art date
Application number
KR1019940028342A
Other languages
Korean (ko)
Other versions
KR960015986A (en
Inventor
두석광
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to KR1019940028342A priority Critical patent/KR100314831B1/en
Publication of KR960015986A publication Critical patent/KR960015986A/en
Application granted granted Critical
Publication of KR100314831B1 publication Critical patent/KR100314831B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: An open alkali zinc secondary battery is provided, to prevent the corrosion of a zinc electrode due to the dissolved oxygen, thereby improving the self-discharging characteristic and to prevent the corrosion of a separator due to the dissolved oxygen of an electrolyte solution, thereby improving the performance and cycle lifetime of a battery. CONSTITUTION: The open alkali zinc secondary battery comprises an alkali electrolyte solution comprising 1.2-2 g/L of hydrazine N2H4·H2O as a dissolved oxygen inhibitor and 1.6-1.8 g/L of manganese hydroxide as a catalyst for the oxygen removing reaction.

Description

개방형 알카리 아연 2차전지Open alkaline zinc secondary battery

본 발명은 개방형 알카리 아연 2차전지에 관한 것으로, 좀 더 상세하게는 개방형 알카리 아연 2차전지의 제조시 전해액 첨가제로 유수히드라진(hydrazine, N2H4·H2O)과 촉매제로 수산화망간(Mn(OH)2)을 사용하여 산소환원형 부식에 의한 자기방전을 억제하여 방전용량의 감소를 줄여 전지의 성능을 향상시킨 개방형 알카리 아연 2차전지에 관한 것이다.The present invention relates to an open-type alkaline zinc secondary battery, and more particularly, in the manufacture of an open-type alkaline zinc secondary battery, hydrazine (hydrazine, N 2 H 4 · H 2 O) as an electrolyte additive and manganese hydroxide (catalyst) as a catalyst. The present invention relates to an open-type alkaline zinc secondary battery in which Mn (OH) 2 ) is used to suppress self-discharge due to oxygen-reduced corrosion to reduce discharge capacity and thereby improve battery performance.

아연은 그 양이 풍부하고 값이 싼 재료로서 평형전위가 낮고 에너지 밀도가 매우 크기 때문에 전극 재료로 많이 사용되고 있는데, 현재 아연 전극을 사용하는 전지는 10종 이상이며 그중 3종 이상이 상품화되고 있는 추세이다.Zinc is abundant and inexpensive, and has been used as an electrode material because of its low equilibrium potential and very high energy density. Currently, there are more than 10 kinds of batteries using zinc electrodes, and three or more of them are commercialized. to be.

그러나, 개방형 알카리 아연 2차전지의 경우, 충전후 장기간동안 사용하지 않게 되면 아연 전극의 반응물인 아연금속의 부식(corrosion)에 의해자기방전(self-discharge)이 일어나 전지의 방전용량이 감소하게 되어 전지의 성능이 저하된다. 한편, 알카리 용액에서의 자기방전은 주로 아연금속의 용해와 수소 발생이 동시에 일어나서 생기는 수소발생형 부식(hydrogen evolution corrosion) 과 전해액내에 존재하는 용존산소에 의한 산소환원형 부식(oxygen reduction corrosion)에 의해 발생된다.However, in the case of the open-type alkaline zinc secondary battery, if the battery is not used for a long time after being charged, self-discharge occurs due to corrosion of the zinc metal, a reactant of the zinc electrode, thereby reducing the discharge capacity of the battery. The performance of the battery is reduced. On the other hand, self-discharge in alkaline solution is mainly caused by hydrogen evolution corrosion caused by simultaneous dissolution of zinc metal and hydrogen generation and oxygen reduction corrosion caused by dissolved oxygen present in the electrolyte. Is generated.

종래의 경우, 이러한 수소발생형 부식을 억제하기 위한 방법으로는 크게 전극/첨가제를 사용하는 방법과 전해액 첨가제를 사용하는 방법이 있는데, 이러한 방법들은 주로 수소 발생과 전압을 크게 하여 수소발생을 억제하는 것이다.In the conventional case, methods for suppressing such hydrogen-generating corrosion include methods of using electrodes / additives and methods of using electrolyte additives. These methods mainly suppress hydrogen generation by increasing hydrogen generation and voltage. will be.

먼저 전극 첨가제를 사용하는 방법에는 Cd(미합중국 특허 제 4,622,953호), Pb(미합중국 특허 제 3,816,118호), Bi(미합중국 특허 제 3,951,687호), In(일본 특개소 제 58-176870호) 등의 금속 및 금속 화합물을 사용하는 방법, 및 상승효과를 얻기 위하여 이들 금속화합물을 혼합해서 첨가하는 방법(일본 특개소 제 58-1768718호 및 제59-189562호)이 있다. 또한, 전해액 첨가제를 사용하는 방법에는 전해액에 Cd 산화물과 Sn 산화물(일본 특개소 제 58-163159호), In 산화물 및 수산화물(일본 특개소 제 58-163160호), Ti 산화물과 Sn 산화물(일본 특개소 제 58-163162호) 등을 첨가하는 방법이 있다.First, a method of using an electrode additive includes metals such as Cd (US Pat. No. 4,622,953), Pb (US Pat. No. 3,816,118), Bi (US Pat. No. 3,951,687), In (Japanese Patent Laid-Open No. 58-176870), and the like. There is a method of using a metal compound and a method of mixing and adding these metal compounds in order to obtain a synergistic effect (Japanese Patent Laid-Open Nos. 58-1768718 and 59-189562). In addition, the method using an electrolyte additive includes Cd oxide and Sn oxide (Japanese Patent Laid-Open No. 58-163159), In oxide and hydroxide (Japanese Patent Laid-Open No. 58-163160), Ti oxide and Sn oxide (Japanese Patent) in the electrolyte. Point 58-163162) and the like.

그러나, 이러한 종래의 방법들은 수소발생을 억제하여 아연 전극의 부식을 방지해 줄 뿐만 아니라 아연극에서 수지상 전착과 전극변형을 억제하여 전지의 수명을 향상시키는 것으로 보고되었지만, 용존산소에 의한 부식으로 발생하는 자기방전과 세퍼레이터의 부식에 의한 전지의 성능저하에 효과적으로 대처하기 힘든 문제점이 있었다.However, these conventional methods have been reported to not only prevent hydrogen generation and prevent corrosion of zinc electrodes, but also improve the life of batteries by suppressing dendritic electrodeposition and electrode deformation in zinc electrodes. There was a problem that it is difficult to effectively cope with the degradation of the battery caused by self discharge and corrosion of the separator.

따라서, 본 발명의 목적은 상기 문제점을 해결할 뿐만 아니라 전지의 성능 및 싸이클 수명이 향상된 개방형 알카리 아연 2차전지를 제공하는데 있다.Accordingly, an object of the present invention is to provide an open alkali zinc secondary battery which not only solves the above problems but also improves battery performance and cycle life.

상기 목적을 달성하기 위한 본 발명의 개방형 알카리 아연 2차전지는 개방형 알카리 아연 2차전지에 있어서, 알카리 전해액에 용존산소 억제제인 유수히드라진이 첨가된 것으로 이루어진다.In the open-type alkaline zinc secondary battery of the present invention for achieving the above object, in the open-type alkaline zinc secondary battery, the dissolved hydrazine as dissolved oxygen inhibitor is added to the alkaline electrolyte.

이하 본 발명의 구성을 첨부된 도면을 참조하여 좀 더 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the accompanying drawings.

개방형 알카리 아연 2차전지의 경우, 전술한 바와 같이 충전후 장기간동안 사용하지 않게 되면 아연금속의 부식에 의해 자기방전이 일어나 전지의 방전용량이 감소하게 되어 전지의 성능이 저하된다.In the case of the open-type alkaline zinc secondary battery, if it is not used for a long period of time as described above, self-discharge occurs due to corrosion of the zinc metal, thereby reducing the discharge capacity of the battery and degrading the performance of the battery.

이러한 전지 방전용량의 감소에 따른 전지 성능저하의 문제점을 해결하기 위하여 기존에는 전극 첨가제를 사용하는 방법과 전해액 첨가제를 사용하는 방법이 제안되었지만, 용존산소에 의한 부식으로 발생하는 자기방전과 세퍼레이터의 부식에 의한 전지의 성능저하에 효과적으로 대처하기 힘든 문제점이 있었다.In order to solve the problem of battery performance deterioration due to the decrease of the battery discharge capacity, a method of using an electrode additive and a method of using an electrolyte additive have been proposed. However, self discharge and corrosion of a separator generated by corrosion by dissolved oxygen are proposed. There was a problem that it is difficult to effectively cope with the degradation of the battery by.

본 발명자는 이러한 문제점을 해결하기 위하여 연구를 거듭한 결과, 전해액 첨가제로 유수히드라진을 사용하고 촉매제로서 수산화망간을 사용하여 산소환원형 부식에 의한 자기방전을 억제하여 방전용량의 감소를 줄여 전지의 성능을 향상시킨 본 발명의 개방형 알카리 아연 2차전지를 개발한 것이다.The present inventors have conducted a number of studies to solve this problem, using the hydrazine as an electrolyte additive and manganese hydroxide as a catalyst to suppress self-discharge due to oxygen-reduced corrosion to reduce the discharge capacity to reduce the battery performance The open alkali zinc secondary battery of the present invention is improved.

간략히 말해, 본 발명의 개방형 알카리 아연 2차전지는 개방형 알카리 아연2차전지에 있어서, 알카리 전해액에 용존산소 억제제인 유수히드라진이 첨가된 것에 특징이 있다.In short, the open-type alkaline zinc secondary battery of the present invention is characterized in that, in the open-type alkaline zinc secondary battery, flowing hydrazine as a dissolved oxygen inhibitor is added to the alkaline electrolyte.

본 발명에서는 전술한 바와 같이 용존산소에 의한 부식으로 발생하는 자기방전을 억제하기 위해 기존에 사용되고 있는 전해액에 산소억제제인 유수히드라진을 첨가한 것이다. 이때 전해액에 첨가되는 유수히드라진의 양은 1.2g/l∼2g/l이 바람직하며, 좀 더 바람직하기로는 1.6g/l∼1.8g/l이다. 만약 유수히드라진 첨가량이 1.2g/l에 미달될 경우에는 첨가효과가 나지 않으며, 2g/l를 초과할 경우에는 방전용량 향상이 더 이상 진행되지 않기 때문이다.In the present invention, as described above, in order to suppress self-discharge caused by corrosion by dissolved oxygen, an oil inhibitor hydrazine, an oxygen inhibitor, is added to a conventionally used electrolyte solution. At this time, the amount of flowing hydrazine added to the electrolyte is preferably 1.2 g / l to 2 g / l, and more preferably 1.6 g / l to 1.8 g / l. If the amount of added hydrazine is less than 1.2 g / l does not have the effect of adding, if it exceeds 2 g / l because the discharge capacity improvement does not proceed anymore.

한편, 전해액에 첨가된 유수히드라진은 하기 식 (1)과 같은 반응에 의해서 산소를 제거한다.On the other hand, flowing hydrazine added to the electrolytic solution removes oxygen by a reaction as shown in the following formula (1).

그러나, 이러한 산소 제거반응은 고온에서는 비교적 빠르게 진행되지만 실온에서는 느리게 진행된다. 따라서, 산소 제거반응의 촉매제로 수산화망간을 전해액에 더 첨가하므로써 반응을 촉진시킬 수 있다. 이때 수산화망간 첨가량은 약 0.2g/l 정도로 고정된다.However, this oxygen removal reaction proceeds relatively fast at high temperature but slow at room temperature. Therefore, the reaction can be promoted by further adding manganese hydroxide to the electrolyte as a catalyst for the oxygen removal reaction. At this time, the amount of manganese hydroxide added is fixed to about 0.2g / l.

최종적으로, 히드라진은 하기 식 (2)와 같은 반응에 의해 질소와 암모니아로 변한다.Finally, hydrazine is converted into nitrogen and ammonia by a reaction as shown in the following formula (2).

이때 반응 생성물인 질소, 물, 암모니아 등은 모두 휘발성이기 때문에 전지의 벤트(vent)를 통해 외부로 빠져 나가게 되므로 전지내에는 어떠한 염도 남아있지 않게 되는 것이다.At this time, since the reaction products nitrogen, water, ammonia, etc. are all volatile, the salt is discharged to the outside through the vent of the battery, so that no salt remains in the battery.

이하 실시예 및 비교예를 통하여 본 발명을 좀 더 상세히 설명하지만, 이것이 본 발명의 범주를 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but this does not limit the scope of the present invention.

실 시 예 1Example 1

90wt.% ZnO와 4wt.% Zn 및 전극 첨가제로 2wt.% PbO를 잘 혼합한 분말에 결합제로 4wt.% PIFE와 물을 혼합한 후, 가압 성형하여 집전체 양면에 배치한 후 다시 가압하여 두께 1㎜, 폭 40㎜, 길이 40㎜의 아연전극을 제조하였다. 상기 과정을 거쳐 제조된 아연전극에 내알카리성 페이퍼를 부착, 일체화시킨 아연전극을 제작하였다.90 wt.% ZnO, 4 wt.% Zn, and 2wt.% PbO with electrode additives are mixed well with 4wt.% PIFE and water as a binder. A zinc electrode of 1 mm, width 40 mm and length 40 mm was prepared. The zinc electrode prepared by attaching and integrating alkali-resistant paper on the zinc electrode prepared through the above process was fabricated.

이와 같이 제작한 아연전극 3장과 소결식 이중 니켈전극 2장에 친수성 부직포를 부착시킨 후 이를 조합하여 이론용량이 2.36Ah, 아연극과 니켈극의 용량비가 3 : 1인 전지를 제작하였다. 이때 아연극과 니켈극의 분리막으로는 셀룰로즈막이 3겹이 되도록 하였다. 또한, 부분 밀폐를 위하여 접착용 수지로 캡(cap) 부분을 전지의 케이스에 밀봉한 후, 전해액 주입구를 통해 전해액을 주입하고 전지 내압이 약 1.5기압정도에서 개방되도록 러버 밴드(rubber band)를 전지의 벤트 부분에 부착한 다음 전지의 자기방전 특성실험을 수행하였다.A hydrophilic nonwoven fabric was attached to three zinc electrodes and two sintered dual nickel electrodes thus fabricated, and a combination thereof was used to fabricate a battery having a theoretical capacity of 2.36 Ah and a capacity ratio of zinc electrode to nickel electrode of 3: 1. At this time, three layers of the cellulose membrane were used as the separators of the zinc electrode and the nickel electrode. In addition, after sealing the cap portion to the case of the battery with the adhesive resin for partial sealing, the electrolyte is injected through the electrolyte injection port and the rubber band (rubber band) so that the battery internal pressure is opened at about 1.5 atmospheres After attaching to the vent part of the battery, the self-discharge characteristic test was performed.

한편, 본 발명에서 제시한 새로운 전해액의 효과를 확인하기 위하여 기존에 사용되고 있는 7M KOH 용액에 수산화망간 0.2g/l과 히드라진 수화물 1.2g/l을 넣은 전해액을 사용한 전지 A를 제작하였다.On the other hand, in order to confirm the effect of the new electrolyte solution presented in the present invention, a battery A using an electrolyte solution containing 0.2 g / l of manganese hydroxide and 1.2 g / l of hydrazine hydrate in a 7M KOH solution that has been used in the existing.

전지의 자기방전 특성을 알아보기 위해 0.236A로 12시간 충전후 약 30일 방치한 다음 0.472A로 1.2V까지 방전하여 방전용량을 측정하였다.In order to determine the self-discharge characteristics of the battery, the battery was left for about 30 days after charging for 12 hours at 0.236A, and then discharged to 1.2V at 0.472A to measure discharge capacity.

실 시 예 2Example 2

본 실시예에서는 기존에 사용되고 있는 7M KOH 용액에 수산화망간 0.2g/l과 히드라진 수화물 1.6g/l을 넣은 전해액을 사용하였다는 점을 제외하고는 상기 실시예 1과 동일한 방법으로 전지 B를 제작하였으며, 실시예 1과 동일한 측정방법을 사용하여 전지의 자기 방전특성을 측정하였다.In Example 1, Battery B was prepared in the same manner as in Example 1, except that 0.2g / l of manganese hydroxide and 1.6g / l of hydrazine hydrate were used in a 7M KOH solution. The self-discharge characteristics of the battery were measured using the same measuring method as in Example 1.

실 시 예 3Example 3

본 실시예에서는 기존에 사용되고 있는 7M KOH 용액에 수산화망간 0.2g/l과 히드라진 수화물 2g/l을 넣은 전해액을 사용하였다는 점을 제외하고는 상기 실시예 1과 동일한 방법으로 전지 C를 제작하였으며, 실시예 1과 동일한 측정방법을 사용하여 전지의 자기 방전특성을 측정하였다.In the present Example, except that the electrolyte solution containing 0.2 g / l of manganese hydroxide and 2 g / l of hydrazine hydrate to the 7M KOH solution that is used in the prior art was prepared in the same manner as in Example 1, The self-discharge characteristics of the battery were measured using the same measuring method as in Example 1.

비 교 예 1Comparative Example 1

본 비교예는 본 발명과의 비교를 위하여 도입한 것으로, 전술한 실시예에서와는 달리 유수히드라진과 수산화망간을 첨가하지 않았다는 점을 제외하고는 상기 실시예들과 동일한 방법으로 전지 D를 제작하였으며, 동일한 측정방법을 사용하여 전지의 자기 방전특성을 측정하였다.This Comparative Example was introduced for comparison with the present invention, except that the hydrazine and manganese hydroxide were not added, unlike in the above-described embodiment, Battery D was manufactured in the same manner as in the above Examples, The self-discharge characteristics of the battery were measured using the measuring method.

제 1도는 유수히드라진(N2H4· H2O) 첨가량에 따른 전지의 자기 방전특성을 나타낸 그래프로서, 본 발명에 의한 새로운 전해액을 사용한 전지(A, B 및 C)와 기존의 전해액을 사용한 전지(D)의 자기 방전특성을 나타낸 것이다.1 is a graph showing the self-discharge characteristics of a battery according to the amount of hydrazine (N 2 H 4 · H 2 O) added, using a new electrolyte solution according to the present invention (A, B and C) and a conventional electrolyte solution Self-discharge characteristics of the battery D are shown.

제 1도에 의하면, 본 발명에 의한 새로운 전해액을 사용한 전지(A, B 및 C)가 기존의 전해액을 사용한 전지(D)에 비해 자기방전에 의한 방전용량의 감소가 억제됨을 알 수 있으며, 이때 최적 유수히드라진 첨가량은 약 1.65g/l정도이다. 한편, 방전용량은 제작된 전지의 정격용량에 대한 백분율로 나타낸 것이다.According to FIG. 1, it can be seen that the batteries A, B, and C using the new electrolyte according to the present invention are suppressed from the reduction of the discharge capacity due to self discharge, compared to the battery D using the existing electrolyte. The optimum amount of flowing hydrazine is about 1.65 g / l. On the other hand, the discharge capacity is expressed as a percentage of the rated capacity of the battery produced.

그러므로, 본 발명의 개방형 아연 2차전지는 장기간 방치할 경우 용존산소에 의한 아연전극의 부식이 억제되어 자기 방전특성이 향상되며, 전해액내에 존재하는 용존산소에 의한 세퍼레이터의 부식이 억제되어 전지의 성능 및 수명을 향상시킬 수 있는 잇점이 있다.Therefore, the open-type zinc secondary battery of the present invention improves self-discharge characteristics by inhibiting corrosion of the zinc electrode due to dissolved oxygen when left for a long time, and inhibits corrosion of the separator due to dissolved oxygen present in the electrolyte solution. There is an advantage to improve the lifetime.

제 1도는 유수히드라진(N2H4·H2O) 첨가량에 따른 전지의 자기 방전 특성을 나타낸 그래프이다.1 is a graph showing the self-discharge characteristics of a battery according to the amount of flowing hydrazine (N 2 H 4 · H 2 O).

Claims (3)

개방형 알카리 아연 2차전지에 있어서, 알카리 전해액에 용존산소억제제인 유수히드라진과 산소 제거반응의 촉매제로 수산화망간이 첨가된 것을 특징으로 하는 개방형 알카리아연 2차전지.An open alkaline zinc secondary battery, wherein the alkaline electrolyte secondary battery is characterized in that an alkali electrolyte solution is added with hydrogen hydrazine as a dissolved oxygen inhibitor and manganese hydroxide as a catalyst for oxygen removal reaction. 제 1항에 있어서, 상기 유수히드라진이 전해액에 대해 1.2g/l∼2g/l로 첨가된 깃을 특징으로 개방형 알카리 아연 2차전지.The open-type alkaline zinc secondary battery according to claim 1, wherein the flowing hydrazine is added to the electrolyte at 1.2 g / l to 2 g / l. 제 2항에 있어서, 상기 유수히드라진이 전해액에 대해 1.6g/l∼1.8g/l로 첨가된 것을 특징으로 개방형 알카리 아연 2차전지.3. The open-type alkaline zinc secondary battery according to claim 2, wherein the flowing hydrazine is added in an amount of 1.6 g / l to 1.8 g / l based on the electrolyte.
KR1019940028342A 1994-10-31 1994-10-31 Open alkali zinc secondary battery KR100314831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940028342A KR100314831B1 (en) 1994-10-31 1994-10-31 Open alkali zinc secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940028342A KR100314831B1 (en) 1994-10-31 1994-10-31 Open alkali zinc secondary battery

Publications (2)

Publication Number Publication Date
KR960015986A KR960015986A (en) 1996-05-22
KR100314831B1 true KR100314831B1 (en) 2002-08-21

Family

ID=37531495

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940028342A KR100314831B1 (en) 1994-10-31 1994-10-31 Open alkali zinc secondary battery

Country Status (1)

Country Link
KR (1) KR100314831B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616912A (en) * 2015-01-26 2015-05-13 湖北大学 Electrolyte and supercapacitor thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027405A (en) 2018-09-01 2020-03-12 김용택 An apparatus for preventing grasses and other materials from winding around the grass eliminator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104616912A (en) * 2015-01-26 2015-05-13 湖北大学 Electrolyte and supercapacitor thereof

Also Published As

Publication number Publication date
KR960015986A (en) 1996-05-22

Similar Documents

Publication Publication Date Title
CA2346135C (en) Alkaline battery
JP2009517805A (en) Rechargeable alkaline manganese batteries with reduced capacity degradation and improved cycle life
US20050112464A1 (en) Alkaline cells having low toxicity rechargeable zinc electrodes
JP2003502808A (en) Alkaline battery with improved anode
US5532085A (en) Additives for alkaline electrochemical cells having manganese dioxide cathodes
KR100314831B1 (en) Open alkali zinc secondary battery
US6174624B1 (en) Positive-electrode active material for alkaline secondary battery and an alkaline secondary battery
US8283069B2 (en) Zinc-alkaline battery
JP2604282B2 (en) Alkaline storage battery
EP1293002B1 (en) Electrochemical cells with an anode containing sulfur
JPH0770329B2 (en) Non-aqueous electrolyte secondary battery
JPH0560220B2 (en)
JP2006040701A (en) Alkaline dry battery
CA2265280C (en) Alkaline secondary battery
KR890004989B1 (en) Zinc-alkaline battery
US20060078794A1 (en) Nickel-metal hydride storage battery
JP2004119328A (en) Alkaline primary battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS63126163A (en) Alkaline storage battery
JPS58137963A (en) Alkaline zinc storage battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JPH0547371A (en) Hydrogen storage alloy electrode
JPS63124367A (en) Alkaline zinc storage battery
JPH0628155B2 (en) Zinc electrode for alkaline storage battery
JPS6347113B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081103

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee