KR100312407B1 - Method of coloring hot dip galvanized steel sheet in cgl(continuous galvanizing line) - Google Patents
Method of coloring hot dip galvanized steel sheet in cgl(continuous galvanizing line) Download PDFInfo
- Publication number
- KR100312407B1 KR100312407B1 KR1019970031914A KR19970031914A KR100312407B1 KR 100312407 B1 KR100312407 B1 KR 100312407B1 KR 1019970031914 A KR1019970031914 A KR 1019970031914A KR 19970031914 A KR19970031914 A KR 19970031914A KR 100312407 B1 KR100312407 B1 KR 100312407B1
- Authority
- KR
- South Korea
- Prior art keywords
- plating
- steel sheet
- galvanized steel
- coloring
- dip galvanized
- Prior art date
Links
- 238000004040 coloring Methods 0.000 title claims abstract description 50
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims abstract description 44
- 239000008397 galvanized steel Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000005246 galvanizing Methods 0.000 title claims abstract description 10
- 238000007747 plating Methods 0.000 claims abstract description 178
- 238000010438 heat treatment Methods 0.000 claims abstract description 38
- 238000010791 quenching Methods 0.000 claims abstract description 17
- 230000000171 quenching effect Effects 0.000 claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 16
- 239000010959 steel Substances 0.000 claims abstract description 16
- 238000005507 spraying Methods 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 239000011701 zinc Substances 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 10
- 239000003086 colorant Substances 0.000 claims description 10
- 239000007921 spray Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- 238000000576 coating method Methods 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000007598 dipping method Methods 0.000 abstract description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- 239000002826 coolant Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 51
- 238000001816 cooling Methods 0.000 description 28
- 239000000243 solution Substances 0.000 description 14
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- 229910010413 TiO 2 Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910018137 Al-Zn Inorganic materials 0.000 description 4
- 229910018573 Al—Zn Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003973 paint Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000009500 colour coating Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/007—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
본 발명은 착색 용융 아연 도금 강판의 색상 조정 방법에 관한 것으로서 더욱 상세히는 도금후 가열이나 냉각과 같은 후처리 조정에 의하여 산화 피막의 두께조정으로 연속 도금 공정에서의 착색 용융 아연 도금 강판을 착색하는 방법에 관한 것이다.The present invention relates to a color adjustment method of a colored hot dip galvanized steel sheet, and more particularly, a method of coloring a colored hot dip galvanized steel sheet in a continuous plating process by adjusting the thickness of an oxide film by post-treatment adjustment such as heating or cooling after plating. It is about.
용융 아연 도금 강판은 우수한 내식성으로 인하여 전자재료, 가전용 및 자동차용 강판으로 널리 이용되고 있다. 이러한 용융 아연 도금 강판의 최근의 경향은 주의의 외관과 조화를 이루는 칼라화를 요구하고 있다. 즉, 용융 아연 도금 강판이 주로 사용되는 철탑, 가로등, 가드레일, 방음벽 및 기타 외관 등에 있어서 기존과 같이 단순한 금속색을 가지기 보다는 주위와 조화를 이루는 미관색을 가질 것이 요구 되고 있는 것이다.Hot-dip galvanized steel sheet is widely used as a steel sheet for electronic materials, home appliances and automobiles because of its excellent corrosion resistance. Recent trends in such hot dip galvanized steel sheets require colorization in harmony with the appearance of attention. In other words, in steel towers, street lamps, guardrails, soundproof walls and other appearances where hot-dip galvanized steel is mainly used, it is required to have an aesthetic color that harmonizes with the surroundings rather than having a simple metallic color as before.
종래에는 용융 아연 도금후 용제 도장 또는 분체 도장을 실시하여 용융 아연 도금 강판의 착색을 이룸으로서 이러한 요구에 부응을 하여 왔다. 그러나 종래의 이러한 방법은 용융 아연 도금 강판의 도금 피막중 아연이 그 활성으로 인하여 도료 유분의 구성 성분인 지방산과 알킬리로 분해되어 아연석이 생성되고 착색에 이용된 도료의 피막이 도금층 표면에 부착되지 않고 박리되는 결점을 가진다. 또한 종래의 착색 방법은 용융 아연 도금 강판에 부가적으로 도장처리를 실시하므로, 공정의 증가 및 비용의 증가를 가져오며 도료 및 용제에 의한 환경오염의 문제를 초래한다.Conventionally, this request has been met by color coating of the hot dip galvanized steel sheet by applying solvent coating or powder coating after hot dip galvanizing. However, in the conventional method, zinc in the plated film of the hot-dip galvanized steel sheet is decomposed into fatty acids and alkylli, which are constituents of the paint fraction, to form zinc stone, and the film of the paint used for coloring does not adhere to the plated layer surface. Has the drawback. In addition, the conventional coloring method is applied to the hot-dip galvanized steel sheet additionally, resulting in an increase in the process and an increase in cost, and causes a problem of environmental pollution by paints and solvents.
이러한 종래의 용융 아연 도금후의 도장 방법에 대하여, 도금욕에 고유한 색상을 갖는 발색원소를 첨가하여 용융 아연 도금층 자체로 칼라화하는 착색 용융 아연 도금 강판 제조법이 알려져 있다.With respect to such a conventional coating method after hot dip galvanizing, a colored hot dip galvanized steel sheet production method is known in which a coloring element having a color unique to a plating bath is added to color the hot dip galvanized layer itself.
예를 들어, 일본 특허 공보 소 63-247331 호는 아연 도금욕에 Ti, Pb, Cd, Cu, Sn, Bi, Sb, 및 In 등을 1종이상 첨가한 도금욕을 사용하여 아연을 착색하는 방법을 개시하고 있다. 여기서는 상기와 같은 성분계를 가진 도금욕에서 60초 이상 침적하고 450 - 550℃의 온도 분위기에서 5 - 30 초동안 유지함으로서 산화도를 조정하여 다양한 색상의 용융 아연도금 강판을 얻고 있다. 또한 일본 특허 공보 소 63-241132 호는 0.2 - 0.1 wt %의 Ti - 0.05 - 1 wt %의 Cu-Zn의 아연 합금을 사용하고, 욕온도 490- 530℃에서 도금을 실시하고, 다음으로 이것을 500 - 520℃의 온도 범위에서 50 - 150 초 가열한 후 온수냉하거나 대기중에서 강제 공냉후 온수 냉하여 도금층을 착색 하고 있다.For example, Japanese Patent Publication No. 63-247331 discloses a method of coloring zinc using a plating bath in which at least one of Ti, Pb, Cd, Cu, Sn, Bi, Sb, and In is added to a zinc plating bath. Is starting. Here, the hot dip galvanized steel sheet of various colors is obtained by adjusting the degree of oxidation by depositing 60 seconds or more in a plating bath having the above-described component system and maintaining it for 5-30 seconds in a temperature atmosphere of 450-550 ° C. In addition, Japanese Patent Publication No. 63-241132 uses a zinc alloy of 0.2-0.1 wt% of Ti-0.05-1 wt% of Cu-Zn, and performs plating at a bath temperature of 490-530 ° C. -The plated layer is colored by heating for 50-150 seconds in the temperature range of 520 ℃ and by hot water cooling or after forced air cooling in the air.
그러나 이러한 기존의 발색 원소 첨가에 의한 아연의 착색 방법은 불연속 아연 도금공정에 의한 것으로서 침적 시간이 길고 도금후 고온에서 장시간 유지가 필요하다.However, the conventional coloring method of zinc by the addition of a coloring element is a discontinuous zinc plating process, the deposition time is long and needs to be maintained for a long time at high temperature after plating.
그러나, 연속 도금 공정은 침적 시간이 3초이하로 짧고, 도금후 고온의 분위기에서 장시간 유지하는 것이 불가능하여, 연속 도금 공정에서의 발색원소 첨가에 의한 착색 용융아연 도금 강판의 착색 방법이 요구되고 있다.However, the continuous plating process has a short deposition time of 3 seconds or less, and cannot be maintained for a long time in a high temperature atmosphere after plating, and a method of coloring a hot-dip galvanized steel sheet by adding a coloring element in the continuous plating process is required. .
발색원소의 첨가에 의한 착색 용융 아연 도금 강판의 제조에 있어서 도금욕의 온도를 낮출 수 있고, 또한 발색원소의 첨가량을 증가시킬 수 있다면 이는 매우 유리한데, 왜냐하면 발색 원소의 산화에 의한 도금욕의 드로스(dross) 발생 및 부착을 줄여 폭 방향 및 길이 방향의 색상차 및 표면 외관의 저해를 막을 수 있고 또한 발색원소의 첨가량 증가로 동일한 온도에서의 색상변화가 빠르게 되므로 가열시간을 단축하는 것이 가능하게 되어 도금층 표면평활도 및 표면 품질이 우수한 착색 용융 아연 도금 강판을 얻을 수 있기 때문이다.It is very advantageous if the temperature of the plating bath can be lowered and the amount of addition of the coloring element can be increased in the production of colored hot dip galvanized steel sheet by the addition of the coloring element. By reducing the occurrence of dross and adhesion, it is possible to prevent the color difference in the width direction and the length direction and the inhibition of the surface appearance, and also to shorten the heating time because the color change at the same temperature is accelerated by increasing the amount of the coloring elements added. This is because a colored hot dip galvanized steel sheet excellent in plating layer surface smoothness and surface quality can be obtained.
그러므로 본 발명의 목적은 도금욕의 온도를 낮추고 또한 발색원소의 첨가량을 늘릴 수 있어 우수한 색상의 착색 용융 아연 도금 강판을 얻을 수 있는 연속식 도금공정에서의 용융 아연 도금 강판의 착색 방법을 제공하는 것이다.It is therefore an object of the present invention to provide a method for coloring hot-dip galvanized steel sheet in a continuous plating process that can reduce the temperature of the plating bath and increase the amount of coloring elements to obtain colored hot-dip galvanized steel sheet with excellent color. .
이러한 본 발명의 목적은 연속식 도금 공정에 있어서 발색원소의 첨가에 의한 착색 용융 아연 도금 강판의 착색 방법에 있어서, 도금후 도금층 표면의 가열을 통하여 도금층 표면의 산화 피막의 두께를 조정함으로서 용융 아연 도금 강판을 착색하는 착색 방법을 제공함으로서 달성된다. 여기서, 예를 들어, 0.1 - 0.5 wt %의 Ti, 0.004 wt % 이하의 Al 과 잔부 Zn 및 불가피한 불순물로 구성된 아연 합금계를 도금욕 성분계로 하고, 이러한 성분계가 475 - 570 ℃로 유지되는 도금욕에서 도금욕과 동일한 온도로 가열된 도금소재를 1 - 3 초동안 침적 유지하여 도금한 후 도금층 표면을 500 ℃온도로 1- 2초동안 가열하여 용융 아연 도금 강판을 착색할 수 있다.The object of the present invention is a method of coloring a hot-dip galvanized steel sheet by adding a coloring element in a continuous plating process, by hot-dip galvanizing by adjusting the thickness of the oxide film on the surface of the plating layer by heating the surface of the plating layer after plating. It is achieved by providing a coloring method for coloring the steel sheet. Here, for example, a zinc alloy system composed of 0.1 to 0.5 wt% of Ti, 0.004 wt% or less of Al and the balance Zn, and unavoidable impurities is used as the plating bath component system, and the plating system is maintained at 475 to 570 ° C. After plating the plated material heated to the same temperature as the plating bath for 1 to 3 seconds to deposit and plated, the surface of the plated layer can be heated to 500 ℃ temperature for 1 to 2 seconds to color the hot dip galvanized steel sheet.
또한 본 발명의 목적은 연속식 도금 공정에 있어서 발색원소의 첨가에 의한 착색 용융 아연 도금 강판의 착색 방법에 있어서, 도금후 도금층 표면의 급냉 처리를 통하여 도금층 표면의 산화 피막의 두께를 조정함으로서 용융 아연 도금 강판을 착색하는 착색 방법을 제공함으로서 달성된다. 여기서, 예를들어, 0.1 - 0.5 wt %의 Ti, 0.004 wt % 이하의 Al 과 잔부 Zn 및 불가피한 불순물로 구성된 아연 합금계를 도금욕 성분계로 하고, 이러한 성분계가 475 - 570 ℃로 유지되는 도금욕에서 도금욕과 동일한 온도로 가열된 도금소재를 1 - 3 초동안 침적 유지하여 도금한 후 도금층 표면에 용액압 1 - 2 Kg/cm2, 공기압 3Kg/cm2인 분사조건에서 분무상태로 1 초동안 분사하는 급냉처리 하여 아연 도금 강판을 착색할 수 있다.In addition, an object of the present invention is a method of coloring a hot-dip galvanized steel sheet by the addition of a coloring element in a continuous plating process, by adjusting the thickness of the oxide film on the surface of the plating layer by quenching the surface of the plating layer after plating. It is achieved by providing a coloring method for coloring a plated steel sheet. Here, for example, a zinc alloy system composed of 0.1-0.5 wt% Ti, 0.004 wt% or less of Al, the balance Zn, and unavoidable impurities is used as the plating bath component system, and this plating system is maintained at 475-570 ° C. After depositing and plating the plated material heated to the same temperature as the plating bath for 1-3 seconds, the surface of the coating layer was sprayed for 1 second under the spraying conditions of 1-2 Kg / cm 2 and 3Kg / cm 2 air pressure. The galvanized steel sheet may be colored by quenching during spraying.
도 1은 도금욕 온도 및 후처리 방법에 따른 도금층 표면의 산화 피막(TiO2)의 두께 변화를 보이는 도면.1 is a view showing a change in the thickness of the oxide film (TiO 2 ) of the plating layer surface according to the plating bath temperature and the post-treatment method.
이하 첨부한 도면을 참고로 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described with reference to the accompanying drawings.
강판인입온도 및 도금욕 온도가 증가함에 따라 도금층 표면은 금색, 자주색, 청색의 순으로 색상변화를 나타낸다. 즉 Ti첨가 착색 용융아연 도금강판은 도금욕 온도 변화에 따라 도금층의 색상 변화를 가져오는데, 이는 산화피막의 조성변화에 의한 것이 아니라 도금층 표면의 TiO2의 두께 차이에 따른 빛의 간섭정도에 의해서 색상 변화를 가져오는 것이다. 이러한 사실을 확인하기 위하여 0.1-0.5wt%의 Ti 함유 도금욕을 사용하여 도금한 후 자연냉각한 착색 용융아연 도금강판의 도금층색상 별, 도금층 표면의 화학조성과 화학결합 상태 및 산화물의 두께를 ESCA(X-선 광전자분광분석기)를 사용하여 분석하였다. 그 결과 착색 용융아연 도금강판의 도금층 산화피막의 화학 결합상태는 도금욕 온도에 관계없이, 다시 말해서 도금층 색상에 관계없이 TiO2+ ZnO으로 동일하게 구성되어 있으나, 도금욕 온도에 따라 TiO2산화피막의 두께가 변화하는 것을 알수 있었다. 즉 도 1과 같이 도금욕 온도가 증가함에 따라 Ti 산화피막인 TiO2의 두께가 증가하는 것을 볼수 있다. 따라서 Ti첨가 착색 용융아연 도금강판의 도금욕 온도 변화에 따른 도금층 색상변화는 산화피막의 조성변화에 의한 것이 아니라 도금층 표면의 TiO2의 두께 차이에 따른 빛의 간섭정도에 의한 것임을 알 수 있다.As the steel sheet introduction temperature and the plating bath temperature increase, the surface of the plating layer shows the color change in the order of gold, purple, and blue. That is Ti added colored hot-dip galvanized steel sheet is plated to bring about the color change of the coating layer depending on the bath temperature, which colors by the interference degree of light according to the thickness difference of TiO 2 of the surface of the plating layer, not according to the composition change of the oxide film It's about making a difference. In order to confirm this fact, the chemical composition of the plating layer color, the chemical composition of the surface of the plating layer, and the thickness of the oxide, and the thickness of the oxide of the naturally cooled colored hot-dip galvanized steel plate after plating using a Ti-containing plating bath containing 0.1-0.5wt% were measured. Analysis was carried out using (X-ray photoelectron spectroscopy). As a result, the colored hot-dip galvanizing chemical bonding of the plating layer oxide film of the steel sheet state coating, regardless of the bath temperature, in other words, but is configured in the same manner as TiO 2 + ZnO, regardless of the plating layer color, TiO 2 oxide film depending on the coating bath temperature The thickness of was found to change. That is, as the plating bath temperature increases, as shown in FIG. 1, the thickness of the Ti oxide film TiO 2 increases. Therefore, it can be seen that the color change of the plating layer due to the change in the plating bath temperature of the Ti-added hot-dip galvanized steel sheet is not caused by the change in the composition of the oxide film but by the degree of interference of light due to the difference in the thickness of TiO 2 on the surface of the plating layer.
따라서 Ti첨가 착색 용융아연 도금강판의 색상변화를 위해서 도금소재 및 도금욕의 온도와 같은 도금조건을 조성하지 않고, 본 발명에 의한 도금후 가열이나 냉각과 같은 후처리 조건 조정에 의한 산화피막의 두께 조정으로 다양한 색상의 착색 용융아연 도금강판의 제조가 가능한 것이다.Therefore, in order to change the color of the Ti-added hot-dip galvanized steel sheet, the thickness of the oxide film is adjusted by adjusting the post-treatment conditions such as heating or cooling after plating according to the present invention without forming plating conditions such as the temperature of the plating material and the plating bath. The adjustment allows the production of colored hot dip galvanized steel sheets of various colors.
도 1과 같은 도금조건에서 도금한 직후 온도 500℃로 1초 동안 도금층을 직접 가열하는 것에 의한 도금층의 산화피막두께의 성장이, 동일한 온도에서 도금한후 자연 냉각시킨 경우보다 촉진되어 산화피막이 두껍게 형성된다. 따라서 도금직후에 산화분위기에서 가열은 자연냉각할 경우의 도금층 생성보다 한 단계 또는 그 이상의 높은 도금욕에서 도금한 경우와 대응한다. 여기서 도금층 가열은 비연속적 도금공정에서와 같이, 높은 온도의 로내에서 장시간 유지하는 것이 아니라 도금층 표면만을 버너의 불꽃으로 직접 가열하는 것으로 족하다. 그러므로 종래와 같이 높은 온도 및 장시간의 가열에 의한 합금화로 색상이 제거되는 문제가 없으며, 연속도금공정에 라인속도 저하를 초래하지 않기 때문에 생산성 저하문제를 초래하지 않는다.The growth of the thickness of the oxide film in the plating layer by directly heating the plating layer at a temperature of 500 ° C. for 1 second immediately after plating under the same plating conditions as in FIG. 1 is accelerated than the case of natural cooling after plating at the same temperature, resulting in a thick oxide film. do. Therefore, heating in the oxidizing atmosphere immediately after plating corresponds to the case of plating in a plating bath one step or more higher than the formation of the plating layer in the case of natural cooling. Here, the plating layer heating is sufficient to directly heat only the surface of the plating layer with the flame of the burner, rather than maintaining it for a long time in a high temperature furnace as in the discontinuous plating process. Therefore, there is no problem that color is removed by alloying by high temperature and long time heating as in the prior art, and it does not cause a problem of productivity degradation because it does not cause a decrease in line speed in the continuous plating process.
도금 후 버너로 도금층을 직접 가열하는 경우에는 자연냉각할 때와 같이 2가지 색이 혼합되는 경우가 발생하게 되는데, 이런 경우에는 가열온도를 높이거나 가열시간을 길게하는 방법으로 단색의 도금층을 얻을수 있다. 이와 같이 본 발명은 도금직후 도금층 표면만을 직접가열하는 것에 의해서 도금층의 표면 산화피막 두께를 용이하게 조정할 수 있으므로, 도금소재 및 도금욕의 온도증가 없이 균일하고 선명한 자주색 빛 청색의 착색 용융아연 도금 강판을 제조할 수 있게 한다. 따라서 도금후 후 처리 방법으로 도금층 표면을 직접가열하는 본 발명은, 도금층 표면 색상이 도금욕 온도 변화에 의한 도금층 산화피막 두께 조정 및 이에 따른 색상보다 높은 도금욕 온도에서 제조한 색상과 대응되기 때문에 도금욕 온도를 저하시킬수 있게하고, 나아가서 도금욕온도의 저하와 함께 도금욕의 발색원소 첨가량을 보다 높게 관리하여도 드로스(dross)발생이 감소되므로 도금욕의 발색 원소 첨가량을 증가 시킬 수 있다. 이에 따라 동일한 온도에서의 색상변화가 빠르게 되므로 가열시간을 단축하는 것이 가능하게 된다. 따라서 연속식 도금공정에서 도금층 표면만을 직접가열하는 본 발명은 종래의 자연냉각에 비해서 도금층 표면평활도 및 표면 품질이 우수하다.When the plating layer is directly heated by the burner after plating, two colors may be mixed as in the case of natural cooling. In such a case, a solid plating layer may be obtained by increasing the heating temperature or lengthening the heating time. . As described above, the present invention can easily adjust the thickness of the surface oxide film of the plating layer by directly heating only the surface of the plating layer immediately after plating. Thus, a uniform and vivid purple light blue colored hot dip galvanized steel sheet is obtained without increasing the temperature of the plating material and the plating bath. To manufacture. Therefore, the present invention, which directly heats the surface of the plating layer by post-plating treatment method, is used because the plating layer surface color corresponds to the color produced at the plating bath temperature higher than the color adjustment of the plating layer oxide due to the change in plating bath temperature and thus the color. It is possible to reduce the bath temperature, and furthermore, even when the amount of the coloring element added to the plating bath is lowered together with the lowering of the plating bath temperature, dross generation is reduced, so that the amount of the coloring element added to the plating bath can be increased. Accordingly, since the color change at the same temperature is faster, it is possible to shorten the heating time. Therefore, the present invention which directly heats only the surface of the plated layer in the continuous plating process is superior to the surface layer smoothness and surface quality compared to the conventional natural cooling.
본 발명의 실시예에서는 발색원소의 Ti 첨가량을 자연냉각의 0.1-0.3 wt% Ti에서 0.1-0.5 wt % Ti로 증가시키고 있다. 또한 도금욕의 Al 함량은 0.004 wt %이상일 경우에는 Al의 산화피막이 형성되기 때문에 0.004 wt Al%이하로 하고 잔부가 아연인 아연합금계를 도금욕으로 하고 있다. 도금욕 온도는 570℃이하로 하여 가열온도와 시간을 조정함에 따라 다양한 색상을 얻을수 있다. 여기서 연속의 도금공정에서 가열시간을 길게 하는 것은 많은 장치가 부착되어야 하고 또한 가열온도를 증가하는 경우에는 도금층이 합금화되므로 도금욕 온도를 475-570℃로 한정한다. 또한 가열온도 및 시간의 조정 범위를 크게 할 경우, 상기와 같은 문제를 유발하므로 가열온도는 500℃로 한정하고, 가열시간은 라인속도 및 색상 변화에 연동하여 조정하는데, 본 발명의 실시예에서는 1-2초를 유지하여 균일하고 선명한 색상의 착색도금강판을 제조하고 있다.In the embodiment of the present invention, the amount of Ti added to the coloring element is increased from 0.1-0.3 wt% Ti to 0.1-0.5 wt% Ti of natural cooling. In the case where the Al content of the plating bath is 0.004 wt% or more, an oxide film of Al is formed. Therefore, the zinc bath is made to be 0.004 wt Al% or less and the zinc alloy having the balance of zinc is used as the plating bath. Plating bath temperature is 570 ℃ or less to obtain a variety of colors by adjusting the heating temperature and time. In this case, the length of the heating time in the continuous plating process should be attached to many devices, and when the heating temperature is increased, the plating layer is alloyed, so the plating bath temperature is limited to 475-570 ° C. In addition, when the adjustment range of the heating temperature and time is increased, the above problems are caused, so the heating temperature is limited to 500 ° C., and the heating time is adjusted in conjunction with the line speed and the color change. Maintaining -2 seconds to produce a colored plate of uniform and vivid color.
또한 상기와 같은 도금층 표면을 가열하는 후처리 방법이외에도 도금직후 급냉하는 방법으로 도금층 표면의 산화피막 두께를 조정하여 착색 용융아연 도금강판의 색상을 다양하게 조정할 수 있다.In addition to the post-treatment method of heating the surface of the plating layer as described above, the color of the colored hot-dip galvanized steel sheet may be variously adjusted by adjusting the thickness of the oxide film on the surface of the plating layer by quenching immediately after plating.
도 1의 경우와 같이 도금직 후 용액압 1kg/cm2, 공기압 3kg/cm2인 조건으로 용액분사하는 경우, 도금층 표면의 산화피막두께는 급냉에 의해서 도금층 표면에서의 산화피막 형성이 억제되기 때문에 자연냉각 및 가열처리와 대비하여 볼때 산화 피막의 두께가 크게 감소하는 것을 볼수 있다. 즉 도금직후 도금층 표면의 급냉처리는 동일한 도금욕 온도로 도금한 후 자연냉각한 경우나 또는 상기와 같이 도금후 가열처리한 경우와 대비하여 한 단계 낮거나 또는 그 이하의 낮은 단계의 색상을 나타내게 된다.In the case of solution spraying under the condition of solution pressure 1kg / cm 2 and air pressure 3kg / cm 2 after plating, as in the case of FIG. 1, since the oxide film formation on the surface of the plating layer is suppressed by the rapid cooling, the formation of the oxide film on the surface of the plating layer is suppressed. Compared with the natural cooling and heat treatment, the thickness of the oxide film can be seen to be greatly reduced. In other words, the quenching treatment of the surface of the plating layer immediately after plating shows a color of one step lower or lower than that of the case of natural cooling after plating at the same plating bath temperature or heating after plating. .
또한 도금직후 급냉처리를 실시하게 되는 경우에는 후처리로 가열처리하는 경우와 같이 분사조건이 적절치 않은 경우 두가지 색상이 혼재될수 있으나 분사조건을 적절히 조정하여 냉각 속도를 크게 하거나 작게하여 균일한 색상의 착색 용융아연 도금강판을 제조할 수 있다. 본 발명의 다른 실시예에서는 분사용액으로는 냉각 능력이 뛰어난 인산수소암모늄계 용액을 사용하였으나 냉각속도에 따라 물이나 기타 냉매의 사용도 가능하다. 또한 분사노즐은 용액과 공기가 노즐에서 혼합되어 분무상태로 분사되는 2류체 노즐을 사용하여 분사입자에 의한 도금층 표면의 요철발생을 제거하였으며, 냉각 능력을 크게 하였다. 특히 분사입자 및 분무량은 용액압과 공기압에 의해 좌우되는데, 본 발명의 다른 실시예에서는 용액압 1kg/cm2, 공기압 3kg/cm2인 조건에서 냉각능력을 충분히 발휘하였다. 이와 같이 도금직 후 급냉처리에 의해서 도금층 표면의 산화피막두께 및 색상을 조정할 경우, 도금후 발색원소의 산화피막 형성속도가 느리고 착색 산화피막의 색상변화가 느리기 때문에 도금욕의 발색원소 첨가량은 종래의 자연냉각법에 대비 증가시키는 것이 가능하다. 예를들어 본 발명의 다른 실시예에서는 발색원소인 Ti함유량을 일반적인 0.1-0.3 wt %에서 0.1-0.5 wt %로 첨가량 범위를 확대하는 것이 가능하다. 또한 도금직후 상기와 같은 분사조건으로 급냉하는 경우, 발색 가능한 색상은 금색 및 자주색으로 도금욕 온도를 570℃이하로 관리하는 것이 바람직함을 알 수 있다. 따라서 도금욕을 고온으로 가열할 필요가 없으므로 고온의 도금욕에 의한 드로스(dross)형성 및 부착방지가 가능하기 때문에 도금층 표면 평활도 및 도금표면 품질을 크게 향상시킬수 있다. 특히 도금직후 급냉처리에 의한 도금층 표면의 색상조정은 도금층 표면 뿐만아니라 도금소재의 잠열 제거가 가능하므로, 후물재 및 후도금재의 잠열에 의한 도금소재와 도금층 계면에서의 합금층 형성을 방지할 수 있으므로 가공시 가공성을 크게 개선할 수 있었다.In addition, when quenching is performed immediately after plating, two colors may be mixed when the spraying conditions are not appropriate as in the case of post-treatment heat treatment.However, by adjusting the spraying conditions appropriately, the cooling rate may be increased or decreased to uniformly color. Hot-dip galvanized steel sheet can be produced. In another embodiment of the present invention, the ammonium hydrogen phosphate-based solution having excellent cooling ability is used as the injection solution, but water or other refrigerants may be used depending on the cooling rate. In addition, the spray nozzle eliminates irregularities on the surface of the plating layer by spray particles by using a two-fluid nozzle in which a solution and air are mixed in the nozzle and sprayed in a spray state, thereby increasing the cooling capacity. In particular, there is injected particles and spray amount is influenced by the solution pressure and the air pressure, in other embodiments of the present invention, maximize the cooling capacity in the solution pressure 1kg / cm 2, air pressure 3kg / cm 2 of the conditions. As described above, when the oxide film thickness and color of the surface of the plating layer are adjusted by quenching after plating, the amount of the coloring element added to the plating bath is slow because the formation rate of the oxide layer after plating is slow and the color change of the coloring oxide film is slow. It is possible to increase it compared to natural cooling. For example, in another embodiment of the present invention, it is possible to extend the amount of Ti content, which is a coloring element, from 0.1-0.3 wt% to 0.1-0.5 wt% in general. In addition, when quenching under the same spray conditions immediately after plating, it can be seen that it is preferable to manage the plating bath temperature at 570 ° C. or less in gold and purple colors. Therefore, since the plating bath does not need to be heated to a high temperature, it is possible to prevent dross formation and adhesion by the high temperature plating bath, thereby greatly improving the plating layer surface smoothness and plating surface quality. In particular, the color adjustment of the surface of the plating layer by quenching immediately after plating can remove the latent heat of the plating material as well as the surface of the plating layer, thereby preventing the formation of an alloy layer at the interface between the plating material and the plating layer due to the latent heat of the thick material and the after-plating material. Machinability was greatly improved during processing.
본 발명의 다른 실시예에서는 0.1 - 0.5 wt % Ti, 0.003wt % Al - Zn 아연합금계를 도금욕으로하고, 도금욕 온도는 570℃이하로 하여 도금한 직후 용액압과 공기압을 조정하여 분무상태로 분사하는 것에 의해서 다양한 색상을 얻을 수 있으며, 또한 연속식 도금공정에서 분무시간이 1-2초로 매우 짧으므로 용액압 1-2kg/cm2, 공기압 3kg/cm2인 조건으로 한정한다.In another embodiment of the present invention, 0.1-0.5 wt% Ti, 0.003 wt% Al-Zn zinc alloy is used as the plating bath, and the plating bath temperature is 570 ° C. or lower immediately after plating to adjust the solution pressure and air pressure to spray Various colors can be obtained by spraying with a spray, and in the continuous plating process, the spraying time is very short as 1-2 seconds, so it is limited to the conditions of solution pressure 1-2kg / cm 2 and air pressure 3kg / cm 2 .
이하 본 발명의 실시예에 대하여 설명한다.Hereinafter, embodiments of the present invention will be described.
두께가 0.8mm인 일반저탄소강의 냉연강판을 가로 100mm, 세로200mm로 절단하여 시험편으로 하였다. 이 시험편을 알칼리 용액에서 침적하여 탈지한후 750℃의 소둔환원온도에서 열처리 하였다. 이렇게 전처리된 도금소재를 0.1-0.5wt % Ti - 0.003 wt % Al-Zn의 아연합금계의 도금욕에서 도금욕 온도(강판인입온도와 동일) 475-580℃으로 3초 동안 침적하여 단면 도금부착량이 150g/m2되게 도금한 후 표 1과 같이 공기중에서 자연냉각(공냉), 가열처리 및 급냉처리(용액 분사)하여 착색 산화피막을 형성시켰다.Cold rolled steel sheet of general low carbon steel having a thickness of 0.8 mm was cut into a width of 100 mm and a length of 200 mm to obtain a test piece. The specimen was degreased by dipping in an alkaline solution, and then heat-treated at annealing reduction temperature of 750 ° C. The pre-plated plating material was deposited in the plating bath of 0.1-0.5wt% Ti-0.003 wt% Al-Zn for 3 seconds at the plating bath temperature (same as the steel sheet insertion temperature) at 475-580 ℃ for 3 seconds. After plating to 150 g / m 2 , a colored oxide film was formed by natural cooling (air cooling), heat treatment, and quenching (solution injection) in air as shown in Table 1.
이렇게 제조된 착색 용융아연 도금강판은 ESCA(X-선 광전자분광분석기) 깊이방향 분석기로 표면층의 표면 산화피막인 TiO2의 두께를 측정하고, 시편의 폭방향 및 길이방향의 색상 및 색상혼합(균일성)등 도금품질평가를 육안으로 실시한 결과를 표 1에 나타내었다.The manufactured hot-dip galvanized steel sheet is an ESCA (X-ray Photoelectron Spectrometer) depth direction analyzer, which measures the thickness of TiO 2 , the surface oxide film of the surface layer, and mixes the color and color in the width and length directions of the specimen. Table 1 shows the results of visual evaluation of the plating quality.
* 가열온도(℃)×시간(sec)* Heating temperature (℃) × time (sec)
** 용액압(kg/cm2)×공기압(kg/cm2)** Solution Pressure (kg / cm 2 ) × Air Pressure (kg / cm 2 )
○: 양호, ×: 불량○: good, x: poor
표 1에서 나타낸 바와 같이 0.1-0.3wt%Ti-0.003wt%Al-Zn인 종래의 아연합금계에서 청색의 착색도금피막(No5)을 제조하기 위해서는 580℃이상의 고온의 도금욕 온도가 요구되므로 착색 도금층 표면에 드로스(dross) 부착을 방지하기 위해서는 발색원소 첨가 범위를 한정하여야 한다.As shown in Table 1, in order to manufacture a blue colored coating film (No5) in a conventional zinc alloy system of 0.1-0.3wt% Ti-0.003wt% Al-Zn, a high temperature plating bath temperature of 580 ° C or higher is required. In order to prevent dross from adhering to the surface of the plating layer, the range of addition of the coloring element should be limited.
이에 반해 도금직후 500℃로 1-2초 동안 직접 가열하는 것에 의하여,균일하고 선명한 자주색(No.6,7)및 청색(No.9,10,11)의 착색 용융아연 도금강판을 안정적으로 제조할수 있었다. 또한 도금직후 후처리 방법으로 가열 처리하는 경우(No.6-11)의 색상은 동일한 도금욕 온도에서 도금한후 자연 냉각하는 경우(No.1-5)대비 한 단계 또는 두 단계의 높은 도금욕에 대응되므로 도금욕 온도를 자연냉각 대비 낮추는 것이 가능하게 되어, 도금욕의 Ti 첨가량을 최대 0.5wt%까지 높이는 것이 가능하였다.On the contrary, by directly heating to 500 ° C. for 1-2 seconds immediately after plating, uniformly colored purple zinc (No. 6, 7) and blue (No. 9, 10, 11) colored hot dip galvanized steel sheets are stably manufactured. Could. In addition, the color of the heat treatment by the post-treatment method immediately after plating (No. 6-11) is higher in one or two steps than in the case of natural cooling after plating at the same plating bath temperature (No. 1-5). Since it is possible to lower the plating bath temperature compared to natural cooling, it was possible to increase the Ti addition amount of the plating bath up to 0.5wt%.
도금직후 후처리 방법으로 분사용액을 1-2초 분사하는 급냉처리에 의해서도 균일하고 선명도가 우수한 금색(No.12,13,15) 및 자주색(No.16,17)의 착색도금강판을 제조할 수 있었다. 도금직후 후처리 방법으로 급냉하는 경우(No.12-17)의 색상은 자연냉각대비 한 단계 또는 두 단계 낮은 도금욕 온도에서 도금한 도금층 색상과 대응하였다. 도금후 발색원소의 산화피막 형성속도가 느리고 착색산화피막의 색상변화가 느리기 때문에 도금욕의 발색원소 첨가량은 종래의 자연냉각법에 대비 증가시키는 것이 가능하므로 도금욕 Ti함유량을 최대 0.5wt%까지 첨가량을 높이는 것이 가능하였다.Even after quenching, it is possible to produce gold (No. 12, 13, 15) and purple (No. 16, 17) colored plated steel sheets with excellent uniformity and clarity even by the quenching treatment of spraying the spraying solution for 1-2 seconds. Could. In the case of quenching by post-treatment method immediately after plating (No. 12-17), the color corresponded to the plating layer color plated at the plating bath temperature lowered by one or two steps compared to natural cooling. Since the formation rate of the oxide layer of the coloring element after plating is slow and the color change of the coloring oxide film is slow, the addition amount of the coloring element of the plating bath can be increased as compared with the conventional natural cooling method. Therefore, the Ti content of the plating bath can be added up to 0.5wt%. It was possible to raise.
따라서 0.1-0.5wt%Ti-0.003wt%Al-Zn인 아연합금계에서 후처리 방법으로 가열처리 및 급냉처리를 적절히 실시하므로 자연냉각보다 낮은 도금욕 온도에서 우수한 표면 품질특성을 가진 금색, 자주색 및 청색의 착색용융아연 도금강판을 제조할 수 있었다.Therefore, in the zinc alloy system of 0.1-0.5wt% Ti-0.003wt% Al-Zn, heat treatment and quenching are appropriately performed by the post-treatment method. Therefore, gold, purple and purple have excellent surface quality characteristics at the plating bath temperature lower than natural cooling. A blue colored hot dip galvanized steel sheet could be produced.
즉 도금욕 온도가 475-580℃에서 용액압 1-2kg/cm2, 공기압 3kg/cm2인 분사조건으로 1-2초 분사하는 경우(No.12,13)에는 금색(gold color), 동일한 도금욕 온도에서 550℃로 1초 가열처리 하는 것(No.6,7)에 의해서 자주색(purple color), 도금욕온도 540-570℃에서 500℃로 1-2초 가열 처리하는 것(No.9,10)에 의해서 청색(blue color)의 균일하고 선명한 착색용융아연 도금강판을 제조할 수 있었다.That is, when the plating bath temperature is sprayed for 1-2 seconds under the spraying condition of solution pressure 1-2kg / cm 2 and air pressure 3kg / cm 2 at 475-580 ° C (No. 12, 13), the gold color is the same. 1 second heat treatment at the plating bath temperature at 550 ° C. (No. 6,7) to purple color, 1-2 second heat treatment at the plating bath temperature of 540-570 ° C. to 500 ° C. (No. 9, 10) was able to produce a uniform and vivid colored molten zinc plated steel sheet of blue color.
지금까지는 발색원소를 Ti에 한정하여 설명하였으나, 이밖에 여러가지 발색원소에 대해서 상기와같은 가열처리 및 급냉처리에 의해서 도금층 표면을 안정적이고 용이하게 착색할 수 있다.Until now, the coloring element was limited to Ti. However, various coloring elements can be stably and easily colored on the surface of the plating layer by the above heat treatment and quenching treatment.
이와 같이 본 발명에 의하여, 도금욕에 고유한 색상을 갖는 발색원소가 함유된 도금욕에서 도금한후, 가열처리및 급냉처리와 같은 후처리 조건의 조정에 의해서 도금층의 색상 변화가 가능여지므로 종래와 같이 도금욕의 온도를 600℃ 이상으로 높게 하여 착색화 필요가 없으므로 도금욕 표면에서의 드로스(dross) 발생 및 도금층 부착방지로 균일하고 선명한 착색 도금강판을 제조할 수 있다. 또한 도금욕 온도의 저하로 Ti첨가량을 기존 대비 증가시켜도 드로스(dross) 발생 및 색상차를 방지할 수 있으므로 도금욕의 발색원소의 첨가량을 확대에 의한 안정적 조업이 가능하다.Thus, according to the present invention, after plating in a plating bath containing a coloring element having a color unique to the plating bath, the color change of the plating layer is made possible by adjusting post-treatment conditions such as heat treatment and quenching treatment. As described above, since the temperature of the plating bath is higher than 600 ° C., there is no need for coloring, a uniform and clear colored plated steel sheet can be manufactured by preventing the occurrence of dross on the surface of the plating bath and preventing the adhesion of the plating layer. In addition, even if the amount of Ti is increased due to a decrease in the plating bath temperature, it is possible to prevent dross generation and color difference, thereby enabling stable operation by expanding the amount of the coloring element added to the plating bath.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970031914A KR100312407B1 (en) | 1997-07-10 | 1997-07-10 | Method of coloring hot dip galvanized steel sheet in cgl(continuous galvanizing line) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970031914A KR100312407B1 (en) | 1997-07-10 | 1997-07-10 | Method of coloring hot dip galvanized steel sheet in cgl(continuous galvanizing line) |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990009494A KR19990009494A (en) | 1999-02-05 |
KR100312407B1 true KR100312407B1 (en) | 2001-12-12 |
Family
ID=37531235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970031914A KR100312407B1 (en) | 1997-07-10 | 1997-07-10 | Method of coloring hot dip galvanized steel sheet in cgl(continuous galvanizing line) |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100312407B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63130757A (en) * | 1986-11-21 | 1988-06-02 | Nikko Aen Kk | Formation of golden colored plating |
KR880006382A (en) * | 1986-11-21 | 1988-07-22 | 가사하라 유끼오 | Pigmented Zinc Coating Method |
JPS6479358A (en) * | 1987-09-22 | 1989-03-24 | Sumitomo Metal Ind | Production of colored galvanized steel sheet |
JPH02285059A (en) * | 1989-04-27 | 1990-11-22 | Nippon Mining Co Ltd | Method for allowing zinc to develop color |
JPH10195621A (en) * | 1996-12-27 | 1998-07-28 | Nippon Steel Corp | Colored galvannealed steel sheet and production thereof |
-
1997
- 1997-07-10 KR KR1019970031914A patent/KR100312407B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63130757A (en) * | 1986-11-21 | 1988-06-02 | Nikko Aen Kk | Formation of golden colored plating |
KR880006382A (en) * | 1986-11-21 | 1988-07-22 | 가사하라 유끼오 | Pigmented Zinc Coating Method |
JPS6479358A (en) * | 1987-09-22 | 1989-03-24 | Sumitomo Metal Ind | Production of colored galvanized steel sheet |
JPH02285059A (en) * | 1989-04-27 | 1990-11-22 | Nippon Mining Co Ltd | Method for allowing zinc to develop color |
JPH10195621A (en) * | 1996-12-27 | 1998-07-28 | Nippon Steel Corp | Colored galvannealed steel sheet and production thereof |
Also Published As
Publication number | Publication date |
---|---|
KR19990009494A (en) | 1999-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4036600A (en) | Steel substrate electroplated with Al powder dispersed in Zn | |
JP2964911B2 (en) | Alloying hot-dip galvanizing method for P-added high-strength steel | |
KR100312407B1 (en) | Method of coloring hot dip galvanized steel sheet in cgl(continuous galvanizing line) | |
US5022937A (en) | Colored zinc coating | |
KR100338351B1 (en) | METHOD FOR MANUFACTURING Zn-Ti BASED COLORED HOT-DIP GALVANIZED STEEL SHEET | |
US5160552A (en) | Colored zinc coating | |
KR20010018653A (en) | A method for manufacturing hot-dip galvanized steel sheets having good coating quality properties | |
KR100286667B1 (en) | Manufacturing method of galvanized steel sheet | |
JPS62256959A (en) | Manufacture of alloying-plated steel sheet | |
US5141782A (en) | Colored zinc coating | |
JPH0319297B2 (en) | ||
KR100428941B1 (en) | Method for manufacturing colored hot dipped galvanized iron having excellent surface quality and color sharpness by adding ni, enhancing wettability of an oxide film, to plating bath | |
JPH02118088A (en) | Production of hot-dip galvanized alloyed steel sheet excellent in workability and coating property | |
KR0143472B1 (en) | Manufacturing method of zn-fe alloy coated steel sheet with continuous annealing furnace | |
JP2727595B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JP2754590B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
KR20000045508A (en) | Method for producing plated steel sheet of alloyed molten zinc with excellent powdering resistance | |
KR100275230B1 (en) | The zero spangle galvanized coating method with sb powder spray | |
JP3095935B2 (en) | Hot-dip Zn plating method | |
JPH07145469A (en) | Manufacture of galvannealed steel sheet excellent for corrosion resistance and press formability | |
KR100376474B1 (en) | Method for Controlling Alloying Degree of Molten Zinc Alloy Coated Steel Sheet | |
JP2754596B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability, paintability, and corrosion resistance, and method for producing the same | |
JP2727597B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in workability and paintability and method for producing the same | |
JPH10195621A (en) | Colored galvannealed steel sheet and production thereof | |
KR950006275B1 (en) | Method for producing a hot-dipped galvanized steel sheet with an excellent surface brightness and surface smoothness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |