KR100305684B1 - device for forming nitride Aluminum for fire proof material - Google Patents
device for forming nitride Aluminum for fire proof material Download PDFInfo
- Publication number
- KR100305684B1 KR100305684B1 KR1019990004068A KR19990004068A KR100305684B1 KR 100305684 B1 KR100305684 B1 KR 100305684B1 KR 1019990004068 A KR1019990004068 A KR 1019990004068A KR 19990004068 A KR19990004068 A KR 19990004068A KR 100305684 B1 KR100305684 B1 KR 100305684B1
- Authority
- KR
- South Korea
- Prior art keywords
- powder
- aluminum nitride
- aluminum
- reaction
- filling layer
- Prior art date
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 title claims description 11
- 239000000463 material Substances 0.000 title abstract description 3
- 150000004767 nitrides Chemical class 0.000 title 1
- 239000000843 powder Substances 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 12
- 238000011049 filling Methods 0.000 claims abstract description 12
- 239000011819 refractory material Substances 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 239000007858 starting material Substances 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- -1 nitrogen nitride Chemical class 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- 230000002194 synthesizing effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/46—Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/66—Monolithic refractories or refractory mortars, including those whether or not containing clay
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
본 발명은 내화재용 질화 알루미늄 분말 제조시 출발원료를 연속하여 이동시켜 충진층을 형성하면서 발열 반응시킴과 함께 이때 질소가스 압력 및 출발원료와 반응조절제를 적절히 조절하므로서 간단한 공정으로 대량생산 가능한 질화 알루미늄을 얻는다.In the present invention, aluminum nitride powder for refractories is continuously extruded while the starting material is continuously moved to form a filling layer, and at this time, nitrogen nitride, which can be mass-produced in a simple process, by appropriately adjusting the nitrogen gas pressure, the starting material and the reaction regulator. Get
이에따른 구성은 알루미늄 분말과 반응조절제가 혼합된 분말을 질소가스 압력이 1-10㎏/㎠ 유지된 반응기에 연속으로 투입시켜 분말 충진층이 형성되게 한 후 발열체를 이용하여 발열 반응시켜서 됨을 특징으로 하는 내화재용 질화 알루미늄 분말의 제조방법에 관한 기술이다.According to the configuration, the powder mixed with aluminum powder and the reaction regulator is continuously introduced into a reactor in which nitrogen gas pressure is maintained at 1-10 kg / ㎠ to form a powder filling layer, and then exothermic reaction is performed using a heating element. It is a technique regarding the manufacturing method of the aluminum nitride powder for fireproof materials.
Description
본 발명은 질화 알루미늄 분말 합성에 관한 것으로, 보다 상세하게는 출발원료의 연속이동에 따라 충진층을 형성하면서 점화반응을 진행시킴과 함께 반응변수로서 질소가스 압력 및 출발원료와 반응조절제의 성분비를 조절함으로서 내열충격성 내식성 등이 요구되는 내화재료의 출발원료 등에 사용되는 질화 알루미늄 분말을 단순한 공정으로 대량 양산화 하는 것에 관한 것이다.The present invention relates to the synthesis of aluminum nitride powder, and more specifically, to proceed with the ignition reaction while forming a packed layer according to the continuous movement of the starting material and to control the nitrogen gas pressure and the component ratio of the starting material and the reaction regulator as a reaction variable The present invention relates to mass production of aluminum nitride powder used in starting materials of refractory materials requiring heat shock resistance and corrosion resistance in a simple process.
질화 알루미늄(AIN)은 열전도도가 높고, 열팽창계수가 작기 때문에 열충격 저항성이 크며, 용융 금속과의 젖음성이 낮은 특성으로 용융된 금속을 유지시키는 도가니 또는 내화재료로서의 사용이 가능하다.Aluminum nitride (AIN) has a high thermal conductivity and a low thermal expansion coefficient, and thus has high thermal shock resistance, and can be used as a crucible or refractory material for maintaining molten metal due to its low wettability with molten metal.
알루미늄 분말을 이용한 종래의 질화 알루미늄 합성방법으로는 직접질화법, 탄소환원질화법, 부유질화법, 가상반응법 등이 있으며 그 중 상업적으로는 주로 탄소환원질화법이 사용되고 있으나 생산비용이 매우 높은 단점을 갖고 있다.Conventional aluminum nitride synthesis methods using aluminum powder include direct nitriding, carbon reduction nitriding, suspended nitriding, and virtual reaction methods. Among them, carbon reduction nitriding is mainly used commercially, but production costs are very high. Have
한편, 자전 고온반응 합성법(SHS)은 높은 에너지 효율과 빠른 생성속도 및 고온반응에 따른 반응물 순도가 높으며 생산성이 높은 장점을 갖고 있다.On the other hand, the SHS synthesis method has the advantages of high energy efficiency, rapid production rate, high purity of reactants due to high temperature reaction, and high productivity.
자전 고온반응 합성공정은 화학반응시 발생하는 발열을 이용하여 화합물을 합성하는 기술로 분말 형태의 미반응물을 일정 화학성분비로 혼합하여 프레스 가압 성형한 후 발열체에 의해 시작된 점화반응이 성형체 내에서 연쇄적으로 전파되어 진행됨으로서 화합물이 합성된다.The rotating high-temperature reaction synthesis process is a technology for synthesizing compounds by using heat generated during chemical reaction. After mixing the powdered unreacted material with a certain chemical ratio by pressurization, the ignition reaction started by the heating element is chained within the molded body. By propagating to and proceeding, the compound is synthesized.
이와 같이 고상상태의 원료 분말을 이용하여 화합물을 합성하는 방법외에 원료분말 성형체와 가스와의 반응에 의해 화합물을 합성하는 방법 등이 있다.As described above, in addition to the method of synthesizing the compound using the raw material powder in a solid state, there is a method of synthesizing the compound by reacting the raw material powder compact with a gas.
기존의 자전 발열 반응으로 분말을 합성하는 방법으로는 먼저 알루미늄 분말을 이용하는 성형체를 만들어 질소 분위기에서 발열반응시켜 질화 알루미늄으로 합성시키고 있는데, 이는 성형체의 밀도 등과 같은 반응변수가 작용하여 이에 대한 변수제어로 공정이 복잡해지고, 합성량이 제작된 성형체 용적에 한정되므로 대량 양산화가 곤란하여 상업화에 어려움이 있다.In the conventional method of synthesizing powder by the autogenous exothermic reaction, first, a molded body using aluminum powder is made, and exothermic reaction is carried out in a nitrogen atmosphere to synthesize aluminum nitride, which is controlled by reaction variables such as density of the molded product. Since the process is complicated and the amount of synthesis is limited to the molded body volume produced, mass production is difficult and commercialization is difficult.
본 발명은 상기한 종래의 문제점을 해결하기 위한 것으로, 성형체 제조후 발열반응을 일으키는 기존의 방법에서 벗어나 출발원료와 반응조절제의 성분비가 적절히 배합된 원료를 일정 질소가스 압력이 존재하는 분위기하에 연속적으로 투입시켜 분말 충진층의 형성에 의해 발열반응시키므로서 질화 알루미늄 분말의 양산화가 가능하도록 하는데 그 목적이 있다.The present invention is to solve the above-mentioned conventional problems, and the raw material in which the component ratio of the starting material and the reaction control agent is suitably blended continuously in the atmosphere in which a constant nitrogen gas pressure exists, deviating from the conventional method of causing exothermic reaction after manufacturing the molded body. The purpose of this is to enable mass production of aluminum nitride powder by exothermic reaction by the formation of a powder filling layer.
도 1은 질화 알루미늄 분말 합성을 위한 장치도1 is a device diagram for the synthesis of aluminum nitride powder
상기 목적을 달성하기 위한 본 발명은 알루미늄 분말과 반응조절제가 혼합된 분말을 질소가스 압력이 1-10㎏/㎠로 유지된 반응기에 연속적으로 이동시켜 분말 충진층이 형성된 상태에서 발열체를 이용하여 발열반응시켜서 질화 알루미늄 합성 분말을 얻게 된다.In order to achieve the above object, the present invention continuously moves a powder mixed with aluminum powder and a reaction regulator to a reactor in which a nitrogen gas pressure is maintained at 1-10 kg / cm 2 to generate heat using a heating element in a state in which a powder filling layer is formed. By reaction to obtain an aluminum nitride synthetic powder.
도 1은 본 발명의 질화 알루미늄 합성 분말 제조의 실시예를 나타낸 모식도로서 이에 따라 설명한다.Figure 1 is a schematic diagram showing an embodiment of the production of aluminum nitride synthetic powder of the present invention will be described accordingly.
알루미늄 분말 10-90wt%와 반응조절제로서 작용하는 질화 알루미늄 10-90wt% 혼합분말을 1차 호퍼(1)에 투입한 후 2차 호퍼(2)를 거쳐 스크류 피더(3)를 통해 반응로(4) 내부의 턴테이블(5)로 이동시키고 상기 반응로 내의 가이드를 통해 분말 충진층(6)을 형성시킨다.The aluminum nitride powder mixture 10-90 wt% of aluminum powder, which acts as a 10-90 wt% and the reaction controlling agent to the reaction on the primary hopper (1) screw feeder (3) through the second hopper (2) and then put into (4) It moves to the turntable 5 inside and forms the powder filling layer 6 through the guide in the said reactor.
로터리 펌프(7)를 통한 반응로(4) 내부의 진공화를 거쳐 질소가스(8)를 반응로(4) 내부에 주입시켜 질소분위기를 조정한 후 반응로 내부에 장착되어 있는 전열히터(9)를 점화시킨다.Nitrogen gas (8) is introduced into the reactor (4) via vacuum in the reactor (4) through the rotary pump (7) to adjust the nitrogen atmosphere, and the electrothermal heater (9) mounted inside the reactor (9). Ignite).
로터리 펌프(7)를 통한 반응로(4) 내부의 진공화를 거쳐 질소가스(8)를 반응로(4) 내부에 주입시켜 질소분위기를 조성한 후 반응로 내부에 장착되어 있는 전열히터(9)를 점화시킨다.Nitrogen gas (8) is introduced into the reactor (4) via vacuum in the reactor (4) via the rotary pump (7) to form a nitrogen atmosphere, and then an electric heater (9) mounted inside the reactor. Ignite.
점화된 전열히터(9)의 점화코일을 분말충진층(6)의 상부에 접촉시켜 점화가 개시되도록 만든다.The ignition coil of the ignited electric heater 9 is brought into contact with the upper portion of the powder filling layer 6 to start ignition.
일단 분말충진층(6)의 점화가 개시되면 그 이후에는 자전 연소에 의한 발열반응으로 연속점화가 분말충진층(6) 내에서 진행되며, 턴테이블(5)의 회전을 통한 분말충진층(6)이 이동된다.Once the ignition of the powder filling layer 6 is started, thereafter, continuous ignition proceeds in the powder filling layer 6 by an exothermic reaction by autogenous combustion, and the powder filling layer 6 is rotated through the rotation of the turntable 5. Is moved.
이때 분말충진층(6)의 연속 영역이 후방으로 이동되면서 상기 분말충진층(6)은 합성 반응 완료부와 반응 진행부, 미반응부로 분류된다.At this time, as the continuous region of the powder filling layer 6 is moved to the rear, the powder filling layer 6 is classified into a synthetic reaction complete portion, a reaction progress portion, and an unreacted portion.
스크류 피더(3)를 통한 연속적인 알루미늄 분말을 투입시킴으로서 출발원료를 공급하며 앞서 합성 반응 원료로 고화된 합성물은 반응로(4) 내의 스크래퍼에 의해 분쇄물로 잔류되어 집진기(10), 사이크론호퍼(11), 애쉬호퍼, 합성분말 수거통(13)을 통해 수거된다.The starting material is supplied by inserting the continuous aluminum powder through the screw feeder (3), and the composite material solidified as a synthetic reaction raw material is left as a pulverized product by a scraper in the reactor (4) to collect the dust collector (10) and the cyclone hopper. (11), it is collected through the ash hopper, synthetic powder container (13).
이때 합성물 제조에 대한 반응변수로서 합성로 내의 질소가스 압력과 반응조절제로 작용하는 질화 알루미늄의 알루미늄에 대한 치환 성분비가 중요하다.At this time, the nitrogen nitride pressure in the synthesis furnace and the substitution ratio of aluminum to aluminum are important as reaction variables for the production of the composite.
표 1에 질소가스 압력 변화에 따라 합성된 분말의 엑스레이(X-Ray) 회절분석을 통한 결정 특징을 나타내었다.Table 1 shows the crystal characteristics of the powder synthesized according to the nitrogen gas pressure change through X-ray diffraction analysis.
질소가스 압력이 1㎏/㎠ 미만의 조건에서는 미반응 알루미늄이 검출되며, 이들이 용융되어 순수한 질화 알루미늄의 생성을 억제하는 작용을 한다.Unreacted aluminum is detected under conditions of a nitrogen gas pressure of less than 1 kg / cm 2, and these melt to act to suppress the production of pure aluminum nitride.
1-10㎏/㎠ 조건에서는 미반응 알루미늄이 존재하지 않고 질화 알루미늄만 검출된다.Under 1-10 kg / cm 2 condition, unreacted aluminum does not exist and only aluminum nitride is detected.
10㎏/㎠ 이상의 가스 압력은 합성 반응로의 설비상 한계 압력점으로 삼았다.A gas pressure of 10 kg / cm 2 or more was taken as the critical pressure point on the plant in the synthesis reactor.
(표 1)Table 1
질소가스 압력 변화에 따라 합성된 분말의 결정Crystallization of Synthesized Powder According to Nitrogen Gas Pressure
표 2에는 반응조절제로서 작용하는 질화 알루미늄과 알루미늄의 성분비에 따른 생성 결정의 특징을 나타내었다.Table 2 shows the characteristics of the production crystals according to the composition ratio of aluminum nitride and aluminum acting as a reaction regulator.
전체 알루미늄 성분비에 대한 질화 알루미늄의 치환비가 10% 이하인 경우에는 미반응 알루미늄이 존재하며, 질화 알루미늄의 순도가 저하된다.When the substitution ratio of aluminum nitride with respect to the total aluminum component ratio is 10% or less, unreacted aluminum exists and the purity of aluminum nitride falls.
10-90% 범위에서는 순수한 질화 알루미늄의 생성이 용이하며 그 이상의 치환비는 생성되는 질화 알루미늄의 제조량이 적어지므로 한계비로서 산정하였다.It was easy to produce pure aluminum nitride in the range of 10-90%, and the substitution ratio was calculated as the marginal ratio because the production amount of the produced aluminum nitride becomes smaller.
(표 2)Table 2
반응조절제로 사용된 질화 알루미늄의 치환량에 따른 합성 분말의 결정Determination of Synthetic Powder According to Substitution Amount of Aluminum Nitride Used as Reaction Control Agent
이상에서와 같이 본 발명은 알루미늄 분말과 반응조절제를 적절히 배합함과 함께 상기 원료를 일정 질소가스 압력(1-10㎏/㎠)하의 반응기에 연속적으로 투입시켜 분말 충전층이 형성되게 한 상태에서 발열반응시키므로서 공정이 간단하고, 대량 양산화 가능한 질화 알루미늄 분말을 얻게되어 이를 용융 금속도가니 또는 내화재료로서의 용도에 널리 활용할 수 있다.As described above, according to the present invention, the aluminum powder and the reaction regulator are appropriately mixed, and the raw material is continuously added to the reactor under a constant nitrogen gas pressure (1-10 kg / cm 2) to generate heat in a state where a powder packed layer is formed. By reacting, the process is simple and a mass quantifiable aluminum nitride powder can be obtained, which can be widely used for use as a molten metal crucible or a refractory material.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990004068A KR100305684B1 (en) | 1999-02-06 | 1999-02-06 | device for forming nitride Aluminum for fire proof material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990004068A KR100305684B1 (en) | 1999-02-06 | 1999-02-06 | device for forming nitride Aluminum for fire proof material |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000055446A KR20000055446A (en) | 2000-09-05 |
KR100305684B1 true KR100305684B1 (en) | 2001-09-24 |
Family
ID=19573587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990004068A KR100305684B1 (en) | 1999-02-06 | 1999-02-06 | device for forming nitride Aluminum for fire proof material |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100305684B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100386510B1 (en) * | 2000-09-23 | 2003-06-02 | 주식회사 캄테크놀로지 | Method for Preparing Aluminum Nitride Powder by Self-propagating High-temperature Synthesis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10273370A (en) * | 1997-01-30 | 1998-10-13 | Ngk Insulators Ltd | Jointed body of aluminum nitride ceramic base material, production of jointed body of aluminum nitride ceramic base material and jointing material therefor |
-
1999
- 1999-02-06 KR KR1019990004068A patent/KR100305684B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10273370A (en) * | 1997-01-30 | 1998-10-13 | Ngk Insulators Ltd | Jointed body of aluminum nitride ceramic base material, production of jointed body of aluminum nitride ceramic base material and jointing material therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100386510B1 (en) * | 2000-09-23 | 2003-06-02 | 주식회사 캄테크놀로지 | Method for Preparing Aluminum Nitride Powder by Self-propagating High-temperature Synthesis |
Also Published As
Publication number | Publication date |
---|---|
KR20000055446A (en) | 2000-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4877759A (en) | One step process for producing dense aluminum nitride and composites thereof | |
JPH0527454B2 (en) | ||
JPS6112844B2 (en) | ||
Yang et al. | Mechanical-activation-assisted combustion synthesis of SiC | |
US5006490A (en) | Method for the formation of refractory products from and disposal of asbestos | |
Yi et al. | Preparation of calcium aluminate matrix composites by combustion synthesis | |
US4944930A (en) | Synthesis of fine-grained α-silicon nitride by a combustion process | |
JPS5913442B2 (en) | Manufacturing method of high purity type silicon nitride | |
Zhang et al. | The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction | |
KR100305684B1 (en) | device for forming nitride Aluminum for fire proof material | |
KR100386510B1 (en) | Method for Preparing Aluminum Nitride Powder by Self-propagating High-temperature Synthesis | |
Zhang et al. | The combustion synthesis of refractory nitrides: Part II the synthesis of niobium nitride | |
US5314656A (en) | Synthesis of transition metal carbonitrides | |
KR100611232B1 (en) | Synthesis Method of Aluminum oxynitride AlON by Self-propagating Method | |
Zhang et al. | Synthesis of tungsten monocarbide by self-propagating high-temperature synthesis in the presence of an activative additive | |
JPS6221702A (en) | Production of titanium nitride | |
CN1135457A (en) | Method for preparation of titanium carbide micropowder by using self-spreading high-temp. synthesizing chemical-reacting furnace | |
KR100461962B1 (en) | Process for producing composite powders of metallic oxides/nitride compounds | |
Studenikin et al. | Synthesis of silicon oxynitride by infiltration-mediated combustion | |
Corbin et al. | “SHS” Self-Sintering of Materials in the Titanium-Boron-Carbon System | |
KR940005091B1 (en) | Process for producing ceramics | |
RU2237617C1 (en) | Chromium bromide production process | |
RU2778748C2 (en) | Method for obtaining a refractory mixture containing boron nitride | |
RU2813569C1 (en) | Method of producing composite material based on silicon nitride | |
RU2490232C1 (en) | METHOD OF OBTAINING FIRE-PROOF MATERIAL BASED ON SILICON BETA-NITRIDE β-Si3N4 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120802 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20130801 Year of fee payment: 13 |
|
LAPS | Lapse due to unpaid annual fee |