KR100304789B1 - 에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법 - Google Patents

에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법 Download PDF

Info

Publication number
KR100304789B1
KR100304789B1 KR1019990029933A KR19990029933A KR100304789B1 KR 100304789 B1 KR100304789 B1 KR 100304789B1 KR 1019990029933 A KR1019990029933 A KR 1019990029933A KR 19990029933 A KR19990029933 A KR 19990029933A KR 100304789 B1 KR100304789 B1 KR 100304789B1
Authority
KR
South Korea
Prior art keywords
exopolysaccharide
aeromonas
strain
kctc
exopolysaccharides
Prior art date
Application number
KR1019990029933A
Other languages
English (en)
Other versions
KR20010010830A (ko
Inventor
이홍금
이정현
고성환
박신혜
이득수
이현상
Original Assignee
박병권
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박병권, 한국해양연구원 filed Critical 박병권
Priority to KR1019990029933A priority Critical patent/KR100304789B1/ko
Publication of KR20010010830A publication Critical patent/KR20010010830A/ko
Application granted granted Critical
Publication of KR100304789B1 publication Critical patent/KR100304789B1/ko

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6408Supports or covers specially adapted for use in microwave heating apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

본 발명은 세포외로 폴리사카라이드를 분비하는에어로모나스 속(Aeromonas sp.) 96CJ10356 균주(KCTC 0564BP) 및 이로부터 엑소폴리사카라이드를 생산하는 방법에 관한 것으로, 본 발명에 의해 생산된 엑소폴리사카라이드(exopolysaccharide)는 글루코스와 갈락토스가 1:6.8의 비율로 존재하고, 분자량이 2.2×106인 폴리사카라이드로서 수용액에 녹고, 응집활성을 가지며, 유화안정성이 우수하므로, 식품산업 등과 같은 다양한 산업분야에서 이용될 수 있다.

Description

에어로모나스 속 96CJ10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법{Aeromonas sp. 96CJ10356 strain and a method for preparation of extracellular polysaccharide therefrom}
본 발명은 세포외로 폴리사카라이드를 분비하는에어로모나스 속(Aeromonas sp.) 96CJ10356 균주(KCTC 0564BP) 및 이로부터 엑소폴리사카라이드를 생산하는 방법에 관한 것이다.
본 명세서에는 여러 편의 간행물이 참고문헌으로 인용되어 있는데, 이들 참고문헌은 명세서중에 저자와 연도만을, 그의 상세한 내용은 특허청구범위 직전에 열거하여 놓았다.
미생물에 의해 세포외로 분비되는 폴리사카라이드(extracellula polysaccharide; 이하'EPS'라 한다)는 미생물을 다른 생물체로부터 보호하거나 항체에 대한 방어역할, 주위환경의 독성물질을 중화시키거나 금속이온과의 착화합물을 형성하며, 건조한 환경에서 세포내의 수분이 증발하는 것을 막는 등 미생물의 생존과 관련된 여러 가지 기능을 수행하고 있는 물질이다(Sutherland, 1977; Sutherland, 1983).
그러나, 미생물성 EPS는 조건에 따라 겔 형성능, 유화안정능, 표면장력의 조절능, 물흡수능, 점착능, 윤활능 및 필름형성능 등의 광범위한 기능성을 갖고 있으므로, 샐러드 소스, 치이즈, 달걀 대용품, 푸딩, 음료, 분말스프 제조 등과 같은식품분야에 이용되고 있으며, 연마제, 접착제, 분무제, 세라믹제, 화장품, 잉크, 페인트 및 종이제조 등과 같은 각종산업에도 이용되고 있다(Fu and Tseng, 1990; 김 등, 1990; Ireneet al., 1990; Marra, 1990; Martinset al, 1990; Lowet al, 1998). 또한, 중금속 흡착능(Norberg and Persson, 1984), 항종양활성(Odaet al, 1983) 및 항궤양능(Nagaokaet al, 1994)을 갖는 EPS가 보고되어, 신 바이오 소재로서 산업적 잠재력이 크다.
더구나, 이러한 미생물성 EPS는 산업적 이용의 높은 잠재력과 함께, 배양조건 및 생산조건을 개선하여 생산성을 높일 수 있으며, 단기간에 발효조를 이용한 연속배양에 의해 대량생산이 가능하고, 생산된 엑소폴리사카라이드의 분리, 회수가 용이하기 때문에, 현재 주목받고 있다.
따라서, 이러한 미생물성 EPS에 대하여 활발히 연구가 진행되고 있으며, 현재, 미생물성 EPS로 알려진 것은쥬글리아 속(Zoogloea sp.)이 생산하는 쥬글란(zooglan; Ikeda et al., 1982) 및슈도모나스 속(Pseudomonas sp.; Worawattanamateekul and Okutani, 1992; Matsuda and Worawattanamateekul, 1993),비브리오 피셔리(Vibrio fischeri; Rodrigues and Bhosle, 1991),시아노테스 속(Cyanothece sp.; Philippis et al., 1993),알터모나스 마클레오디(Altermonas macleodii; Raguens et al., 1996) 등으로부터 생산된 EPS가 있으며, 한국 연안에서 엑소폴리사카라이드를 생성하는 해양 미생물로 알려진 것으로는쥬글리아 속(Zoogloea sp.)(KCCM 10036)(장재혁 등, 1998) 정도로 그 수가 많지 않다.
이러한 상황하에서, 본 발명자들은 상기한 미생물성 EPS와는 다른 새로운 EPS를 생산할 수 있는 미생물을 찾고자 예의 연구한 결과, 제주도 및 마라도의 해안에서 EPS를 생산하는 새로운 미생물을 발견하고 본 발명을 완성하게 되었다.
즉, 본 발명의 목적은 폴리사카라이드를 세포외로 분비하는에어로모나스 속(Aeromonas sp.) 96CJ10356 균주(KCTC 0564BP)를 제공하는 것이다.
본 발명의 다른 목적은 상기한 균주로부터 엑소폴리사카라이드를 생산하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기한 균주로부터 생산된 엑소폴리사카라이드를 제공하는 것이다.
본 발명의 다른 목적 및 작용은 하기 발명의 구성 및 작용으로부터 당업자에게 명백하게 드러날 것이다.
도 1은에어로모나스 속(Aeromonas sp.) 96CJ10356 균주(KCTC 0564BP)로부터 엑소폴리사카라이드를 생산하는데 있어서 탄소원의 영향을 나타낸 그래프이다.
도 2는에어로모나스 속96CJ10356 균주(KCTC 0564BP)로부터 엑소폴리사카라이드를 생산하는데 있어서 질소원의 영향을 나타낸 그래프이다.
도 3은에어로모나스 속96CJ10356 균주(KCTC 0564BP)로부터 엑소폴리사카라이드를 생산하는데 있어서 시간경과에 따른 엑소폴리사카라이드 생성량, 건조균체량, 점도의 변화를 나타낸 그래프이다.
도 4는에어로모나스 속96CJ10356 균주로(KCTC 0564BP)부터 생산된 엑소폴리사카라이드의 분자량을 측정한 결과이다.
도 5는에어로모나스 속96CJ10356 균주(KCTC 0564BP)로부터 생산된 엑소폴리사카라이드의 TLC분석결과이다.
레인 1, 2, 3: 표준 당 레인 4: 가수분해된 엑소폴리사카라이드
도 6은에어로모나스 속96CJ10356 균주(KCTC 0564BP)로부터 생산된 엑소폴리사카라이드의 HPLC분석결과이다.
도 7은에어로모나스 속96CJ10356 균주(KCTC 0564BP)로부터 생산된 엑소폴리사카라이드(EPS-R)의 농도에 따른 응집활성의 변화를 나타낸 그래프이다.
본 발명의 균주인에어로모나스 속(Aeromonas sp.) 96CJ10356 균주에 의해 생산된 엑소폴리사카라이드는 유기용매에는 용해되지 않으나 수용액에 잘 용해되고, 매우 우수한 응집활성을 나타내어 응집활성제로 사용할 수 있으며, 공지의 유화안정제인 잔탄검, 젤란검, 알긴산나트륨 및 아라빈산검보다도 우수한 유화안정성을 갖는다.
이하 본 발명을 상세히 설명한다.
(1) 엑소폴리사카라이드 생산 균주의 선발
제주도 및 마라도의 조간대 지역에서 채취한 시료를 생리식염수로 희석한 후, 이를 ZoBell 고체배지(펩톤 5g, 효모추출물 1g, 인산철 0.01g, 한천 15g, 증류수 250㎖, 숙성해수 750㎖)에 도말하고, 상온에서 배양하여 점성을 갖는 균주를 일차적으로 분리하였다. 그 결과, 총 119 균주가 분리되었다.
분리된 균주들을 해수가 첨가된 YMG 액체배지(글루코스 10g, 펩톤 5g, 효모추출물 3g, 맥아추출물 3g, 증류수 500㎖, 숙성해수 500㎖)에 각각 1백금니씩 접종하고, 25℃에서 7일간 120rpm으로 진탕배양한 후, 배양액을 원심분리하여 상등액을 분리하였다.
그 다음, 상등액에 2배 부피의 에탄올을 첨가하여 엑소폴리사카라이드를 침전시킨 후, 이를 회수하고 건조시킨 다음, 무게를 측정, 엑소폴리사카라이드의 회수율이 높은 균주인 96CJ10356을 최종적으로 선별하였다.
(2) 균주의 동정
상기에서 선발한 96CJ10356 균주의 특징을 홀트(Holt, Bergey's manual of systematic bacteriology, Williams & Wilkins, Baltimore/London, 1984)의 방법에 따라 분석하였다.
·형태적 특성
균의 형태는 그램 음성의 간균으로서, 크기는 1~5㎛이다
·구조적 특성 및 생육 특성
96CJ10356 균주의 구조적 특성 및 생육 특성은 표 1과 같다.
구조적 특성 약간 운동성
생육 특성 배양일수에 따라 집락은 1~2㎜ 크기로 미립(granule)을 형성배양일수에 따라 집락의 색깔은 연황색에서 적색으로 변화집락의 외형은 초기에는 원형으로 광택을 띠지만, 화산형의 점액상으로 변화oxidase 및 catalase 생산lactose, starch, casein을 이용40℃에서 성장NaCl이 첨가되지 않은 배지 및 5이상 첨가된 배지에서 성장불가Mg2+및 Ca2+를 필수적으로 요구함
·16S rDNA의 염기서열 분석
96CJ10356 균주의 16S rDNA의 염기서열을 분석하고, 그 결과는 서열 1에 나타내었다.
이상의 결과로부터, 엑소폴리사카라이드의 생산성이 가장 우수한 96CJ10356 균주를 동정한 결과 이 균주는 해양성 미생물인에어로모나스 속(Aeronomas sp.)으로 밝혀졌다. 따라서, 본 발명자들은 이 균주를에어로모나스 속(Aeronomas sp.)96CJ10356으로 명명하고, 1999년 1월 4일자로 생명공학연구소내 유전자은행에 기탁하여, 수탁번호 KCTC 0564BP를 부여받았다.
(3) 엑소폴리사카라이드의 생산
① 엑소폴리사카라이드를 생산하기 위한 최적 배지 조성
에어로모나스 속96CJ10356(KCTC 0564BP)을 이용하여 엑소폴리사카라이드를 생산하기 위한 최적 배지의 조성을 하기의 방법으로 조사하였다.
ⅰ) 탄소원
에어로모나스 속96CJ10356(KCTC 0564BP)를 글루코스(glucose), 갈락토스(galactose), 맥아당(maltose), 자당(sucrose), 과당(fructose), 락토오스(lactose) 및 감자전분(potato starch)이 각각 20g/ℓ씩이 첨가되어 있는YMG 배지에 접종한 후, 25℃에서 7일 동안 120rpm으로 진탕 배양하였다.
그 다음, 배양액에 동량의 증류수를 가한 뒤, 건조된 규조토 0.1g을 첨가하여 잘 혼합하고, 10,000×g에서 20분 동안 원심분리하여 생성된 침전물을 105℃에서 3시간 동안 건조하고 무게를 측정 이를 건조균체량으로 하였다. 그리고, 원리분리한 상등액에는 2배 부피의 메탄올과 클로로포름을 가한 뒤, 클로로포름층을 제거하고, 다시 동량의 에탄올을 첨가하여 엑소폴리사카라이드를 침전시킨 후, 10,000×g에서 20분 동안 원심분리하여 생성된 침전물을 동결건조한 것을 크루드 엑소폴리사카라이드(crude exopolysaccharide)로 하였다.
탄소원의 종류에 따라 건조균체량에 따른 엑소폴리사카라이드의 생산율을 비교하였다(도 1). 그 결과, 본 발명의에어로모나스 속96CJ10356(KCTC 0564BP)는 탄소원으로 자당을 사용하였을 때, 가장 많은 엑소폴리사카라이드(8.23g/ℓ)를 생성하였다.
ⅱ) 질소원
에어로모나스 속96CJ10356(KCTC 0564BP)를 NH4NO3, NH4Cl, (NH4)2HPO4, NH4H2PO 또는 NaNO3의 무기 질소원과, 펩톤, 효소추출물, 카세인, 트립톤(trypton), 소이톤(soyton) 또는 맥아추출물의 유기 질소원을 각각 5g/ℓ씩 함유하는 YMG 배지에서 상기 ⅰ)과 동일한 방법으로 배양하고, 질소원의 종류에 따라 건조균체량에 따른 엑소폴리사카라이드의 생산율을 비교하였다(도 2).
그 결과, 본 발명의에어로모나스 속96CJ10356(KCTC 0564BP)는 질소원으로유기질소원을, 특히 트립톤을 사용하였을 때, 가장 많은 엑소폴리사카라이드(8.23g/ℓ)를 생성하였다.
ⅲ) 탄소원과 질소원의 비율(C/N 비율)
에어로모나스 속96CJ10356(KCTC 0564BP)를 2자당과 하기 표 2에 기재된 농도의 트립톤을 함유하는 YMG배지에서 상기 ⅰ)과 동일한 방법으로 배양하고, C/N 비율에 따라 건조균체량에 따른 엑소폴리사카라이드의 생산율을 비교하였다(표 2).
트립톤농도(g/ℓ) C/N 비율 엑소폴리사카라이드생산량(g/ℓ) DCW1(g/ℓ) 생산성2 최후 pH
20.0 1 6.48 3.36 1.92 6.80
10.0 2 8.87 1.95 4.54 6.50
5.0 4 8.24 4.33 1.90 6.70
2.0 10 8.18 8.40 0.97 6.45
1.0 20 3.36 3.92 0.86 6.38
0.5 40 2.48 3.44 0.72 6.32
0.2 100 2.01 3.14 0.64 6.27
0.1 200 0.35 2.82 0.12 6.38
DCW; 건조균체중량, 생산성=엑소폴리사카라이드 생산량/건조균체중량
그 결과,에어로모나스 속96CJ10356(KCTC 0564BP)는 C/N비가 2인 배지를 사용하였을 때, 가장 많은 엑소폴리사카라이드를 생성한다는 것을 알 수 있다. 이러한 결과는 일반적으로 미생물성 엑소폴리사카라이드를 생산하는데 10∼40정도의 C/N 비가 요구(Fu and Tseng, 1990)되는 것과는 상이한 결과이다.
ⅳ) 염화나트륨
본 발명의에어로모나스 속96CJ10356(KCTC 0564BP)는 해양성 미생물이므로, 염화나트륨에 대한 영향을 조사하였다. 즉, 해수가 첨가되지 않은 YMG배지에 염화나트륨을 0∼10(w/v)의 양으로 첨가한 배지에서에어로모나스 속96CJ10356(KCTC0564BP)를 상기 ⅰ)과 동일한 방법으로 배양하여 염화나트륨에 대한 영향을 조사한 결과, 염화나트륨을 1.0(w/v)의 양으로 첨가하였을 때, 가장 많은 엑소폴리사카라이드를 생성하였다.
ⅴ) 염류와 금속이온의 영향
탈이온수를 사용한 YMG 배지에 염류 및 금속이온을 농도별로 첨가하고,에어로모나스 속96CJ10356(KCTC 0564BP)를 배양하여 생성되는 엑소폴리사카라이드의 수율을 확인하였다.
그 결과, MaSO4및 CaCl2의 최적농도는 각각 4g/ℓ 및 0.7g/ℓ이며, FeCl3, MnCl2, Na2MoO4및 ZnCl2는 엑소폴리사카라이드의 생산에 큰 영향을 미치지 않았다.
ⅵ) 칼륨이온과 인산
칼륨이온과 인산은 미생물 증식시 RNA 합성, 세포벽의 구조 및 역할에 영향을 주어 엑소폴리사카라이드 생합성에 관여한다. 따라서, KH2PO4와 K2HPO4를 혼합한 완충용액(pH 7.0)을 0~50mM로 첨가하여 그의 최적농도를 조사하였다. 이때, KH2PO4와 K2HPO4를 완충용액으로 첨가하는 이유는, 엑소폴리사카라이드 생성시에 배지의 점도가 증가하여 교반이 어려워지므로 발효조내의 pH를 고르게 조절하기 힘들게 되므로 보다 오랫동안 초기 pH를 유지하기 위해서이다.
그 결과, KH2PO4와 K2HPO4와의 완충용액의 최적농도는 1mM이었다.
또한, 초기 pH에 대한 영향을 검토하기 위해 pH 3∼11의 범위에서 실험을 수행하였고, 이때 1mM의 인산염 완충용액의 pH도 조사범위의 pH와 동일하게 조절하였다. 그 결과, pH 7에서 엑소폴리사카라이드 생성이 가장 높음을 알 수 있다.
상기 ⅰ)∼ⅵ)으로부터,에어로모나스 속96CJ10356(KCTC 0564BP)로부터 엑소폴리사카라이드를 생산하기 위한 최적 배지의 조성은 하기 표 3과 같다.
성분 농도(g/ℓ)
자당 20
트립톤 10
MgSO4 4
CaCl2 0.7
KH2PO4 0.07
K2HPO4 0.08
FeCl3 5㎎
MnCl2 1㎎
Na2MoO4 1㎎
ZnCl2 1㎎
ⅶ) 엑소폴리사카라이드를 생산하기 위한 최적 온도
상기 표 2의 최적배지에에어로모나스 속96CJ10356(KCTC 0564BP)를 접종한 후, 3ℓ 발효조에서 초기 pH를 7.0으로 조정하고 20~40℃의 온도범위, 0.1vvm, 300rpm으로 배양하였다. 그 결과, 20∼25℃에서 엑소폴리사카라이드의 생산성이 가장 높았으며, 특히 30℃이상에서는 엑소폴리사카라이드보다는 적색색소가 더 많이 생성되었다.
ⅷ) 배양시간
상기 표 2의 최적배지를 사용하여 3ℓ 발효조에서 초기 pH를 7.0으로 조정하고 25℃, 0.1vvm, 300rpm으로 진탕배양시, 배양시간에 따른 건조균체량 및 엑소폴리사카라이드의 생산량을 도 3에 나타내었다. 아울러, 배양시간에 따른 배양액의점도를 Visco Star(J.P. Selecta)를 이용하여 전단속도 60rpm에서 #2, #3, #4, #5 스핀들을 사용하여 측정한 결과 또한 도 3에 나타내었다.
그 결과, 배양시간의 경과에 따라 엑소폴리사카라이드의 생산량이 증가되었으며, 120시간 후에는 약 9.23g/ℓ로 최대 엑소폴리사카라이드 생산량을 나타내었다. 또한, 건조 균체량은 배양 24시간 후 약 2g/ℓ정도로 일정하게 유지되었다. 또한, 배양액의 점도는 균체 성장 및 엑소폴리사카라이드의 생산과 함께 증가되었으며, 120시간 배양액에서 415cp 정도의 겉보기 점도를 나타내었다.
② 엑소폴리사카라이드의 분자량 측정 및 성분분석
ⅰ) 분자량 측정
엑소폴리사카라이드의 분자량은 덱스트란(분자량 2mDa, 500kDa, 70kDa; Sigma)을 분자량 측정을 위한 표준당으로 이용하여 겔 여과법(gel filtration)으로 측정하였다. 즉, 0.1엑소폴리사카라이드용액 1㎖를 세파덱스(Sephadex) G-200(Pharmacia) 컬럼(15×600mm)에 점적한 후, 0.4M의 염화나트륨으로 용출시켜 얻은 분획의 당을 안트론 황산법(anthrone-sulfuric acid; Daniels et al. 1994)으로 정량하고, 그 결과를 도 4에 나타내었다. 도 4로부터,에어로모나스 속96CJ10356(KCTC 0564BP)가 생산한 엑소폴리사카라이드의 분자량은 2.0×106Da으로,크산토모나스 속(Xanthomonas sp.)(손 등, 1995)과스트렙토코커스 써모필러스(Streptococcus thermophilus) SFi39 및 SFi12(Lemoine et al., 1997)로부터 생산되는 엑소폴리사카라이드와 유사한 크기를 보였다.
ⅱ) 성분분석
먼저, Staneck(1974)법으로 시료를 준비한다. 즉, 가수분해된 엑소폴리사카라이드를 얻기 위하여 50㎎의 엑소폴리사카라이드를 2㎖의 2N 황산에 녹여 100℃에서 2시간 동안 가열처리하고, 수산화바륨(Ba(OH)2)으로 중화시킨 후, 17,212×g에서 10분동안 원심분리하였다. 그 다음, 상등액을 0.25㎛ 막 필터(membrane filter)로 여과한 후, 감압농축하여 가수분해물을 얻고, 이를 TLC(Thin layer chromatography) 분석 및 HPLC분석에 사용하였다.
ⓐ TLC 분석
TLC 분석방법은 schaal(1995)에 의한 방법을 이용하였다.
즉, 가수분해 산물을 증류수 0.4㎖에 녹여 셀룰로오스 F254STLC 판(Merck)에 점적한 후, n-부탄올-물-아세트산(60:20:20) 혼합액으로 6㎝(2회) 전개시키고, 에틸아세테이트-피리딘-물-아세트산(100:35:25:5)용액으로 12㎝ 전개하였다. 당의 발색은 아닐린-프탈레이트(아닐린 2㎖, 프탈산 3.3g, 물이 포화된 부탄올 100㎖)를 분무한 후, 건조하고 100℃에서 5분간 가열하였다. 그 결과는 도 5와 같다.
ⓑ HPLC 분석
가수 분해산물을 Spectra SYSTEM P-2000(Thermo Separation Products Inc., U.S.A)를 이용하여 분석하였다. 이때 사용한 컬럼은 YMC-Pack NH2(YMC Co., Japan, 4.6×250mm)이며, 물/아세토니트릴(15:85)을 용매로 분당 1.5㎖씩 용출시켜, 굴절율 검출기(refractive index detector; HP 1047A, Hewlett Packard, Germany, Temp30℃)를 이용하여 표준당과 비교하여 엑소폴리사카라이드가 함유하는 단당류를 분리·확인하고, 그 결과를 도 6에 나타내었다.
도 5와 도 6으로부터, 엑소폴리사카라이드를 구성하는 환원당의 주성분은 글루코스와 갈락토스로 나타났으며, 구성비는 대략 1:6.8로서 갈락토스가 상대적으로 많이 존재하고, 오탄당인 크실로스(xylose)와 리보오스(ribose)가 미량 존재한다는 것을 알 수 있다. 따라서, 분자량에 있어서는크산토모나스 속스트렙토코커스 써모필러스SFi39 및 SFi12로부터 생산되는 엑소폴리사카라이드와 유사하지만, 그 구성당의 조성과는 상이하다. 즉,크산토모나스 속의 엑소폴리사카라이드는 글루코스와 글루코사민이 1:1로 이루어져 있고(손 등, 1995),스트렙토코커스 써모필러스SFi39의 엑소폴리사카라이드는 글루코스와 갈락토스가 1:1로 이루어져 있으며, SFi12의 엑소폴리사카라이드는 갈락토스, 람노스 및 글루코스가 3:2:1로 이루어져 있으므로(Lemoine et, al.. 1997), 본 발명의 균주에 의한 엑소폴리사카라이드의 조성과는 상이하다.
한편,스트렙토코커스 써모필러스(Streptococcus thermophilus)도 갈락토스가 주성분인 엑소폴리사카라이드를 생산하지만 그 구성당의 조성(갈락토스/람노스/푸코스, 5:2:1; Low et al., 1998)은 본 발명의 엑소폴리사카라이드와는 상당한 차이를 보였다. 또한, 다른 해양 세균인시아노티즈 속(Cyanothese sp.; Philippis et al., 1993)이 생산한 엑소폴리사카라이드(글루쿠론산(glucuronic acid)/갈락투론산(galacturonic acid)/갈락토스/글루코스/만노스/크실로스/푸코스, 1:2:2.4:6.8:4.8:2.9:1.6)와스피루리나 플라튼시스(Spirulina platensis; Filaliet al., 1993)가 생산한 엑소폴리사카라이드(크실로스/갈락토스/글루코스, 1.3:2.7:2)와도 유사하지 않은 특유한 엑소폴리사카라이드로 사료된다.
(4) 엑소폴리사카라이드의 특성
① 응집활성
엑소폴리사카라이드의 응집활성을 측정하기 위하여 0.5카올린, 1벤토나이트 및 0.5활성탄 각각 10㎖에 1.0염화칼슘 0.1㎖를 첨가하고, 본 발명의 엑소폴리사카라이드를 도 7에 기재된 농도로 가하여 교반하고, 10분 동안 정치한 후, 상등액 1㎖를 취하여 550nm에서 흡광도를 측정하고, 그 결과를 도 7에 나타내었다.
그 결과, 엑소폴리사카라이드의 첨가농도에 비례하여 대조군에 대한 흡광도의 차이가 증가하였으나, 엑소폴리사카라이드의 농도가 0.1(w/v)이상인 경우에는 감소하였다가 1(w/v)이상에서 다시 증가하였다. 한편, 도 7의 결과를 토대로하여 하기 수학식 1에 따라 응집활성을 계산한 결과는 카올린은 724.5714±29.09239(U/㎖), 활성탄은 692.2481±3.288869(U/㎖), 벤토나이트는 1003.981±30.40109(U/㎖)이다.
식중, A는 대조군의 흡광도이고, B는 시험군의 흡광도이다.
② 용해성
물, 아세트산, 아세톤, 에탄올, 메탄올, 포름알데히드, 벤젠, 클로로포름(chloroform), 에틸 에테르(ethyl ether), 5N 수산화나트륨 및 5N 염산에 0.3(w/v)의 엑소폴리사카라이드를 첨가한 후 상온에서 20분간 교반하여 용해성을 관찰하였다.
그 결과, 본 발명의 엑소폴리사카라이드는 물, 포름알데히드, 아세트산, 5N 수산화나트륨 및 5N 염산에서는 용해성이 우수하였지만, 벤젠, 아세톤, 클로로포름, 에틸 에테르, 에탄올, 메탄올 등의 유기용매에는 불용성 침전을 형성하였다.
③유화 안정성
본 발명의 엑소폴리사카라이드의 유화안정성을 조사하기 위해, 옥수수 기름 4㎖에 0.5(w/v) 엑소폴리사카라이드 용액 6㎖를 첨가한 후, 교반기(Ika MS1, Works Inc., USA)를 이용하여 최고속도로 혼합하여 O/W(oil-in-water) 유화액을 제조하였다. 대조군으로는 잔탄검, 젤란검, 알긴산나트륨 및 아라빈산검을 준비하였다.
그 다음, 정치시간에 따른 유화액의 분리정도를 측정하고, 그 결과를 표 4에 나타내었다.
엑소폴리사카라이드 유화 안정성(시간)
12 72 96 144 168 240
본 발명의 엑소폴리사카라이드 ++ ++ ++
잔탄검 ++ ++
젤란검
알킨산나트륨
아라빈산검
++:완벽한 유상액, +:부분 분리 유상액, -:완벽한 분리
표 4로부터, 본 발명의 엑소폴리사카라이드는 96시간부터 분리되기 시작하였지만, 240시간 이후에 유화액중 50가 남아있는 반면, 잔탄검은 72시간부터 분리되어, 168시간에 완전히 분리되었고, 이외에, 젤란검, 알긴산나트륨, 아라빈산검은12시간 경과 후 완전히 분리되었으므로, 본 발명의 엑소폴리사카라이드는 매우 우수한 유화안정성을 갖는다는 것을 알 수 있다.
이상에서 설명한 바와 같이, 본 발명의에어로모나스 속96CJ10356(KCTC 0564BP)로부터 생성된 엑소폴리사카라이드는 글루코스와 갈락토스가 1:6.8의 비율로 존재하며, 분자량이 2.2×106인 엑소폴리사카라이드로서 수용액에 녹고, 응집활성을 가지며, 유화안정성이 우수하므로, 식품산업 등과 같은 다양한 산업분야에서 이용될 수 있다.
<참고문헌>
1.Berkely, C. L., D. P. Kelly, K. J. Seal, and D. J. Best.1985. Biotechnology Principles and Application. p. 187. Blackwell Scientific Pub., Oxaford.
2.Cerning, J., C. M. G. Renard, J. F. Thibault, C. Bouillance, M. Landon, M. Desmazeand, and L. Topisirovic.1994. Carbon source requirements for exopolydaccharide production byLactobacillus caseiCG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914~3919
3.Daniels, L., R. S. Hanson, and J. A. Phillips.1994. Chemical analysis, p.518,InP. Gerhard, R. G. E. Murray, W. A. Wood, N. R. Krieg(eds.), Methods for general and molecular bacteriology, American Society for Microbiology, Washington, D.C.
4.Filali, M., J.-F. Cornet, T. Fontaine, B. Fournet, and G. Dubertret.1993. Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacteriumSpirulina platensis, Biotechnol. Lett. 15: 567-572.
5.Fu, J. F., and Y. H. Tseng.1990. Construction of Jactose utilizingXanthomonas campestrisand production of xanthan gum from whey. Appl. Environ. Microbial. 56: 919-923.
6.Ikeda, F., H. Shuto, T. Fukui, and K. Tomita.1982. AnExracellular Polysaccharide Produced byZoogloea ramigera115. Eur. J. Biochem 123, 437-445.
7.Irene, B. M. P. E. Jansson, and B. Lindberg.1990. Structural studied of the capsular polysaccharide fromStreptococcus pneumoniaetype 7A. Carbohydrate Research. 198: 67-77.
8.Jang, J.-H., Bea, S.-K., S.-D. Ha, and J.-Y. Kong.1998. effects of fermentation conditions on te production of the useful polysaccharides from marine bacteriumZoogloeasp. (Korean). Kor. J. Biotechnol. Bioeng. 13: 303-307.
9. KaKrieg., N. R., and Holt, J. G. (eds.).1994. Bergey's manual of systematic bacteriology, vol. 1. Williams & Wilkins, Baltimore, London.
10.Lemoine, J., F. Chirat, J. M. Wieruszeski, G. Strecker, N. Favre, and J. R. Neeser.1997. Structural characterization of the exocellular polysaccharides produced byStrptococcus thermophilusSFi39. and SFi12, Appl. Envion, Microbiol.63: 3512-3518.
11.Low, D. , J. A. Ahlgren, D. Horne, D. J. McMahon, C. J. Oberg, and J. R. Broadbent.1998. Role ofStreptococcus thermophilusMR-1C capsular exopolysaccharide in cheese moisture retention. Appl. Envion. Microbiol. 64: 2147-2151.
12.Marra, M.1990. Structural characterisation of the exocellularpolysaccharides fromCyanospira capsulata.Carbohydrate Research 197: 338-344.
13.Martins, L. O., L. C. Brito, and S. C. Isabel.1990. Roles of Mn2+and Ca2+on alginate biosynthesis byPseudomonas aeruginosa.Enzyme Microbiol. Technol. 12: 794-799.
14.Matsuda, M., and W. Worawattanamateekul, and K. Okutani.1992. Simultaneous Production of moco- and sulfated polysaccharide by marine Pseudomonas. Nippon Suisan Gakkaishi 58: 1735-1741.
15.Matsuda, M., and W. Worawattanamateekul.1993. Structural Analysis of a Rhamnose Containing Sulfated Polysaccharide from a MarinePseudomonas. Nippon Suisan Gakkaishi. 59: 875-878.
16.Nagaoka, M., S. Hashimoto, T. Tokokura, and Y. Mori.1994. Anti-ulcer effects of lactic acid bacteria and their cell-wall polysaccharides Biol. Pharm. Bull. 17: 1012-1017
17.Nakamura, J., S. Miyashiro, and Y. Hirose.1976. Screening. isolation and some properties of microbial cell flocculants. Agr. Biol. Che,m. 40: 377-383.
18.Noberg, A. G., and H. Persson.1984. Accumulation of heavy-metal ions byZoogloea ramigera.Biotech. Bioeng. 115: 239-246.
19.Oda, M., H. Hasegawa, S. Komatsu, M. Kambe, and F. Tsuchiya.1983. Anti-tumor polysaccharide fromLactobacillussp. Agri. Biol. Chem. 47: 1623-1625.
20.Philippis, R., M. C. Margheri, E. Pelosi, and S. Ventura.1993. Exopolysaccharide production by a unicellular cyanobacterium isolated from a hypersaline habitat. J. Appl. Phycol. 5: 387-394.
21.Raguenes, G., P. Pignet, G. Gauthier, A. Peres, R. Christen, H. Rougeaux, G. Barbier, and J. Guezennec.1996. Description of a new polymer secreting bacterium from a deep-sea hydrothermal vent,Alteromonas macleodiisubsp.fijiensis, and preliminary characterization of the polymer. Appl. Environ Microbiol. 62: 67-73.
22.Rodrigues, C., and N. B. Bhosle.1991. Exopolysaccharide production byVibrio fischeri, a fouling marine bacterium. Biofouling 4: 301-308.
23.Schaal, K.P.1985. Identification of clinically signaficant actinomycetes and related bacteria using chemical techniques. p. 359-381.InGoodfellow, M. and D. E. Minnikin (eds.), Chemical Methods in Bacterial Systematics. Academic Press, New York.
24.Son., B.-S., S.-K. Park, S-K. Kang, S.-W. Lee, and N.-K Kang.1995. Rheological properties of exopolysaccharide produced byXanthomonassp.EPS-1(Korean). Kor. J. Appl. Microbiol. Biotechnol. 23: 269-274.
25.Steinmtz, I., M. Rohde, and B. Brenneke. 1995. Purification and charaterization of an exopolysaccharide ofBurkholderia(Pseudomonas) Pseudomallei.infect. Immun., 63; 3959-3965.
26.Sutherland, I. W.1977. Microbial exopolysaccharide synthesis, p. 40-57.InP.A. Sandford and A. Laskin (eds.), Extracellular microbial polysaccharides. ACS, Washington, D.C.
27.Sutherland. I. W.1983. Extracellular polysaccharides. p. 533-574.InBiotechnology, Vol. 3, Verlag Chemie, Weinheim.
28.West, T.P., and B. Strohfus.1998. Effect of complex notrogen source upon gellan production by Sphingomonas paucimobilis. Microbios 94: 145-152.
29.Worawattanamateekul, W., and K. Okutani.1992. Isolation and Characterization of a Sulfated Polysaccharide Produced by a Marine Bacterium. Nippon Suisan Gakkaishi. 58: 1729-1933.

Claims (4)

  1. 세포외로 폴리사카라이드를 분비하는에어로모나스 속(Aeromonas sp.)96CJ10356(KCTC 0564BP).
  2. 에어로모나스 속(Aeromonas sp.)96CJ10356(KCTC 0564BP)균주를 액체배지에서 진탕배양한 후, 배양액으로부터 세포외로 분비된 폴리사라카라이드를 추출함을 특징으로 하는 엑소폴리사카라이드의 제조방법.
  3. 제 2항에 있어서, 상기 액체배지는 하기의 조성을 가지며, 약 7.0의 초기 pH, 20∼25℃의 온도 조건하에서 진탕배양함을 특징으로 하는 엑소폴리사카라이드의 제조방법.
    성분 농도(g/ℓ) 자당 20 트립톤 10 MgSO4 4 CaCl2 0.7 KH2PO4 0.07 K2HPO4 0.08 FeCl3 5㎎ MnCl2 1㎎ Na2MoO4 1㎎ ZnCl2 1㎎
  4. 제 2항에 기재된 방법에 따라 얻은 엑소폴리사카라이드의 주성분은 글루코스와 갈락토스(구성비율 1:6.8)이고, 분자량이 2.2×106임을 특징으로 하는 엑소폴리사카라이드.
KR1019990029933A 1999-07-23 1999-07-23 에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법 KR100304789B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990029933A KR100304789B1 (ko) 1999-07-23 1999-07-23 에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990029933A KR100304789B1 (ko) 1999-07-23 1999-07-23 에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법

Publications (2)

Publication Number Publication Date
KR20010010830A KR20010010830A (ko) 2001-02-15
KR100304789B1 true KR100304789B1 (ko) 2001-09-24

Family

ID=19603924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990029933A KR100304789B1 (ko) 1999-07-23 1999-07-23 에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법

Country Status (1)

Country Link
KR (1) KR100304789B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101995513B1 (ko) * 2016-09-08 2019-07-03 건국대학교 산학협력단 플라보박테리움(Flavobacterium) ASB3-3 균주, 이를 통한 엑소폴리사카라이드(Exopolysaccharide, EPS) 및 이의 생산방법 및 이를 포함하는 항동결용 조성물

Also Published As

Publication number Publication date
KR20010010830A (ko) 2001-02-15

Similar Documents

Publication Publication Date Title
Krishna Leela et al. Studies on xanthan production from Xanthomonas campestris
Roberts et al. Exopolysaccharide production by Bifidobacterium longum BB‐79
Hezayen et al. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor
Van der Meulen et al. Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium
US7442528B2 (en) Modified alternan
Ko et al. Optimal conditions for the production of exopolysaccharide by marine microorganism Hahella chejuensis
da Silva et al. Xanthan: biotechnological production and applications
Sinha et al. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds
Zafar et al. Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria
Khassaf et al. Study of the optimal conditions of levan production from a local isolate of Bacillus subtilis subsp. subtilis w36
KR20080014242A (ko) 항균활성물질을 생산하는 신규의 페니바실러스 폴리믹사dy1 및 그 항균활성물질
El-Sayed et al. Optimization, purification and physicochemical characterization of curdlan produced by Paenibacillus sp. strain NBR-10
CA2079018C (en) Polysaccharide, its applications, its production by fermentation and the pseudomonas strain which produces it
KR100304789B1 (ko) 에어로모나스 속 96cj10356 균주 및 이로부터 엑소폴리사카라이드를 생산하는 방법
Youssef et al. Increased fructosyltranseferase (levansucrase) production by optimizing culture condition from Pediococcus acidilactici strain in shaking batch cultures
Ziayoddin et al. Isolation of agar degrading bacterium Pseudomonas aeruginosa ZSL-2 from a marine sample
Fett et al. Exopolysaccharides of the plant pathogens Pseudomonas corrugata and Ps. flavescens and the saprophyte Ps. chlororaphis
SULISTYO et al. Assay for transglycosylation reaction of Xanthomonas campestris on carbohydrate sources
Zohra et al. Dextran production by microbial biotransformation of sugarcane waste
Bodie et al. Production and characterization of a polymer from Arthrobacter sp
KR100495272B1 (ko) 세포외다당류를 분비하는 무색소 하헬라 제주엔시스96CJ 10356의 변이주 m10356 및 이로부터세포외다당류를 생산하는 방법
KR100481679B1 (ko) 알테로모나스 속 ooss11568 균주 및 이로부터 세포외 다당류를 생산하는 방법
Piggott et al. Alginate synthesis by mucoid strains of Pseudomonas aeruginosa PAO
Yun et al. Overproduction of an extracellular polysaccharide possessing high lipid emulsion stabilizing effects by Bacillus sp.
JP3057221B2 (ja) 特異な粘性特性を有する新規多糖体及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20130610

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee