KR100301993B1 - Method for treating dust in electric furnace - Google Patents

Method for treating dust in electric furnace Download PDF

Info

Publication number
KR100301993B1
KR100301993B1 KR1019960071531A KR19960071531A KR100301993B1 KR 100301993 B1 KR100301993 B1 KR 100301993B1 KR 1019960071531 A KR1019960071531 A KR 1019960071531A KR 19960071531 A KR19960071531 A KR 19960071531A KR 100301993 B1 KR100301993 B1 KR 100301993B1
Authority
KR
South Korea
Prior art keywords
dust
magnetic
reduction
furnace
electric furnace
Prior art date
Application number
KR1019960071531A
Other languages
Korean (ko)
Other versions
KR19980052524A (en
Inventor
김행구
정선광
정우창
강홍원
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원 filed Critical 이구택
Priority to KR1019960071531A priority Critical patent/KR100301993B1/en
Publication of KR19980052524A publication Critical patent/KR19980052524A/en
Application granted granted Critical
Publication of KR100301993B1 publication Critical patent/KR100301993B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: A method for treating dust in an electric furnace is provided which greatly reduces loss of zinc by a reducing agent by smelting reducing the sorted materials after sorting magnetic constituents and non-magnetic constituents using a fluidized bed magnetism sorter. CONSTITUTION: The method for treating dust in an electric furnace comprises the steps of reducing dust of the electric furnace using flue gas of a pre-reduction furnace by charging the dust of the electric furnace in a dust tank(110) of the electric furnace into a fluidized bed reduction furnace(120), and cooling the dust to an ordinary temperature by charging the reduced dust of the electric furnace into a cooler(140); manufacturing into non-magnetic substance pellets by bulking the non-magnetic substance dust in a non-magnetic substance pelletizer(190A) and manufacturing magnetic substance pellets by bulking magnetic substance dust along with reducing agent and flux in a magnetic substance pelletizer(190B) after sorting dust of the electric furnace in the dust tank(110) of the electric furnace and the cooled dust of the electric furnace into magnetic substance dust and non-magnetic substance dust using a fluidized bed magnetism sorter(160); reducing the charged magnetic substance pellets using flue gas of a zinc condenser(220) partially burned or heated in a hot blast stove(230) after charging the magnetic substance pellets into a pre-reduction furnace(200); manufacturing pig iron by smelting reducing the charged magnetic and non-magnetic substance pellets after charging the pre-reduced magnetic and non-magnetic substance pellets into a smelting reduction furnace(210); and manufacturing condensed zinc by condensing zinc gas contained in the flue gas of the smelting reduction furnace.

Description

전기로 분진(EAF Dust)처리방법Electric Furnace Dust Treatment

본 발명은 자성분과 비자성분으로 이루어진 전기로 분진을 용융환원하여 선철과 응축아연을 얻는 전기로 분진처리 방법에 관한 것이며, 보다 상세하게는 유동층 자력선별기를 이용하여 자성분과 비자성분을 선별하여 용융환원함으로써 환원제에 의한 Zn 손실을 크게 저감할 수 있는 전기로 분진처리방법에 관한 것이다.The present invention relates to an electric furnace dust treatment method for obtaining pig iron and condensed zinc by melting and reducing electric dust of magnetic powder and non-magnetic powder, and more particularly, by selecting magnetic and non-magnetic components using a fluidized bed magnetic separator. It relates to an electric furnace dust treatment method capable of greatly reducing the Zn loss caused by the reducing agent by melt reduction.

일반적으로 전기로 분진(EAF Dust)은 전기로 원료조건에 따라 많은 차이가 있지만 Zn을 5~25% 함유하고 있으며, Fe는 15~50%를 함유하고 있다.In general, EAF dust contains 5 ~ 25% Zn and Fe 15 ~ 50% although there are many differences depending on the raw material condition of the electric furnace.

그리고, 최근 고철중에 아연도금강의 비중이 높아짐에 따라 전기로 분진중에 Zn함량이 높아지고 있는 추세이다.In addition, as the proportion of galvanized steel in scrap metal is recently increased, the Zn content in the dust of the electric furnace is increasing.

상기 Zn은 그 함유량의 50~80%가 ZnO이고, 나머지는 아연페라이트 스피넬(Zincferite spinel:ZNO·Fe2O3)로 존재하고 금속 Zn으로도 소량 존재한다.Zn is 50 to 80% of the content is ZnO, the remainder is present as zinc ferrite spinel (Zincferite spinel: ZNO.Fe 2 O 3 ) and a small amount of the metal Zn.

또한, 상기 Fe는 대부분 Fe2O3나 페라이트 스피넬(ferrite spinel : MO·Fe2O3, M = Zn, Mn, Ni 등)로 존재한다. 이와 같은 분진 입도는 일반적으로 40㎛ 이하이다.In addition, the Fe is mostly present as Fe 2 O 3 or ferrite spinel (MO · Fe 2 O 3 , M = Zn, Mn, Ni, etc.). Such particle size is generally 40 µm or less.

종래에는 전기로 분진을 괴성화하지 않고 그대로 용융로에 장입하여 용융함으로써 분진중 ZnO를 Zn가스로 환원시켜 응축 Zn을 얻었다. 그러나, 상기 응축된 Zn 속에는 상당량의 철성분의 분진이 포함되는 것이 문제로 되어 왔다.Conventionally, ZnO in dust is reduced to Zn gas to obtain condensed Zn by charging and melting in the melting furnace as it is, without electrically compacting the dust. However, it has been a problem that the condensed Zn contains a considerable amount of iron dust.

이 문제를 해결하기 위해 그동안 많은 연구가 진행되어 왔는데, 일례로 최근 일본 스미토모(Sumitomo)사에서는, 제1도에 나타낸 바와 같이, 전기로 분진을 펠렛타이저(40)에서 먼저 괴성화한 다음 예비환원로(50)에서 ZnO는 환원하지 않고 철산화물만 선택적으로 환원시킬 수 있도록 환원가스중에 CO/CO2비율을 조정하여 전기로 분진 펠렛을 환원시키면서 동시에 경화시킨 후 용융환원로(60)에 장입함으로써, 응축된 Zn 속에 철성분의 분진함량을 대폭 줄일 수 있는 방법을 보고한 바 있다.In order to solve this problem, many studies have been conducted. For example, at Sumitomo, Japan, as shown in FIG. 1, the dust is first compacted in the pelletizer 40 and then preliminarily. in the reducing furnace (50) ZnO is charged to then while reducing the dust into electrical pellets by adjusting the CO / CO 2 ratio of the reducing gas to be reduced to only without reducing iron oxide, optionally at the same time it is curing a smelting reduction 60 By doing so, there has been reported a method to significantly reduce the dust content of iron in the condensed Zn.

그러나, 이 방법에 의하면 환원로(50)에서 철산화물 환원율이 30~35% 정도에서 ZnO의 Zn가스로의 환원이나 금속 Zn 기화도 동시에 행해져 그 손실이 10%나 되는 것으로 나타났고, 또 온도나 환원율이 더 높아지면 그만큼 더 Zn 손실이 예상된다.However, according to this method, the reduction rate of iron oxide in the reduction furnace 50 was about 30 to 35%, and the reduction of ZnO to Zn gas and the metal Zn vaporization were also performed simultaneously, resulting in a loss of 10%. The higher this is, the more Zn losses are expected.

또한, 예비환원로(50)에서 ZnO 는 환원되지 않고 철산화물만 선택적으로 환원시킬 수 있도록 환원가스중에 CO/CO2비율을 조정해야 하기 때문에, Zn의 함량이 많아지면 그 비율의 상한치가 1.0 정도로 제한되는 문제가 있다.In addition, in the preliminary reduction reactor 50, since the ratio of CO / CO 2 must be adjusted in the reducing gas so that only iron oxide can be selectively reduced without reducing ZnO, the upper limit of the ratio is about 1.0 when the Zn content increases. There is a limited problem.

이에, 본 발명은 상기와 같은 종래 문제를 해결하기 위하여 안출된 것으로서, 자성분과 비자성분을 선별하여 자성분만 예비환원한 후, 예비환원된 자성분과 비자성분을 용융환원함으로써 예비환원율이 높고 아연손실을 효과적으로 줄일 수 있는 전기 분진 처리방법을 제공함을 그 목적으로 한다.Accordingly, the present invention has been made in order to solve the conventional problem as described above, and after preliminarily reducing only the magnetic component by selecting the magnetic component and the non-magnetic component, the pre-reduction rate is high and zinc by melt reduction of the pre-reduced magnetic component and non-component It is an object of the present invention to provide an electric dust treatment method that can effectively reduce the loss.

제1도는 일본 스미토모 중공업(Sumitomo Heavy Industries)에서 최근 개발된 전기로 분진처리방법1 is an electric furnace dust treatment method recently developed by Sumitomo Heavy Industries, Japan.

제2도는 본 발명에 의한 전기로 분진 처리방법2 is a furnace dust treatment method according to the present invention

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

110 : 전기로 분진조(EAF Dust Bin) 120 : 유동층 환원로110: EAF Dust Bin 120: Fluidized Bed Reduction Furnace

140 : 냉각기 160 : 유동측 자력 선별기140: cooler 160: flow-side magnetic separator

170 : 비자성 성분 저장조 180 : 자성 성분 저장조170: non-magnetic component storage tank 180: magnetic component storage tank

190A, 190B : 펠렛타이저(Pelletizer) 200 : 예비환원로(Shaft Furnace)190A, 190B: Pelletizer 200: Shaft Furnace

210 : 용융환원로(Melting Furnace) 220 : 아연응축기(Zinc Condencer)210: Melting Furnace 220: Zinc Condencer

230 : 열풍로(Hot Gas Generator) 240 : 환원제조230: Hot Gas Generator 240: Reduction Production

250 : 용제조250: Solvent

본 발명은 자성분과 비자성분으로 이루어진 전기로 분진을 용융환원로에서 예비환원한 후 용융환원로에 장입하여 용융환원에 의해 선철을 제조하고, 상기 용융환원로의 배가스에 함유된 아연가스를 아연응축기에서 응축하여 응축아연을 제조하고, 아연응축기의 배가스를 열풍로에서 부분 연소 및 승온시켜 예비환원로로 공급하는 공정을 포함하여 전기로 분진을 처리하는 방법에 있어서,The present invention is to prepare the pig iron by molten reduction by pre-reduction of the dust in the melting and reduction of electric furnace dust consisting of magnetic and non-components in the molten reduction reactor, and zinc zinc contained in the exhaust gas of the molten reduction reactor In the method of treating the dust in the electric furnace, including the step of condensing in the condenser to produce a condensed zinc, partially burning and heating the exhaust gas of the zinc condenser in the hot stove to supply to the preliminary reduction reactor,

전기로 분진을 유동층 환원로에 장입하여 예비환원로 배가스에 의해 전기로 분진을 환원하고, 환원된 전기로 분진을 냉각기로 장입하여 상온까지 냉각하는 단계;Charging electric furnace dust into a fluidized-bed reduction furnace to reduce electric furnace dust by pre-reduction furnace exhaust gas, charging the reduced electric furnace dust into a cooler and cooling it to room temperature;

전기로 분진 또는 상기 냉각된 전기로 분진을 유동층 자력 선별기에 의해 자성체 분진과 비자성체 분진으로 선별하여 비자성체 분진은 비자성체 펠렛타이저에서 괴성화하여 비자성체 펠레트으로 제조하고, 자성체 분진은 자성체 펠렛타이저에서 환원제 및 용제와 함께 괴성화하여 자성체 펠레트로 제조하는 단계;The electric dust or the cooled electric dust is separated into magnetic dust and non-magnetic dust by fluidized bed magnetic separator, and the non-magnetic dust is agglomerated in a non-magnetic pelletizer and manufactured into a non-magnetic pellet, and the magnetic dust is a magnetic substance. Compacting together with a reducing agent and a solvent in a pelletizer to prepare a magnetic pellet;

상기 자성체 펠레트를 예비환원로에 장입하고, 열풍로에서 부분 연소 및 승온된 아연응축기의 배가스를 이용하여 환원하는 단계;Charging the magnetic pellets into a preliminary reduction reactor and reducing the exhaust gas of a zinc condenser that has been partially burned and heated in a hot stove;

상기 예비환원된 자성체 펠레트 및 비자성 펠레트를 용융환원로에 장입하고, 용융환원시켜 선철을 제조하는 단계; 및Preparing the pig iron by charging the pre-reduced magnetic pellets and non-magnetic pellets in a melt reduction furnace and melting reduction; And

상기 용융환원로 배가스중에 함유된 아연가스를 아연응축기(220)에서 응축하여 응축아연을 제조하는 단계;를 포함하여 구성되는 전기로 분진처리방법에 관한 것이다.Condensing zinc gas contained in the melt reduction flue gas in the zinc condenser 220 to produce a condensed zinc; relates to an electric dust treatment method comprising a.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

제2도에는 본 발명의 전기로 분진 처리방법의 바람직한 공정의 이례가 나타나 있다.2 shows an example of a preferred process of the electric furnace dust treatment method of the present invention.

제2도에 나타난 바와 같이, 전기로 분진조(110)에 잇는 자성분과 비자성분으로 이루어진 전기로 분진(111)은 유동층 환원로(120)에 장입하여 예비환원로(200)의 배가스(130)에 의해 기포유동층을 형성하면서 환원된다.As shown in FIG. 2, the electric furnace dust 111 composed of magnetic and non-components in the electric furnace dust tank 110 is charged into the fluidized-bed reduction furnace 120 to discharge the exhaust gas 130 of the preliminary reduction reactor 200. It is reduced while forming a bubble fluidized layer by).

상기 유동층환원로(120)에서의 바람직한 전기로 분진(111)의 환원공정은, 예비환원로(200) 배가스(130)에 전로배가스 또는 고로배가스(131)를 혼합하여 Fe3O4가 안정되는 온도와 가스산화도로 조정된 환원배가스에 의해 기포유동층을 형성하면서 Fe2O3을 Fe3O4로 환원시키는 것으로 이루어진다.Reduction process of the preferred electric dust dust 111 in the fluidized-bed reduction reactor 120, the Fe 3 O 4 is stabilized by mixing the converter exhaust gas or blast furnace exhaust gas 131 to the exhaust gas 130 of the preliminary reduction reactor (200). Reducing Fe 2 O 3 to Fe 3 O 4 while forming a bubble flow layer by reducing exhaust gas adjusted to temperature and gas oxidation.

본 발명에 따라 Fe2O3을 Fe3O4로 환원시키는데는 빠른 환원속도와 비교적 낮은 온도 및 높은 산화도의 환원가스가 요구되기 때문에, 고로배가스 또는 전로배가스(131) 등 제철제련의 부산물을 별도의 처리 없이 그대로 이용할 수 있다.In order to reduce the Fe 2 O 3 to Fe 3 O 4 according to the present invention, since a fast reduction rate and a relatively low temperature and high oxidation degree of reducing gas are required, by-products of steelmaking, such as blast furnace flue gas or converter flue gas 131, It can be used as it is without further processing.

상기 유동층 환원로(120)에서 전기로 분진(111)의 환원시 환원가스중 CO/CO2비율은 0.1~0.8, 환원온도는 500~600℃로 설저하는 것이 바람직하다.In the fluidized-bed reduction furnace 120, the CO / CO 2 ratio of the reducing gas during the reduction of the electric furnace dust 111 is preferably set at 0.1 to 0.8, and the reduction temperature is 500 to 600 ° C.

상기와 같이 환원된 전기로 분진을 유동층 환원로(120)에서 냉각기(140)로 배출하여 냉각기(140)에서 상온까지 냉각한다.As described above, the reduced dust of the electric furnace is discharged from the fluidized bed reduction furnace 120 to the cooler 140 and cooled to a room temperature in the cooler 140.

상기 냉각기(140)로부터 냉각된 전기로 분진을 유동층 자력 선별기(160)에 장입하여 비자성체(Zn, ZnO, ZnO·SiO2, SiO2, CaO, MgO 등)와 강자성체(Fe3O4, Ferrite spinel 등)로 분리한다.The dust cooled by the electric power from the cooler 140 is charged to the fluidized bed magnetic separator 160 so that nonmagnetic materials (Zn, ZnO, ZnO · SiO 2 , SiO 2 , CaO, MgO, etc.) and ferromagnetic materials (Fe 3 O 4 , Ferrite) spinel, etc.).

이때, 전기로 분진조(110)에 있는 전기로 분진 중 유리 Fe2O3가 적은 것(112)은 상기 유동층 환원로(120)와 냉각기(140)를 거치지 않고, 바로 유동층 자력 선별기(160)로 장입한다.At this time, to an electric glass Fe 2 O 3 of the dust to the electricity in the dust tank 110 less 112 without passing through the 120 and the condenser 140 to the fluidized bed reduction, direct fluid bed magnetic separator 160 Charges.

한편, 본 발명의 미립 자성체와 비자성체를 유동상태에서 선별하는 자력선별기로는, 대한민국 특허 제 93-012110(1993. 7. 1)에 제안된 유동층 자력선별기를 이용 할 수 있다.On the other hand, as a magnetic separator for selecting the particulate magnetic material and the nonmagnetic material in the fluid state, the fluidized bed magnetic separator proposed in Korean Patent No. 93-012110 (July 1, 1993) can be used.

상기 유동층 자력선별기(160)에서 선별된 비자성체는, 비자성 펠렛타이저(190A)로 이송한 후 괴성화하여 비자성체 펠레트로 제조한다.The nonmagnetic material selected by the fluidized bed magnetic separator 160 is transferred to a nonmagnetic pelletizer 190A and then agglomerated to produce nonmagnetic pellets.

또한, 상기 유동층 자력 선별기(160)에서 선별된 자성체는 자성체 펠렛타이저(190B)로 이송하여 환원제 및 용제와 혼합한 후 괴성화하여 자성체 펠레트로 제조한다.In addition, the magnetic material selected by the fluidized bed magnetic separator 160 is transferred to a magnetic pelletizer 190B, mixed with a reducing agent and a solvent, and then agglomerated to produce a magnetic pellet.

상기 철산화물이 주성분인 자성체 펠레트는 예비환원로(200)로 장입하여 열풍로(230)에서 부분연소 및 승온된 아연응축기(220)의 배가스(222)를 이용하여 환원한다.The magnetic pellets containing iron oxide as a main component are charged into the preliminary reduction furnace 200 and reduced by using the exhaust gas 222 of the zinc condenser 220 that is partially burned and heated in the hot stove 230.

이와 같이 자성체만이 2차 예비환원되는 예비환원로(200)조업에서 환원가스중 CO/CO2비율은 0.5~10이고, 환원온도는 750~900℃로 하는 것이 바람직하다.As described above, in the operation of the preliminary reduction furnace 200 in which only the magnetic material is secondaryly reduced, the ratio of CO / CO 2 in the reducing gas is 0.5 to 10, and the reduction temperature is preferably 750 to 900 ° C.

상기 예비환원된 자성체 펠레트와 상기 비자성체 펠레트를 용융환원로(210)에 장입하고 용융환원시켜 선철(pig iron)을 제조하고, 슬라그와 함께 배출된다.The pre-reduced magnetic pellets and the non-magnetic pellets are charged to the melt reduction reactor 210 and melt-reduced to produce pig iron, and discharged together with the slag.

상기 용융환원(210)로 배가스중에 함유된 아연가스를 아연 응축기(220)에서 응축하여 응축 아연을 제조한다.Condensed zinc is produced by condensing the zinc gas contained in the exhaust gas into the molten reduction 210 in the zinc condenser 220.

그리고, 아연 응축기(220)의 배가스(222)는 열풍로(230)로 공급되어 부분연소 및 승온되어 예비환원로(200)에 공급된다. 제2도에서 점선은 가스의 흐름을 의미한다.In addition, the exhaust gas 222 of the zinc condenser 220 is supplied to the hot stove 230, partially burned and heated to a preliminary reduction reactor 200. In FIG. 2, the dotted line means the flow of gas.

상기와 같이 본 발명은 전기로 분진중 아연이 비장성체인 Zn, ZnO, ZnO·SiO2상태와 강자성체인 ZnO·Fe2O3상태로 존재하고, 또 비자성체가 전체 아연의 대부분이라는 것에 착안하여, 이 비장성체를 자성체와 따로 분리해서 예비환원로를 거치지 않고 그대로 용융환원로에 장입하도록 함으로써, 환원로에서의 Zn 손실을 대폭 줄일 수 있도록 하였다.As described above, the present invention focuses on the fact that zinc is present in the Zn, ZnO, ZnO.SiO 2 state of the nonmagnetic substance and ZnO · Fe 2 O 3 of the ferromagnetic substance, and the nonmagnetic substance is most of the total zinc. The spleen was separated from the magnetic material and charged into the molten reduction reactor without going through the preliminary reduction reactor, thereby greatly reducing the Zn loss in the reduction furnace.

따라서, 예비환원로에서 ZnO이 환원되지 않으므로 철산화물만 선택적으로 환원시킬 수 있도록 조정해야 하는 환원가스중 CO/CO2비율의 선택폭이 넓어진다.Therefore, since ZnO is not reduced in the preliminary reduction furnace, the selection range of the CO / CO 2 ratio in the reducing gas to be adjusted to selectively reduce only the iron oxide is widened.

즉, 환원가스의 환원력을 높이므로 예비환원율을 상당히 높일 수 있어 용융환원로에서의 부담을 상당히 줄일 수 있다.That is, since the reducing power of the reducing gas is increased, the pre-reduction rate can be significantly increased, and the burden on the melt reduction reactor can be significantly reduced.

그리고, 분진중에 유리 Fe2O3가 많은 경우에 이를 강제성체인 Fe3O4로 환원시켜서 따로 처리되는 비자성체중의 Fe 함량을 상당량 줄여, 직접 용융로 장입시 응축된 Zn층의 철분진 함량을 줄일 수 있다.In the case of a large amount of free Fe 2 O 3 in the dust, it is reduced to Fe 3 O 4 , which is a forcing material, to significantly reduce the Fe content in the non-magnetic material to be treated separately, and to reduce the iron dust content of the Zn layer condensed when directly charged into the furnace. Can be.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

전기로 분진을 대한민국 특허 제93-012110에 공개된 것과 같은 유동층 자력선별기로 비자성체를 자성체로부터 분리한 다음, 입경 20mm의 구형 펠레트로 만들어 찬밸런스(Chan balance)가 부착된 수직 시험관속에서 넣어 백금선으로 매달아 예비환원시킨 후 화학분석하여 예비환원로에서 Zn의 손실량을 측정한 후, 전기로 분진을 자성체와 비자성체로 분리하지 않고 그냥 펠레트를 만들어 환원시켰을 때의 것과 비교하였다.Electromagnetic dust is separated from the magnetic material by a fluidized bed magnetic separator as disclosed in Korean Patent No. 93-012110, and then made into a spherical pellet having a particle diameter of 20 mm and placed in a vertical test tube with a chan balance. Suspended by preliminary reduction, and then chemically analyzed to measure the loss of Zn in the preliminary reduction reactor, and compared with that produced by reducing pellets without separating dust into magnetic and nonmagnetic materials.

이때, 원료조건과 예비환원조건은 하기와 같이 하였다.At this time, the raw material conditions and pre-reduction conditions were as follows.

1) 원료조건:1) Raw material condition:

- 원료전기로 분지의 조성 : ZnO=25.3%, Zn=5.5%, ZnO·Fe2O3=22.8%, Fe2O3=2.2%, 기타=44.2%-Composition of basin with raw material electric furnace: ZnO = 25.3%, Zn = 5.5%, ZnO · Fe 2 O 3 = 22.8%, Fe 2 O 3 = 2.2%, others = 44.2%

- 진기로 분진의 입도분포 : 2㎛이하=40.7%, 2~10㎛=12.5%, 10~20㎛=18.4%,-Particle size distribution of dust with dust: less than 2㎛ = 40.7%, 2 ~ 10㎛ = 12.5%, 10 ~ 20㎛ = 18.4%,

20~40㎛=11.9%, 40㎛이상=16.5%,20-40 μm = 11.9%, 40 μm or more = 16.5%,

2) 예비환원조건 :2) Pre-reduction conditions:

- 예비환원가스조성 : CO 70%, CO214%, N216%-Preliminary reduction gas composition: CO 70%, CO 2 14%, N 2 16%

- 예비환원가스유량 : 0.9 Nm3/hr-Pre-reduced gas flow rate: 0.9 Nm 3 / hr

- 예비환원시간 : 1시간Preliminary reduction time: 1 hour

- 예비환원온도 : 850℃Preliminary reduction temperature: 850 ℃

본 실험결과, 비자성체를 분리하지 않고 그냥 펠레트를 만들어 환원시켰을 때는 환원율 약 50%에서 Zn 손실이 약 11%였으나, 유동층 자력선별기로 비자성체를 자성체로부터 분리한 다음 예비환원시켰을 때는 그 손실이 5%로 줄어들었다.As a result of this experiment, when the pellets were made without separating the nonmagnetic material, the Zn loss was about 11% at the reduction rate of about 50%, but the loss was not reduced when the nonmagnetic material was separated from the magnetic material by the fluidized bed magnetic separator and then reduced. Reduced to 5%.

[실시예 2]Example 2

Zn 응축기에서 응고된 Zn 속에 철성분의 분진함량을 간접평가하기 위해, Fe2O3가 많이 함유된 전기로 분진을 사용하여 유동층 환원로에서 전기로 분진중 유리 Fe2O3를 Fe3O4로 예비환원시켜 상온까지 냉각한 후 유동층 자력선별기로 비자성체를 자성체로부터 분리한 다음 비자성체중 철/아연 함량비를 분석하였고 이것을 Fe3O4로 환원시키지 않고 그대로 비자성체를 자성체로부터 분리할 때와 비교하였다.In order to indirectly evaluate the dust content of iron in the solidified Zn in the Zn condenser, free Fe 2 O 3 was converted into Fe 3 O 4 during the dust in the fluidized-bed reduction furnace using an electric furnace dust containing high Fe 2 O 3 . and when the preliminary reduction to release the non-magnetic material in a fluid bed magnetic separator after cooling to room temperature from a magnetic material, and then a non-magnetic material of the analyzed the iron / zinc content ratio separating it from the Fe 3 O 4 magnetic material to without reduction as a non-magnetic material to the Compared.

이때, 원료조건과 1차 예비환원조건은 하기와 같이 하였다.At this time, the raw material conditions and the primary pre-reduction conditions were as follows.

1) 원료조건:1) Raw material condition:

- 원료전기로 분지의 조성 : ZnO=20.8%, Zn=6.1%, ZnO·Fe2O3=18.3%, Fe2O3=15.5%, 기타=39.3%-Composition of basin with raw material electric furnace: ZnO = 20.8%, Zn = 6.1%, ZnO · Fe 2 O 3 = 18.3%, Fe 2 O 3 = 15.5%, others = 39.3%

- 진기로 분진의 입도분포 : 2㎛이하=35.2%, 2~10㎛=12.9%, 10~20㎛=17.4%,-Particle size distribution of dust with dust: less than 2㎛ = 35.2%, 2 ~ 10㎛ = 12.9%, 10 ~ 20㎛ = 17.4%,

20~40㎛=15.1%, 40㎛이상=19.4%,20-40 μm = 15.1%, 40 μm or more = 19.4%,

2) 예비환원조건 :2) Pre-reduction conditions:

- 예비환원가스조성 : CO 27.5%, CO239%, H210% H2O 18.5% N25%-Preliminary reduction gas composition: CO 27.5%, CO 2 39%, H 2 10% H 2 O 18.5% N 2 5%

- 예비환원가스유량 : 3 Nm3/hr-Pre-reduced gas flow rate: 3 Nm 3 / hr

- 예비환원시간 : 20분Preliminary reduction time: 20 minutes

- 예비환원온도 : 550℃Preliminary reduction temperature: 550 ℃

상기 분석결과, 1차 예비환원없이 그대로 분리한 경우에는 비자성체중에 철/아연 함량비가 0.77 정도였으나, 유동층 환원로에서 전기로 분진중 유리 Fe2O3를 Fe3O4로 1차 예비환원시킨 다음 비자성체를 자성체로부터 분리한 경우에는 비자성체중의 철/아연 함량비가 약 0.31로 감소했다.As a result of the analysis, the iron / zinc content ratio in the nonmagnetic body was about 0.77 when the separation was performed without the first preliminary reduction, but the first preliminary reduction of free Fe 2 O 3 to Fe 3 O 4 in the dust of the electric furnace in the fluidized-bed reduction reactor When the nonmagnetic material was separated from the magnetic material, the iron / zinc content ratio of the nonmagnetic material decreased to about 0.31.

상술한 바와 같이, 본 발명은 전기로 분진중의 Zn, ZnO, ZnO·SiO2가 주성분인 비자성체와 Fe2O3와 페라이트 스피넬(Ferrite Spinel)이 주성분인 자성체를 자력선별로 분리하여 비자성체는 그대로 용융환원로에 장입하고, 자성체는 예비환원로에서 철산화물성분을 예비환원시켜 용융환원로에 장입함으로써 예비환원로에서의 Zn손실을 대폭 줄이고 있는 효과가 있는 것이다.As described above, the present invention separates the nonmagnetic material composed mainly of Zn, ZnO, ZnO.SiO 2 in the electric dust, and the magnetic material composed mainly of Fe 2 O 3 and ferrite spinel by magnetic field lines. Charged into the melt reduction reactor, the magnetic material is preliminarily reduced the iron oxide component in the preliminary reduction reactor and charged into the molten reduction reactor, thereby reducing the Zn loss in the preliminary reduction reactor.

또한, 본 발명은 예비환원로에서 ZnO은 환원되지 않고 철산화물만 선택적으로 환원시킬 수 있도록 조정해야 되는 환원가스중 CO/CO2비율의 상한치, 즉 환원가스의 상한환원력을 높여 예비환원로에서 예비환원율을 상당히 높여 용융로에서의 환원 부담을 줄일 수 있는 효과가 있는 것이다.In addition, the present invention is to increase the upper limit of the CO / CO 2 ratio of the reducing gas, that is, to reduce the ZnO in the preliminary reduction reactor to selectively reduce only the iron oxide, that is, to increase the upper limit reducing power of the reducing gas in the preliminary reduction reactor The reduction rate is significantly increased to reduce the reduction burden in the furnace.

Claims (5)

자성분과 비자성분으로 이루어진 전기로 분진을 예비환원로에서 예비환원한 후 용융환원로에 장입하여 용융환원에 의해 선철을 제조하고, 상기 용융환원로의 배가스에 함유된 아연가스를 아연 응축기에서 응축하여 응축아연을 제조하고, 아연 응축기의 배가스를 열풍로에서 부분연소 및 승온시켜 예비환원로로 공급하는 공정을 포함하여 전기로 분진을 처리하는 방법에 있어서,After pre-reduction of dust by magnetic and non-component electric furnaces in a preliminary reduction reactor, charged into a molten reduction reactor to produce pig iron by melt reduction, and condensation of zinc gas contained in the exhaust gas of the molten reduction reactor in a zinc condenser In the process for producing condensed zinc, the process of treating the dust in the furnace, including the step of partially burning and heating the exhaust gas of the zinc condenser in a hot stove to supply to the preliminary reduction reactor 전기로 분진조(110)에 있는 전기로 분진을 유동층 환원로(120)에 장입하여 예비환원로 배가스에 의해 전기로 분진을 환원하고, 환원된 전기로 분진을 냉각기(140)로 장입하여 상온까지 냉각하는 단계;The electric furnace dust in the electric furnace dust tank 110 is charged to the fluidized-bed reduction furnace 120 to reduce the electric dust by the pre-reduction furnace exhaust gas, and the reduced electric furnace dust is charged to the cooler 140 to room temperature. Cooling; 상기 전기로 분진조(110)에 있는 전기로 분진 또는 상기 냉각된 전기로 분진을 유동층 자력 선별기(160)에 의해 자성체 분진과 비자성체 분진으로 선별하여 비자성체 분진은 비자성체 펠렛타이저(190A)에서 괴성화하여 비자성체 펠레트로 제조하고, 자성분 분진은 자성체 펠렛타이저(190B)에서 환원제 및 용제와 함께 괴성화하여 자성체 펠레트로 제조하는 단계;The electric furnace dust in the electric furnace dust tank 110 or the cooled electric furnace dust is separated into magnetic dust and non-magnetic dust by the fluidized bed magnetic separator 160 so that the nonmagnetic dust is a nonmagnetic pelletizer 190A. Agglomerated in to prepare a non-magnetic pellet, and magnetic powder is agglomerated with a reducing agent and a solvent in a magnetic pelletizer 190B to produce a magnetic pellet; 상기 자성체 펠레트를 예비환원로(200)에 장입하고, 열풍로(230)에서 부분 연소 및 승온된 아연응축기(220)의 배가스를 이용하여 환원하는 단계;Charging the magnetic pellet into the preliminary reduction furnace 200 and reducing the exhaust gas of the zinc condenser 220 that is partially burned and heated in the hot stove 230; 상기 예비환원된 자성체 펠레트 및 비자성 펠레트를 용융환원로(210)에 장입하고, 용융환원시켜 선철을 제조하는 단계; 및Preparing the pig iron by charging the pre-reduced magnetic pellets and non-magnetic pellets in a melt reduction furnace (210) and melting reduction; And 상기 용융환원로 배가스중에 함유된 아연가스를 아연응축기(220)에서 응축하여 응축아연을 제조하는 단계;Preparing condensed zinc by condensing zinc gas contained in the melt reduction flue gas in a zinc condenser (220); 를 포함하여 구성됨을 특징으로 하는 전기로 분진처리방법Furnace dust treatment method characterized in that it comprises a 제1항에 있어서, 상기 유동층환원로에 공급되는 예비환원로 배가스에 전로배가스 또는 고로배가스가 혼합되는 것을 특징으로 하는 방법.The method according to claim 1, wherein a converter flue gas or a blast furnace flue gas is mixed with the preliminary flue gas flue gas supplied to the fluidized-bed reduction furnace. 제1항 또는 제 2항에 있어서, 상기 유동층 환원로(120)에서 전기로 분진의 환원시 환원가스중 CO/CO2비율이 0.1-1.8 이고, 환원온도가 500-600℃ 임을 특징으로 하는 방법The method according to claim 1 or 2, wherein the CO / CO 2 ratio in the reducing gas is 0.1-1.8 and the reduction temperature is 500-600 ° C. when the dust of the furnace is reduced in the fluidized-bed reduction furnace 120. 제1항 또는 제 2항에 있어서, 상기 예비환원로(200)에서 자성체 펠레트의 환원시 환원가스중 CO/CO2비율이 0.5-10 이고, 환원온도가 500-600℃ 임을 특징으로 하는 방법The method according to claim 1 or 2, wherein the CO / CO 2 ratio in the reducing gas is 0.5-10 and the reduction temperature is 500-600 ° C. when reducing the magnetic pellets in the preliminary reduction reactor 200. 제3항에 있어서, 상기 예비환원로(200)에서 자성체 펠레트의 환원시 환원가스중 CO/CO2비율이 0.5-10 이고, 환원온도가 500-600℃ 임을 특징으로 하는 방법According to claim 3, wherein the CO / CO 2 ratio of the reducing gas when reducing the magnetic pellets in the preliminary reduction reactor 200 is 0.5-10, characterized in that the reduction temperature is 500-600 ℃
KR1019960071531A 1996-12-24 1996-12-24 Method for treating dust in electric furnace KR100301993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071531A KR100301993B1 (en) 1996-12-24 1996-12-24 Method for treating dust in electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071531A KR100301993B1 (en) 1996-12-24 1996-12-24 Method for treating dust in electric furnace

Publications (2)

Publication Number Publication Date
KR19980052524A KR19980052524A (en) 1998-09-25
KR100301993B1 true KR100301993B1 (en) 2001-11-22

Family

ID=37529221

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071531A KR100301993B1 (en) 1996-12-24 1996-12-24 Method for treating dust in electric furnace

Country Status (1)

Country Link
KR (1) KR100301993B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906466B1 (en) * 2002-10-31 2009-07-08 세연에스앤알 주식회사 Method and apparatus for processing electric arc furnace dust
KR101021484B1 (en) 2009-03-20 2011-03-16 주식회사 대일이앤씨 Thermal desorption apparatus having treating function of dust
KR20190103675A (en) 2018-02-28 2019-09-05 한국생산기술연구원 Fluidized bed combustion system including liquid magnet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568339B1 (en) * 2001-08-24 2006-04-05 주식회사 포스코 process for making iron by recycling dust containing Fe in smelting reduction apparatus
KR100792006B1 (en) * 2005-06-14 2008-01-04 광주과학기술원 An apparatus and method for reproducing acoustic signal
WO2011002465A1 (en) * 2009-07-02 2011-01-06 Heritage Environmental Services, Llc Use of a channel induction furnace to process at least one of a molten metal product, a vapor phase metal product and a slag product from a variety of feed materials
KR101353456B1 (en) * 2011-12-28 2014-01-21 주식회사 포스코 Apparatus for reducing iron ores and apparataus for manufacturing molten iron and reduced iron and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906466B1 (en) * 2002-10-31 2009-07-08 세연에스앤알 주식회사 Method and apparatus for processing electric arc furnace dust
KR101021484B1 (en) 2009-03-20 2011-03-16 주식회사 대일이앤씨 Thermal desorption apparatus having treating function of dust
KR20190103675A (en) 2018-02-28 2019-09-05 한국생산기술연구원 Fluidized bed combustion system including liquid magnet

Also Published As

Publication number Publication date
KR19980052524A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
DE69932357T2 (en) PROCESS FOR PRODUCING IRON MELTS IN DUPLEX OVEN
KR20010023539A (en) Method of making iron and steel
WO2019071796A1 (en) Method for recovering valuable components from mixed slag containing nickel and iron
WO2019071797A1 (en) Method for producing mixed slag containing nickel and iron
WO2022247356A1 (en) Method for smelting nickel-containing metal, and application thereof
CN1036798A (en) Zinciferous metallurgical dust and slag utilize method
US20230175087A1 (en) Method for producing liquid pig iron from a DRI product
KR100301993B1 (en) Method for treating dust in electric furnace
CN108676951A (en) A kind of hydrocarbon joint direct-reduction technique of iron ore concentrate
JP3779009B2 (en) Method for producing high-quality reduced iron from steelmaking dust
CN101818264A (en) Method for treating zinc-iron-containing dust and sludge
CN1116240A (en) Method of direct steel-smelting of cooled agglomerated pellet
JP3617488B2 (en) How to use recovered slag
JP4173925B2 (en) Blast furnace operation method
KR100322036B1 (en) Sintered ore manufacturing method using steelmaking sludge
US3083090A (en) Production of sinter
CN102206725A (en) Process for producing and reducing iron powder through two-step method
RU2157854C2 (en) Method of production of high-ferrous sinter
Zhang et al. Clean production of Fe-based amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore and apatite
Liu et al. Enhancing The Removal of Sodium and Potassium of Sinter by Co‐Containing Flue Gas Circulation Sintering Process
KR910010056B1 (en) Making process for the pellet of cr ore
Zhuravlev et al. Fluxed local sinters—agglomerated iron ore mono raw material for blast-furnace smelting
RU2048548C1 (en) Method for production of fluxed iron-ore agglomerate
CA1141166A (en) Steelmaking process
SU834148A1 (en) Method of making carbon ferromanganese

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130619

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140627

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee