KR100293318B1 - Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method - Google Patents

Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method Download PDF

Info

Publication number
KR100293318B1
KR100293318B1 KR1019980035011A KR19980035011A KR100293318B1 KR 100293318 B1 KR100293318 B1 KR 100293318B1 KR 1019980035011 A KR1019980035011 A KR 1019980035011A KR 19980035011 A KR19980035011 A KR 19980035011A KR 100293318 B1 KR100293318 B1 KR 100293318B1
Authority
KR
South Korea
Prior art keywords
less
temperature
measurement
rolling
deep drawing
Prior art date
Application number
KR1019980035011A
Other languages
Korean (ko)
Other versions
KR20000015231A (en
Inventor
남창현
Original Assignee
이종훈
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종훈, 한국전력공사 filed Critical 이종훈
Priority to KR1019980035011A priority Critical patent/KR100293318B1/en
Priority to CN99118316A priority patent/CN1254093A/en
Publication of KR20000015231A publication Critical patent/KR20000015231A/en
Application granted granted Critical
Publication of KR100293318B1 publication Critical patent/KR100293318B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2876Total acid number

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

본 발명은 딥드로잉용 열연강판의 제조방법에 관한 것이며, 그 목적은 연속식 윤활열간압연에 의하여 딥드로잉성이 우수한 열연강판을 제조하는 방법을 제공함에 있다.The present invention relates to a method for manufacturing a hot rolled steel sheet for deep drawing, and an object thereof is to provide a method for manufacturing a hot rolled steel sheet excellent in deep drawing by continuous lubricating hot rolling.

상기 목적을 달성하기 위하여 본 발명은 중량%로, C:0.01%이하, Mn:0.5%이하, Al:0.05%이하, S:0.015%이하, N:0.015%이하, Ti와 Nb는 단독 또는 복합: 0.03~0.1%, 잔부 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 슬라브를 500~730℃의 온도에서 마무리 윤활압연한 다음, 이어 680∼730℃에서 권취하여 구성되는 딥드로인성이 우수한 열연강판을 제조하는 방법에 관한 것을 그 기술적 요지로 한다.In order to achieve the above object, the present invention is a weight%, C: 0.01% or less, Mn: 0.5% or less, Al: 0.05% or less, S: 0.015% or less, N: 0.015% or less, Ti and Nb are single or complex : Finished lubrication of slab composed of 0.03 ~ 0.1%, balance Fe and other unavoidable impurities at 500 ~ 730 ℃, followed by winding at 680 ~ 730 ℃ to produce hot rolled steel with excellent deep draw toughness. The technical gist of the manufacturing method is taken.

Description

딥드로잉성이 우수한 열연강판의 제조방법Manufacturing method of hot rolled steel sheet with excellent deep drawing property

본 발명은 딥드로잉용 열연강판의 제조방법에 관한 것으로서, 보다 상세하게는 연속식 윤활열간압연에 의하여 딥드로잉성이 우수한 열연강판을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a hot rolled steel sheet for deep drawing, and more particularly, to a method for manufacturing a hot rolled steel sheet excellent in deep drawing by continuous lubricating hot rolling.

일반적으로 자동차에 사용되는 차체 내외판은 딥드로잉과 같은 판재성형가공을 통하여 제조되는데, 이때 사용되는 열연강판은 가공성이 우수해야한다.In general, the body inner and outer plates used in automobiles are manufactured through plate forming processing such as deep drawing, the hot rolled steel sheet used should be excellent in workability.

딥드로잉성은 집합조직인 (111)면이 압연판 면에 평행하게 발달된 정도가 클수록 향상되는 반면에, (100)면이 압연판면에 평행하게 발달될수록 나빠진다.The deep drawing property is improved as the degree of development of the (111) plane, which is an assembly structure parallel to the rolled plate surface, is increased, while the (100) plane becomes worse as it is developed parallel to the rolled plate surface.

통상 열연강판의 제조방법은, 열간압연 마무리 온도가 Ar3온도 이상에서 종료되기 때문에 열간압연 후 오스테나이트로부터 페라이트로의 변태가 일어나서 오스테나이트에 발달되었던 집합조직이 변태과정중에 크게 약화되어 딥드로잉성이 저하되는 문제가 있다.In general, the method of manufacturing a hot rolled steel sheet, since the hot rolling finish temperature is terminated above the Ar 3 temperature, the transformation of austenite to ferrite occurs after hot rolling, and the texture developed in the austenite is greatly weakened during the transformation process. This has a problem of deterioration.

이와 같은 열연강판의 딥드로잉성을 향상시키기 위해, 열연 강판의 마무리온도를 Ar3온도 이하로 낮추어 압연하는 방법(일본공개 특허공보 평5-140655, 대한민국 특허공보 91-7, 91-1605)들이 제안되었는데, 이들 방법은 주로 두께방향으로 균일한 조직을 얻기 위해 열간압연시 윤활압연을 행하고, Ar3온도 이하에서 마무리 열간압연하여 딥드로잉성을 확보하고 있다. 그러나, 상기 방법은 열간압연온도가 낮기 때문에 열간연압연 후에 변형된 결정립 조직이 생기므로, 열간압연 후 재결정열처리 해야한다. 즉, 재결정 열처리를 하기 위하여 상온까지 냉각된 강판을 고온까지 가열해야 하기 때문에 제조비가 상승되고, 또한 제조공정이 복잡해지는 등의 문제가 있다. 그래서 재결정 열처리 과정 없이 바로 제품을 생산하고자 하는 시도도 있었는데, 이를 위해서는 탄소함량이 매우 낮은 강을 제조하거나(약 0.0005%), 열간압연 중의 변형율 속도를 약 1000s-1까지 높일 필요가 있다 (대한민국 특허공보 91-7; S.Matsuoka 등, ISIJ Inter., 34(1994), p.77). 하지만, 실용적인 측면에서 강의 탄소함량을 낮춘다는 것 역시 제조비용 증가의 요인이 될 뿐만 아니라, 현재 일반적으로 사용되는 진공탈개스 방법으로는 생산하기가 곤란하다. 또한, 열간압연시 변형율 속도를 높히는 것 역시 현존하는 압연기로는 곤란하며, 보다 우수한 강판두께 및 형상제어 시스템을 필요로 하기 때문에 실용적인 방법이 아니다.In order to improve the deep drawing property of such a hot rolled steel sheet, a method of rolling by lowering the finishing temperature of the hot rolled steel sheet below the Ar 3 temperature (Japanese Patent Laid-Open Publication No. Hei 5-140655, Korean Patent Publication 91-7, 91-1605) Although these methods are proposed, these methods mainly perform lubrication during hot rolling to obtain a uniform structure in the thickness direction, and finish hot rolling at an Ar 3 temperature or lower to secure deep drawing. However, since the method has a low hot rolling temperature, deformed crystal grains are formed after hot rolling, and thus, recrystallization heat treatment must be performed after hot rolling. That is, since the steel sheet cooled to normal temperature must be heated to high temperature in order to perform recrystallization heat treatment, there exists a problem that manufacturing cost increases and a manufacturing process becomes complicated. Therefore, there have been attempts to produce a product without recrystallization heat treatment. To this end, it is necessary to manufacture steel with a very low carbon content (about 0.0005%) or to increase the strain rate during hot rolling to about 1000s -1 (Korean patent) Gazette 91-7; S. Matsoka et al., ISIJ Inter., 34 (1994), p. 77). In practical terms, however, lowering the carbon content of the steel is not only a factor of increasing manufacturing costs, but is also difficult to produce by the vacuum degassing method currently commonly used. In addition, increasing the strain rate during hot rolling is also difficult with existing rolling mills and is not practical because it requires a better steel sheet thickness and shape control system.

따라서, 본 발명은 상기 문제점을 해결하기 위하여 제안된 것으로서, 저온에서 윤활열간압연을 행하고 권취함으로써, 별도의 재결정 열처리 없이 딥드로잉성이 우수한 열연강판을 제조할 수 있는 방법을 제공하고자하는데, 그 목적이 있다.Accordingly, the present invention has been proposed to solve the above problems, and to provide a method for producing a hot rolled steel sheet having excellent deep drawing property without performing a separate recrystallization heat treatment by winding and winding lubricating hot rolling at low temperature, the object There is this.

도 1은 마무리 압연온도가 딥드로잉성과의 상관성을 나타내는 그래프1 is a graph showing the correlation between the finish rolling temperature and the deep drawing properties

도 2는 발명강과 비교강의 열처리 온도에 따른 미세조직의 변화를 보여주는 사진Figure 2 is a photograph showing the change in microstructure with the heat treatment temperature of the invention steel and comparative steel

상기 목적을 달성하기 위하여 본 발명은, 중량%로, C:0.01%이하, Mn:0.5%이하, Al:0.05%이하, S:0.015%이하, P:0.015%이하, Ti와 Nb는 단독 또는 복합: 0.03~0.1%, 잔부 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 슬라브를 500~730℃의 온도에서 마무리 윤활압연한 다음, 이어 680∼730℃에서 권취하여 구성되는 딥드로인성이 우수한 열연강판을 제조하는 방법에 관한 것이다.In order to achieve the above object, the present invention, in weight%, C: 0.01% or less, Mn: 0.5% or less, Al: 0.05% or less, S: 0.015% or less, P: 0.015% or less, Ti and Nb are single or Composite: A hot rolled steel sheet having excellent deep draw toughness, which is formed by finishing lubricating a slab composed of 0.03 to 0.1%, balance Fe and other inevitable impurities at a temperature of 500 to 730 ° C, and then winding at 680 to 730 ° C. It relates to a method of manufacturing.

이하, 본 발명의 조성에 따른 수치한정이유를 설명한다.Hereinafter, the reason for numerical limitation according to the composition of the present invention will be described.

우선 강중 C는 그 첨가량이 너무 많으면 딥드로잉성이 저하되기 때문에 0.01%이하로 하는 것이 바람직하다.First, in steel C, when the addition amount is too much, since deep drawing property falls, it is preferable to set it as 0.01% or less.

상기 Mn, Al, S, P의 원소들은 그 함량이 높으면 열연강판의 강도를 높히고, 가공성을 나쁘게 하거나 취화가 발생되는 원인으로 작용하므로 Mn:0.5%이하, Al:0.05%이하, S:0.015%이하, P:0.015%이하로 하는 것이 바람직하다.The elements of Mn, Al, S, and P have a high content, which increases the strength of the hot-rolled steel sheet and acts as a cause of poor workability or embrittlement, so Mn: 0.5% or less, Al: 0.05% or less, S: 0.015% Hereinafter, it is preferable to set it as P: 0.015% or less.

상기 Ti또는 Nb은 탄질화물을 형성하여 고용탄소 또는 고용질소의 함량을 낮추어 가공성을 향상시키는 역할을 하는데, 본 발명에 있어서는 Ti 또는 Nb 단독 혹은 이들을 복합하여 첨가하는 것으로서, 상기 Ti과 Nb의 단독 또는 복합첨가량이 0.03% 이하인 경우에는 충분히 탄질화물을 형성하지 못하고, 그 첨가량이 너무 많으면 제품의 강도가 증가하여 성형가공이 어려워지고 또한 제조비용이 비싸게 되므로, Ti및 Nb을 단독 또는 복합으로 첨가하는 량은 0.03~0.1%로 하는 것이 바람직하다.The Ti or Nb forms a carbonitride to lower the content of solid solution carbon or solid solution nitrogen to improve workability. In the present invention, Ti or Nb is added alone or in combination thereof. If the compound addition amount is 0.03% or less, the carbonitride is not sufficiently formed. If the addition amount is too large, the strength of the product increases, which makes the molding difficult and the manufacturing cost is high. Therefore, the amount of Ti and Nb added alone or in combination It is preferable to set it as 0.03 to 0.1%.

이하, 본 발명의 제조 조건의 한정이유에 대하여 설명한다.Hereinafter, the reason for limitation of the manufacturing conditions of this invention is demonstrated.

상기와 같은 조성의 슬라브는 연속주조에 의해 생산되거나 박슬라브주조에 의해 생산된 두께가 얇은 슬라브 모두 본 발명의 조건으로 열간압연 할 수 있고, 상기 슬라브를 당업계에서 통상적으로 사용되고 있는 윤활압연 방식을 사용하여 압연하는 데, 상기 윤활압연 방식은 물과 함께 윤활유를 압연롤에 뿌려주면서 열간압연을 행하는 방식이다.The slabs of the composition as described above can be hot rolled under the conditions of the present invention, both thin slabs produced by continuous casting or thin slab casting, and the lubricating rolling method commonly used in the art. Rolling by use, the lubrication rolling method is a method of hot rolling while spraying lubricating oil along with water on the rolling roll.

이와 같은 열간압연시의 윤활은 소재와 롤과의 마찰을 감소시키는 역할을 하는데, 이에따라 롤과 소재와의 마찰 때문에 생성되는 판 표층부의 (110)집합조직의 발달을 억제하고 결과적으로 (111)집합 조직이 발달을 조장시켜 가공성을 향상시킨다.This lubrication during hot rolling serves to reduce the friction between the material and the roll, thereby suppressing the development of the (110) texture of the plate surface layer formed due to the friction between the roll and the material and consequently (111) aggregation. Tissues promote development to improve processability.

상기와 같은 조건으로 압연할 때, 마무리 압연온도를 Ar3이하의 페라이트 영역에서 압연을 종료하면 집합조직의 제어가 용이하여 딥드로잉성을 향상시킬 수 있다.When rolling under the above conditions, when the finish rolling temperature is finished in the ferrite region of Ar 3 or less, the control of the texture is easy and the deep drawing property can be improved.

이는 압연중 동적회복에 의하여 가공에너지의 소멸이 줄어들고, 따라서 재결정에 필요한 충분한 변형에너지가 축적되어 (111)집합조직이 발달되기 때문이다.This is because the disappearance of the processing energy due to the dynamic recovery during rolling is reduced, and thus enough strain energy necessary for recrystallization is accumulated, so that the (111) aggregate structure is developed.

따라서, 마무리 압연온도는 500~730℃로 하는데, 마무리압연온도가 500℃이하인 경우에는 압연하중이 증가하고 형상제어가 곤란하며, 마무리 압연온도가 730℃이상인 경우에는 딥드로잉성의 지표인 평균소성 변형비(rm)값이 1.4이하가 되어 딥드로잉성이 저하되기 때문이다.Therefore, the finish rolling temperature is 500 ~ 730 ℃, when the finish rolling temperature is 500 ℃ or less, the rolling load increases and shape control is difficult, and when the finish rolling temperature is 730 ℃ or more, the average plastic deformation, which is an index of deep drawing property This is because the ratio (r m ) is 1.4 or less, which causes deep drawing property to deteriorate.

상기와 같이 열간압연된 열연판을 권취하면 권취이후에는 냉각속도가 매우 늦어서 자기 소둔효과가 나타나지만, 딥드로잉용 강으로 널리 이용되는 극저탄소강은 첨가된 Ti 또는 Nb이 재결정을 억제하기 때문에 별도의 재결정 열처리가 필요하다.As described above, when the hot rolled hot rolled sheet is wound, the cooling rate is very slow after winding, and the self-annealing effect is observed. However, in the ultra low carbon steel which is widely used as the steel for deep drawing, added Ti or Nb suppresses recrystallization Recrystallization heat treatment is required.

그러나, 680~730℃의 범위에서 권취하면 100% 재결정이 일어나고, 결정립도 미세해져 별도의 재결정 열처리 없이도 딥드로잉성이 우수한 열연강판을 제조할 수 있는 데, 상기 권취온도가 680℃이하인 경우에는 재결정이 완전히 일어나지 못하며, 730℃이상인 경우에는 결정립크기가 조대하여 프레스 가공시 표면거칠음이 발생될 소지가 있다. 이때, 상기의 온도범위에서 권취를 행하기 위해서는 열간압연온도가 낮은 경우 권취하기 전에 열연판을 다시 가열할 필요가 있는데, 가열방법으로는 유도가열 방법이 적절할 것으로 생각되지만, 급속가열이 가능한 다른 방법을 이용하더라도 본 발명의 효과에는 차이가 없다. 이와 같이 추가적으로 가열공정이 들어가지만 이는 현재 사용되고 있는 생산라인을 변경하지 않고 설치만 하면 되는 것으로서, 열연된 후 온도가 약간 떨어진 강판의 온도를 권취에 적합한 온도까지 급상승시켜주면 된다.However, if the winding in the range of 680 ~ 730 ℃ 100% recrystallization occurs, the crystal grains are also fine can be produced hot rolled steel sheet having excellent deep drawing properties without additional recrystallization heat treatment, if the winding temperature is 680 ℃ or less recrystallization If it does not occur completely, if it is 730 ℃ or more, the grain size is coarse, which may cause surface roughness during press working. At this time, in order to wind up in the above temperature range, it is necessary to reheat the hot rolled sheet before winding up if the hot rolling temperature is low. Induction heating method may be suitable as a heating method, but another method capable of rapid heating Even if used, there is no difference in the effects of the present invention. In this way, additional heating process is required, but it is only necessary to install without changing the production line currently used, and the temperature of the steel sheet slightly dropped after hot rolling may be raised to a temperature suitable for winding.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

마무리 압연온도의 적정한 범위를 알아보기 위하여, 하기 표 1과 같이 조성되는 슬라브를 여러 온도에서 마무리 압연을 행한 후 상온까지 냉각한 시편을 종래 방법과 같이 700℃에서 2시간 동안 재결정 열처리를 행하여 딥드로잉성의 지표인 평균소성변형비(rm)를 측정하고, 그 결과를 도 1에 나타내었다.In order to find out the proper range of the finish rolling temperature, the slab formed as shown in Table 1 was subjected to finish rolling at various temperatures, and then the specimen cooled to room temperature was subjected to recrystallization heat treatment at 700 ° C. for 2 hours as in the conventional method. The average plastic strain ratio (r m ), which is an index of sex, was measured and the results are shown in FIG. 1.

상기 평균소성변형비(rm)는, 랭크포드 값의 평균치로도 불리는 것으로서, 인장 소성 변형 시험편의 각 방향으로부터 얻어지는 소성변형비의 평균치를 의미하며, 다음과 같이 정의된다. 즉, 판상재료에서 길이L0, 폭W0, 두께T0의 시험편을 채취하여, 길이방향으로 인장 소성변형시킨 뒤, 그 길이를 L, 폭을 W, 두께를 T로 한다. 소성변형비는 W/W0의 로그를 T/T0의 로그로 나눈 값으로 정의되는데, 실제로는 체적일정의 가정에서 L0, W0, T0를 실측하여 계산에 의해 T를 구하고 있다. 그러나, 시험편의 인장방향이 재료판 면상의 어느 방향에 대응하느냐에 의하여 소성변형비가 달라지기 때문에, 일반적으로는 상이한 3방향으로 인장할 수 있도록 시험편을 채취하여, 그 각 방향으로부터 얻어지는 소성변형비의 평균을 구한다. 이 평균치를 평균소성변형비라고 하는데, 이 값이 클수록 딥드로잉성이 뛰어난 것으로 판정된다.The said average plastic strain ratio r m is also called the average value of Rankford value, and means the average value of the plastic strain ratio obtained from each direction of a tensile plastic deformation test piece, and is defined as follows. That is, a test piece of length L 0 , width W 0 , and thickness T 0 is taken from the plate material, and tensile plastic deformation is performed in the longitudinal direction, and the length is L, the width is W, and the thickness is T. The plastic strain ratio is defined as the logarithm of the logarithm of W / W 0 divided by the logarithm of T / T 0. Actually, L 0 , W 0 , and T 0 are measured in terms of volumetric schedules, and T is calculated by calculation. However, since the plastic deformation ratio varies depending on which direction on the surface of the material plate corresponds to the tensile direction of the test piece, in general, the test pieces are taken so as to be stretched in three different directions, and the average of the plastic deformation ratios obtained from the respective directions. Obtain This average value is referred to as the average plastic deformation ratio, and the larger this value is, the more excellent the deep drawing property is.

도 1에 나타나 있듯이, 마무리 압연온도가 낮아질수록 열연강판의 딥드로잉성은 향상되는 관계가 있음을 알 수 있었고, 본 발명과 같은 가공용 강판으로 사용할 수 있을 정도인 rm≥1.4인 조건을 만족하기 위해서는 마무리 압연이 730≥ 이하의 온도에서 실시되어야 함을 알 수 있었다. 또한, 마무리 압연온도의 하한은 앞에서 설명한 바와 같이 가공성 측면보다는 열연강판의 형상 및 치수제어가 현실적으로 가능한 500℃로 정하였다.As shown in FIG. 1, it was found that the deep drawing property of the hot rolled steel sheet was improved as the finishing rolling temperature was lowered, and in order to satisfy the condition of r m ≥ 1.4, which can be used as a steel sheet for processing as in the present invention. It was found that finish rolling should be carried out at a temperature of 730 ≧ or less. In addition, the lower limit of the finish rolling temperature was set to 500 ° C., which enables the shape and dimension control of the hot rolled steel sheet rather than the workability as described above.

[실시예 2]Example 2

권취온도 조건을 알아보기 위하여, 하기 표 2와 같은 조성의 슬라브를 700℃에서 마무리 압연을 행한 후 상온까지 냉각시킨 시편을 이용하여 650℃, 700℃, 750℃에서 열처리를 하고, 그 미세조직을 관찰하여, 그 결과를 도 2에 나타내었다. 도2(a)는 650℃, 도2(b)는 700℃, 도2(c)는 750℃에서 열처리한 시편의 미세조직들이다.In order to determine the coiling temperature conditions, the slab having the composition shown in Table 2 was subjected to finish rolling at 700 ° C., and then subjected to heat treatment at 650 ° C., 700 ° C., and 750 ° C. using a specimen cooled to room temperature. It observed and the result is shown in FIG. Figure 2 (a) is 650 ℃, Figure 2 (b) is 700 ℃, Figure 2 (c) is a microstructure of the specimen heat-treated at 750 ℃.

도 2에 나타나 있듯이, 열처리 온도가 650℃로 낮은 경우에는 재결정이 완전하게 일어나지 못하였으며 (도2(a)), 열처리 온도가 750℃로 높은 경우에는 재결정은 완전히 일어났으나 그 결정립의 크기가 너무 조대하여 프레스 가공시 표면 거칠음이 발생될 가능성이 높음을 알 수 있다(도2(c)). 반면에 열처리 온도가 700℃일 경우에는 100%재경정이 일어났으며, 그 결정립도 미세하였다(도2(b)). 따라서, 본 발명에서의 권취온도 범위는 680℃~730℃로 결정할 수 있었다.As shown in FIG. 2, when the heat treatment temperature was low at 650 ° C., recrystallization did not occur completely (FIG. 2 (a)). When the heat treatment temperature was high at 750 ° C., recrystallization occurred completely, but the grain size of the crystal was increased. It can be seen that the coarseness is so high that surface roughness is likely to occur during press working (Fig. 2 (c)). On the other hand, when the heat treatment temperature is 700 ℃ 100% recrystallization occurred, the grain was also fine (Fig. 2 (b)). Therefore, the winding temperature range in this invention could be determined to 680 degreeC-730 degreeC.

[실시예 3]Example 3

실시예 1, 2에서 설명한 방법과 같이 마무리 압연온도 및 권취온도를 각각 결정하는 것은 두 온도조건의 조합에 의한 최적 제조조건이 결정되어야만 하는 경우에는 다소 오차가 있을 수 있다. 그러나, 본 발명에서 대상으로 하는 극저탄소강은 그 변태온도가 높고 속도가 빨라서 본 발명의 범위 내에서는 마무리 압연 전에 오스테나이트에서부터 페라이트로 변태가 완료되기 때문에 큰 차이가 없을 것으로 예상되지만 이와 같은 가능성을 다시 확인해 보기 위해 상기의 마무리 압연온도 범위와 권취온도 범위를 조합하여 시험하였다. 이때, 마무리 압연온도에 비해 권취온도가 높은 경우가 있는데, 이러한 경우에는 권취 전에 열연판을 그 차이만큼 유도가열로에서 가열하였다. 하기 표 3과 같은 조성의 슬라브를 여러 조건으로 윤활열간압연 및 권취를 행하여 제조한 후 열처리 없이 딥드로잉성을 평가하고, 그 결과를 하기 표 4에 나타내었다.Determining the finish rolling temperature and the coiling temperature, respectively, as in the method described in Examples 1 and 2 may be somewhat error when the optimum manufacturing conditions by the combination of the two temperature conditions must be determined. However, the ultra-low carbon steel targeted by the present invention is expected to have no significant difference because the transformation temperature is high and the speed is high, so the transformation from austenite to ferrite is completed before finishing rolling within the scope of the present invention. In order to confirm again, it was tested by combining the finish rolling temperature range and the winding temperature range. At this time, the winding temperature may be higher than the finishing rolling temperature. In this case, the hot rolled sheet was heated in the induction furnace by the difference before winding. The slab having the composition as shown in Table 3 was prepared by lubricating hot rolling and winding under various conditions, and then evaluated the deep drawing property without heat treatment, and the results are shown in Table 4 below.

상기 표 4에 나타나 있듯이, 마무리 압연온도와 권취온도가 본 발명의 조건에 따라 제조된 발명재(1-3)은 평소소성변형비(rm)가 1.4이상으로 딥드로잉성이 우수하였다. 반면에 마무리 압연온도는 본 발명조건에 해당하나 권취온도가 680℃이하인 비교재(2)는 rm이 1.21로 딥드로잉성이 저하됨으로 알수 있었고, 권취온도가 본 발명조건에 해당하나 마무리 압연온도가 730℃이상인 비교재91)은 rm이 0.82로 딥드로잉성이 상당히 나쁘다는 것을 알 수 있었다.As shown in Table 4, the invention (1-3) of the finish rolling temperature and the coiling temperature produced according to the conditions of the present invention was excellent in the deep drawing property with the usual plastic deformation ratio (r m ) of 1.4 or more. On the other hand, the finish rolling temperature corresponds to the present invention condition, but the comparative material (2) having the coiling temperature of 680 ° C. or less was found to have a low r m of 1.21, and the deep drawing property was degraded. The comparative material 91) having a temperature of 730 ° C or higher showed that the deep drawing property was considerably bad as r m was 0.82.

[실시예 4]Example 4

본 발명의 조성과 윤활압연의 효과를 알아보기 위하여 하기 표 5와 같은 조성의 슬라브를 가지고 마무리 압연온도와 권취온도를 하기 표 6의 조건으로 하고 윤활압연의 실시와 비실시에 따른 rm의 값을 측정하고, 그 결과를 하기 표 6에 나타내었다.In order to determine the effect of the composition and lubrication rolling of the present invention, the slab having the composition as shown in Table 5 below has the finish rolling temperature and the winding temperature as the conditions of Table 6, and the value of r m according to the lubrication rolling and non-execution Was measured, and the results are shown in Table 6 below.

상기 표 6에 나타나 있듯이, 발명재(4-5)의 경우에는 윤활압연한 결과 rm이 1.47이상으로 우수한 딥드로성이 우수함을 알 수 있었다. 반면에 발명강(3)를 가지고 윤활압연을 하지 않고 압연하고 권취한 비교재(3)은 rm이 0.97이었고, 비교강(1)을 가지고 윤활압연하지 않고 제조한 비교재(4)는 rm이 0.85로 비교재(3.4)는 딥드로잉성이 상당히 열악하였다.As shown in Table 6, in the case of the inventive material (4-5), it was found that the r m was 1.47 or more and the excellent deep drawability was excellent as a result of lubrication rolling. On the other hand, the comparative material (3) rolled and wound without lubrication rolling with the inventive steel (3) had a r m of 0.97, and the comparative material (4) manufactured without lubrication rolling with the comparative steel (1) was r m was 0.85 and the comparative material (3.4) was significantly poor in deep drawing.

상술한 바와 같이, 본 발명은 통상 제조 가능한 탄소함량 범위의 강재를 이용하여 현존하는 압연설비에서 열간압연이 가능하고, 특히 별도의 재결정 열처리 없이도 딥드로잉성이 우수한 열연강판의 제조방법을 제공할 수 있고, 상기와 같이 제조된 강판은 딥드로잉과 같은 판재성형가공에 의하여 자동차 판의 제조에 응용될 수 있는 효과가 있다.As described above, the present invention is capable of hot rolling in existing rolling equipment using steel materials in the carbon content range that can be usually manufactured, and in particular, can provide a method for producing hot rolled steel sheet having excellent deep drawing property without a separate recrystallization heat treatment. In addition, the steel sheet manufactured as described above has an effect that can be applied to the production of automotive plates by plate forming processing such as deep drawing.

Claims (1)

중량%로, C:0.01%이하, Mn:0.5%이하, Al:0.05%이하, S:0.015%이하, P:0.015%이하, Ti와 Nb는 단독 또는 복합: 0.03~0.1%, 잔부 Fe와 기타 불가피하게 함유되는 불순물로 이루어지는 슬라브를 500~730℃의 온도에서 마무리 윤활압연한 다음, 이어 680∼730℃에서 권취함을 특징으로 하는 딥드로잉성이 우수한 열연강판의 제조방법By weight%, C: 0.01% or less, Mn: 0.5% or less, Al: 0.05% or less, S: 0.015% or less, P: 0.015% or less, Ti and Nb alone or in combination: 0.03 to 0.1%, balance with Fe A method of manufacturing a hot rolled steel sheet having excellent deep drawing property, wherein the slab made of other inevitable impurities is lubricated by finishing lubrication at a temperature of 500 to 730 ° C, and then wound at 680 to 730 ° C.
KR1019980035011A 1998-08-27 1998-08-27 Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method KR100293318B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980035011A KR100293318B1 (en) 1998-08-27 1998-08-27 Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method
CN99118316A CN1254093A (en) 1998-08-27 1999-08-27 Reagent, preparation method and simple method for determining index of electric insulating oil by utilizing said reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980035011A KR100293318B1 (en) 1998-08-27 1998-08-27 Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method

Publications (2)

Publication Number Publication Date
KR20000015231A KR20000015231A (en) 2000-03-15
KR100293318B1 true KR100293318B1 (en) 2001-10-26

Family

ID=19548599

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980035011A KR100293318B1 (en) 1998-08-27 1998-08-27 Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method

Country Status (2)

Country Link
KR (1) KR100293318B1 (en)
CN (1) CN1254093A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994846B2 (en) * 2004-10-13 2012-08-08 Jx日鉱日石エネルギー株式会社 Electrical insulation oil for transformers with natural circulation cooling

Also Published As

Publication number Publication date
CN1254093A (en) 2000-05-24
KR20000015231A (en) 2000-03-15

Similar Documents

Publication Publication Date Title
KR101050698B1 (en) Ultra-thin high carbon hot rolled steel sheet and manufacturing method thereof
KR100754035B1 (en) High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4276482B2 (en) High-strength hot-rolled steel sheet with excellent ultimate deformability and shape freezing property and its manufacturing method
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
KR20080012922A (en) Process for manufacture of cold-rolled high-carbon steel plate
KR101657793B1 (en) Bake hardening steel sheet having excellent drawability and method for manufacturing thereof
KR100293218B1 (en) Method for manufacturing hot rolled steel sheet having superior deep drawability
KR100293318B1 (en) Manufacture method of reagent for simple measurement of computational value of electric insulating oil and measurement method using measurement instrument and method
KR20180068089A (en) Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
KR20000043767A (en) Cold-rolled steel strip of super high molding and high strength bh type and method of manufacturing the same
KR950013192B1 (en) Method of manufacturing a cold rolled steel sheet exhibiting an excellent resistance to cold work embrittlement and a small planar anisotropy
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPH09296252A (en) Thin hot rolled steel sheet excellent in formability and its production
KR101560875B1 (en) Formable hot-rolled steel sheet having excellent formability and anti-aging properties, and method for manufacturing the same
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
KR100328023B1 (en) The method of manufacturing of high strength hot-rolled steel sheet
KR101568501B1 (en) A formable hot-rolled steel having excellent surface quality, and manufacturing of the same
KR950003807B1 (en) Making method of cold rolling sheet
KR100530079B1 (en) Method for Producing Formable Hot-Rolled Low Carbon Steel Sheet with Low Mechanical Properties Anisotropy
KR940008064B1 (en) Making method of hot rolling steel plate
KR100498069B1 (en) Method for producing high strength stainless steel in strip casting & in-line rolling apparatus
JP3572785B2 (en) Hot-rolled steel sheet excellent in slidability and mold galling resistance and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130401

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 18

EXPY Expiration of term