KR100291965B1 - Manufacturing method of thermoplastic rubber with excellent heat resistance - Google Patents

Manufacturing method of thermoplastic rubber with excellent heat resistance Download PDF

Info

Publication number
KR100291965B1
KR100291965B1 KR1019980034067A KR19980034067A KR100291965B1 KR 100291965 B1 KR100291965 B1 KR 100291965B1 KR 1019980034067 A KR1019980034067 A KR 1019980034067A KR 19980034067 A KR19980034067 A KR 19980034067A KR 100291965 B1 KR100291965 B1 KR 100291965B1
Authority
KR
South Korea
Prior art keywords
weight
thermoplastic rubber
parts
heat resistance
composition
Prior art date
Application number
KR1019980034067A
Other languages
Korean (ko)
Other versions
KR20000014579A (en
Inventor
허수범
Original Assignee
김현숙
경신공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김현숙, 경신공업 주식회사 filed Critical 김현숙
Priority to KR1019980034067A priority Critical patent/KR100291965B1/en
Publication of KR20000014579A publication Critical patent/KR20000014579A/en
Application granted granted Critical
Publication of KR100291965B1 publication Critical patent/KR100291965B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Abstract

본 발명은 내열성이 우수한 열가소성 고무의 제조방법에 관한 것으로, 열가소성 고무에 비닐 메톡시실란과 디큐밀퍼옥사이드를 배합하여 그라프트시킨 조성물 95중량%와 열가소성 고무에 디부틸틴 디라우레이트와 산화 방지제를 배합한 조성물 5중량%를 혼합, 자유라디칼을 생성시켜 가교결합함으로써 이루어지는 것을 특징으로 한다.The present invention relates to a method for producing a thermoplastic rubber having excellent heat resistance, comprising 95% by weight of a composition grafted by mixing vinyl methoxysilane and dicumylperoxide in a thermoplastic rubber and dibutyltin dilaurate and an antioxidant in a thermoplastic rubber. It is characterized by mixing 5% by weight of the blended composition, generating free radicals and crosslinking.

Description

내열성이 우수한 열가소성 고무의 제조방법Manufacturing method of thermoplastic rubber excellent in heat resistance

본 발명은 내열성이 우수한 열가소성 고무(thermoplastic rubber)의 제조방법에 관한 것으로, 보다 상세하게는 반응성 실란화합물에 의한 수가교 방법에 의해 열가소성 고무를 경화성 수지로 제조하여 내열성을 현저히 향상시키면서도 공정이 단순하고 추가적인 비용이 매우 저렴한 내열성이 우수한 열가소성 고무(thermoplastic rubber)의 제조방법에 관한 것이다.The present invention relates to a method for producing a thermoplastic rubber (excellent heat resistance), and more particularly, by manufacturing a thermoplastic rubber with a curable resin by a cross-linking method by a reactive silane compound, while improving the heat resistance significantly and simple process The present invention relates to a method for producing a thermoplastic rubber having excellent heat resistance at an additional low cost.

일반적으로 탄성(elastomer)의 장점을 갖고 있는 고무의 수요가 늘어나고 있지만 상품화하는데 있어서는 복잡한 공정을 거쳐 제품이 제조된다.In general, the demand for rubber having the advantage of elastomer (elastomer) is increasing, but the product is manufactured through a complicated process in commercialization.

열가소성 고무는 우수한 탄성을 구비하고 있어 신발, 각종 호스, 전선류 등 고무의 용도로 널리 사용되고 수요 또한 증가하고 있다. 이는 생산이 간편 용이하여 작업 생산성이 우수하고 설비비용이 저렴하여 제작단가가 낮기 때문이다.Thermoplastic rubbers have excellent elasticity and are widely used in rubber, such as shoes, various hoses, and electric wires, and demand is increasing. This is because production is easy because production is easy and production cost is low due to excellent work productivity and low equipment cost.

그러나 열가소성 고무의 단점은 열분해 현상(가열되면서 분자고리가 풀어져 연화하여 변형되는 현상)이 발생하여 고온의 직접 열이나 간접 열이 발생되는 환경에는 사용할 수 없다. 즉, 110℃이상의 온도에서는 용융됨으로 전선의 경우 땜납 작업등의 작업에 의하여 피복층이 변형하기 때문에 150℃이상의 고온의 환경에서는 사용할 수 없는 단점이 있다.However, the disadvantage of thermoplastic rubber is that it cannot be used in an environment in which high temperature direct heat or indirect heat is generated due to thermal decomposition phenomenon (phenomena in which molecular rings are softened and deformed while being heated). That is, since the coating layer is deformed due to melting at a temperature of 110 ° C. or higher due to soldering, etc., it cannot be used in a high temperature environment of 150 ° C. or higher.

따라서, 이러한 단점만 보완하게 되면 열가소성 고무의 응용범위는 크게 확대될 수 있을 것이다.Therefore, if only this disadvantage is compensated for, the application range of the thermoplastic rubber may be greatly expanded.

종래, 고분자 재료의 내열성 등의 개량방법으로서는 폴리에틸렌 등으로 행하여지고 있는 분자끼리의 가교라는 방법이 있다. 이 가교방법은 유리퍼옥사이드에 의한 화학가교, 전자선, r선에 의한 방사선 가교, 반응성 실란화합물에 의한 수가교 등이 있다.Conventionally, as an improvement method of heat resistance etc. of a polymeric material, there exists a method called bridge | crosslinking of molecules performed with polyethylene etc. This crosslinking method includes chemical crosslinking by glass peroxide, electron beam, radiation crosslinking by r-ray, and crosslinking by reactive silane compound.

이러한 고분자 재료의 내열성 등의 개량방법은 설비 투자비용이 매우 높고 제품의 제조 시 불량률이 높아 고부가가치의 제품을 만드는데 있어서 작업 생산성이 현저히 저하됨은 물론 제조단가가 매우 높다는 문제점이 있었다.The improved method of heat resistance and the like of the polymer material has a problem in that the production cost is very low as well as the manufacturing cost is very high in making a high value-added product because the investment cost of the equipment is very high and the defect rate is high when the product is manufactured.

이러한 문제점을 해결하기 위하여 안출한 본 발명은 기존의 설비를 간소화하여 설비비용을 크게 낮춤과 동시에 가교공정을 크게 개선함으로써 작업생산성을 향상시킬 뿐만 아니라 제조단가를 낮춤과 동시에 제품의 내열성을 크게 향상시켜 고온환경에서도 열분해 현상이 발생되는 것을 예방할 수 있는 내열성이 우수한 열가소성 고무의 제조방법을 제공하는데 그 목적이 있다.The present invention devised to solve these problems by simplifying the existing equipment to greatly reduce the equipment cost and at the same time greatly improve the cross-linking process to improve the productivity of work as well as to reduce the manufacturing cost and greatly improve the heat resistance of the product It is an object of the present invention to provide a method for producing a thermoplastic rubber having excellent heat resistance that can prevent pyrolysis from occurring even in a high temperature environment.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 내열성 열가소성 고무를 제조함에 있어서, 폴리스틸렌과 수소 첨가 폴리이소프렌의 블록공중합체 100중량부에 비닐메톡시 실란 0.1 내지 15중량부, 디큐밀퍼옥사이드 0.01∼0.02중량부를 배합하여 그라프트 중합하여 제조된 조성물(이하, A조성물이라고도 함) 95중량%와 폴리스티렌과 폴리이소프렌의 블록공중합체 100중량부에 디부틸틴디라우레이트 0.01중량부와 산화방지제 1∼3중량부를 배합하여 제조된 조성물(이하, B조성물이라고도 함) 5중량%를 혼합, 자유라디칼을 생성시켜 가교결합으로 이루어지는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법이다.The present invention is prepared by graft polymerization by mixing 0.1 to 15 parts by weight of vinylmethoxy silane and 0.01 to 0.02 parts by weight of dicumyl peroxide in 100 parts by weight of a block copolymer of polystyrene and hydrogenated polyisoprene. 95 parts by weight of the prepared composition (hereinafter referred to as A composition), 100 parts by weight of a block copolymer of polystyrene and polyisoprene, 0.01 part by weight of dibutyltin dilaurate and 1-3 parts by weight of an antioxidant (hereinafter, It is a method for producing a thermoplastic rubber having excellent heat resistance, characterized by mixing 5% by weight of a B composition) to form free radicals and crosslinking.

이하, 본 발명의 바람직한 실시 예에 따른 내열성이 우수한 열가소성 고무의 제조방법에 대하여 설명하기로 한다.Hereinafter, a method of manufacturing a thermoplastic rubber having excellent heat resistance according to a preferred embodiment of the present invention will be described.

본 발명에 따른 내열성 열가소성 고무의 제조방법은 가교결합을 위한 자유라디칼의 생성 및 그라프팅 단계와 가수분해반응 단계로 이루어진다.The method for producing a heat resistant thermoplastic rubber according to the present invention comprises a step of generating and grafting free radicals for a crosslinking step and a hydrolysis step.

상기 A조성물에 대한 가교결합의 메카니즘은 전형적인 화학 가교제인 퍼옥사이드(peroxide)를 가교 개시제로 소량 사용하여 비닐계(Vinyl group)로 가수분해 가능한 알콕시계(Alkoxy group)를 가진 다기능성 불포화 실란(silane)화합물과의 화학반응을 이용한 것이다.The crosslinking mechanism for the A composition is a multifunctional unsaturated silane having an alkoxy group that can be hydrolyzed into a vinyl group by using a small amount of a typical chemical crosslinking agent, peroxide, as a crosslinking initiator. Chemical reaction with compounds.

실란화합물에 의한 열가소성 고무준지의 가교는 자유라디칼에 의한 수분의 적용으로 가교가 일어난다.In the crosslinking of the thermoplastic rubber base by the silane compound, crosslinking occurs due to the application of moisture by free radicals.

가교반응은 가교결합을 위한 자유라디칼을 생성시키는 그라프팅과 가수분해로 대별되며 이의 자세한 사항은 다음과 같다.Crosslinking reactions are roughly classified into grafting and hydrolysis to produce free radicals for crosslinking, the details of which are as follows.

상기 그라프팅 과정은 열가소성 고물에 불포화 시라란 및 유기과산화물을 혼합한 후 160 내지 180℃에서 가열한다.The grafting process is heated at 160 to 180 ℃ after mixing the unsaturated silan and organic peroxide in the thermoplastic solid.

이때, 전형적인 가교 개시제인 과산화물의 분해에 의해 열가소성 고무(폴리이소프렌)에 자유라디칼을 형성한다.At this time, free radicals are formed in the thermoplastic rubber (polyisoprene) by decomposition of the peroxide which is a typical crosslinking initiator.

또한, 자유라디칼 셍성반응의 연쇄성은 시라란화합물에 의해 방해를 받으며 불포화 실란 자체가 열가소성 고무(폴리이소프렌)의 활성점을 공격하여 주쇄에 실란분자가 결합되어 지는 것이다.In addition, the chainability of the free radical generation reaction is hindered by the silane compound and the unsaturated silane itself attacks the active point of the thermoplastic rubber (polyisoprene) so that the silane molecules are bonded to the main chain.

활성점은 폴리이소프렌 주쇄에서 불포화 시라란으로 이동된 후 폴리이소프렌 주쇄의 수소를 받아서 안정한 상태로 전이한다.The active site is transferred from the polyisoprene backbone to unsaturated silane, and then receives hydrogen from the polyisoprene backbone and transitions to a stable state.

새로운 활성점은 상기 반응을 반복하고 이 사이클과 양으로 혼합된 실란화합물이 전부 소비될 때까지 계속된다.The new active site repeats the reaction and continues until all of the silane compound mixed in amount with this cycle is consumed.

따라서, 유기과산화물은 소량이 필요한데 이는 최초 활성점을 생성시키는 개시제 역할을 하며 실란화합물은 불포화 비닐계와 가수분해 가능한 알콕시계를 가진 다기능성 불포화 실란이 바람직하다.Therefore, a small amount of organic peroxide is required, which serves as an initiator to generate an initial active point, and the silane compound is preferably a multifunctional unsaturated silane having an unsaturated vinyl-based and a hydrolyzable alkoxy-based.

상기 가수분해(Hydrolysis)반응은 상기 A조성물과 B조성물을 혼합시킨 공정에서 이루어진다.The hydrolysis reaction is performed in a process of mixing the A composition and the B composition.

가수분해 반응 즉, 가교반응은 실란화합물로 그라프팅 된 폴리이소프렌 두 분자가 수분 존재하에서 실란분자 사이의 화학반응으로 일어나며 물로부터 제공되는 산소로 인해 가교결합이 생성된다.The hydrolysis reaction, or crosslinking, is a chemical reaction between silane molecules in the presence of two molecules of polyisoprene grafted with a silane compound, and crosslinking is generated by oxygen provided from water.

상기 가교반응은 DBTDL(dibutyltin dilaurate)의 촉매 첨가로 화학반응속도를 증가시키기도 하고 제조가공 시간을 단축시킬 수 있다.The crosslinking reaction may increase the chemical reaction rate or shorten the manufacturing time by adding a catalyst of DBTDL (dibutyltin dilaurate).

상기 가교반응에서 실록산결합(-si-si-si)은 실리콘러버(silicone rubber)의 중추결합으로서 매우 높은 에너지의 알콕시계를 갖고 있어 그라프팅된 실란화합물(silane compound)은 다기능의 특성을 보인다.In the cross-linking reaction, the siloxane bond (-si-si-si) is a backbone of silicone rubber (silicone rubber) and has a very high energy alkoxy system, and thus the grafted silane compound (silane compound) has a multifunctional characteristic.

따라서, 그라프팅 된 폴리이소프렌은 2개 이상의 동종 분자와 반응할 능력이 있어 이로 인해 다발형구조(Bunch-like structure) 즉, 가황고무와 같이 망상구조를 이루어 우수한 기계적 물성치를 보인다.Therefore, the grafted polyisoprene is capable of reacting with two or more homogeneous molecules, thereby forming a network structure such as a bundle-like structure, that is, vulcanized rubber, thereby showing excellent mechanical properties.

본 발명의 B조성물을 제조함에 있어 사용되는 산화방지제로는 Ciba-geigy(송원산업)사로부터 구입할 수 있는 Iganox 1010(상품명)을 사용할 수 있다.As an antioxidant used in preparing the composition B of the present invention, Iganox 1010 (trade name) available from Ciba-geigy (Songwon Industry) may be used.

본 발명은 상기와 같은 과정을 거쳐서 완성된 것으로써 열가소성 고무에 실란화합물을 혼합시켜 기존의 열가소성 고무를 분자끼리 가교시켜 내열성을 향상시킨 것이다.The present invention is completed through the process as described above is to mix the silane compound in the thermoplastic rubber to crosslink the existing thermoplastic rubber between molecules to improve the heat resistance.

즉, 열가소성 고무에 불포화 실란 및 유기과산화물을 혼합하여 그라프팅시키고, 디부틸틴디라우레이트를 촉매로 하여 가교시켜 기존의 수지에 비해 내열성을 향상시킴으로써 180℃의 온도에서도 열변형이 일어나지 않도록 한 것이다.That is, grafted by mixing unsaturated silane and organic peroxide in the thermoplastic rubber, crosslinked with dibutyl tin dilaurate as a catalyst to improve the heat resistance compared to the conventional resin to prevent thermal deformation even at a temperature of 180 ℃.

난연성이 요구되는 내열성 열가소성 고무에는 데카브로모디페닐에테르와 3산화 안티몬을 20∼30중량부 함유시키므로써 UL94 V-1, V-2의 난연성 규격을 만족하는 물성을 얻을 수 있다.Heat-resistant thermoplastic rubbers requiring flame retardancy may contain 20 to 30 parts by weight of decabromodiphenyl ether and antimony trioxide, thereby obtaining properties satisfying the flame retardancy standards of UL94 V-1 and V-2.

이하, 본 발명의 실시 예와 비교 예를 들어 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.

실시 예 1-3Example 1-3

열가소성 고무(일본 구라레이 셉톤 : 상품명)에 대하여 표 1에 표시한 조성의 화합물을 혼합하여 그라프트 시켜서 되는 A조성물과 B조성물을 혼합하여 전선합출기(65㎜ L/D 24/1)에서 저너선(CO₂용접전 60SQMN)을 피복하여 압출하되 실린더 1을 160℃, 실린더 2를 170℃, 실린더 3을 180℃로 연속하여 작업하여 48시간이 경과된 후 피복된 내열성 열가소성 고무의 시료를 준비(KSM6518 펀칭형 담벨상 3호)하고 KSC3004(고무, 플라스틱 절연저너선 시험방법)에서 천연고무 및 합성고무 재료에 적용되는 인장속도를 500㎜/min으로 인스트론 인장시험기에 의하여 측정, 인장강도 및 신장률 산출방법에 따라 이나장강도 및 신장률을 산출하여 표 1에 기재하였다.The composition A and B which are to be grafted by mixing the compound of the composition shown in Table 1 with respect to a thermoplastic rubber (Japan Gurarei Septon: brand name) are mixed by the electric wire extractor (65mm L / D 24/1) Coated and extruded with a bare wire (60SQMN before CO₂ welding), the cylinder 1 was continuously operated at 160 ° C., the cylinder 2 was operated at 170 ° C., and the cylinder 3 was operated at 180 ° C. to prepare a sample of the coated heat-resistant thermoplastic rubber after 48 hours. KSM6518 Punching Dambell No. 3) and KSC3004 (Rubber, Plastic Insulation Journal Test Method), measured by Instron's tensile tester at 500mm / min, tensile strength and elongation rate According to the calculation method, the intestinal strength and elongation rate were calculated and listed in Table 1.

또한, 내열성 시험은 JASO D 608-92(일본 자동차용 내열저압전선 규격임)의 AEX(가교 폴리에틸렌 혼합물)에 준하고 그 결과를 표 1에 기재하였다.In addition, the heat resistance test was based on AEX (crosslinked polyethylene mixture) of JASO D 608-92 (a heat resistant low voltage wire standard for automobiles in Japan) and the results are shown in Table 1.

비교 예 AComparative Example A

표 1에서와 같이 실란화합물을 혼합하지 아니하고 종래의 열가소성 고무로 전선을 피복하여 실시예와 마찬가지로 인장강도 및 신장률을 산출하고 내열성 시험을 실시하여 표 1에 기재하였다.As shown in Table 1, the wires were coated with a conventional thermoplastic rubber without mixing the silane compound, and thus the tensile strength and elongation rate were calculated in the same manner as in Example, and the heat resistance test was performed.

실시 예 4-6Example 4-6

조성물A와 B를 혼합한 후 압출기에 주입하기 전에 난연제를 분말형태로 표 2에 표시한 조성으로 혼합한 것 외에는 실시예 1-3과 마찬가지로 실시하였으며 JASO D 608-92에 의한 난연시험을 하여 그 결과를 표 2에 기재하였다.After mixing the compositions A and B and before injecting into the extruder, the flame retardant was mixed in the form shown in Table 2 in the same manner as in Example 1-3 and subjected to the flame retardant test according to JASO D 608-92. The results are shown in Table 2.

비교 예 BComparative Example B

비교예 A와 마찬가지로 실시하되 난연제를 혼합하지 아니하였고 JASO D 608-92에 의한 난연시험을 하여 그 결과를 표 2에 기재하였다.It was carried out as in Comparative Example A, but did not mix the flame retardant was tested by the flame retardant by JASO D 608-92 and the results are shown in Table 2.

VMS : Vinylmethoxy silaneVMS: Vinylmethoxy silane

DCP : Dicumyl peroxideDCP: Dicumyl peroxide

DBTDL : Dibutyltin dilaurateDBTDL: Dibutyltin dilaurate

DBDP : Decabromodiphenyl etherDBDP: Decabromodiphenyl ether

이상으로 설명한 본 발명에 의하면 설비를 간소화하여 설비비용을 크게 낮춤과 동시에 가교공정을 크게 개선함으로써 작업생산성을 현저히 향상시킬 뿐만 아니라 제작단가를 현저히 낮춤과 동시에 제품의 내열성을 크게 향상시켜 고온환경에서도 열분해 현상이 발생되는 것을 예방할 수 있는 효과를 갖는다.According to the present invention described above, by simplifying the equipment to significantly lower the cost of the equipment and at the same time significantly improve the crosslinking process, it not only significantly improves the work productivity, but also significantly lowers the manufacturing cost and greatly improves the heat resistance of the product, thereby thermally decomposing in a high temperature environment. It is effective to prevent the phenomenon from occurring.

Claims (4)

내열성 열가소성 고무를 제조함에 있어서, 폴리스틸렌과 수소 첨가 폴리이소프렌의 블록공중합체 100중량부에 비닐메톡시 실란 0.1 내지 15중량부, 디큐밀퍼옥사이드 0.01∼0.02중량부를 배합하여 그라프트 중합하여 제조된 조성물 95중량%와 폴리스틸렌과 폴리이소프렌의 블록공중합체 100중량부에 디부틸틴디라우레이트 0.01중량부와 산화방지제 1∼3중량부를 배합하여 제조된 조성물 5중량%를 혼합, 자유라디칼을 생성시켜 가교결합으로 이루어지는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.In preparing a heat-resistant thermoplastic rubber, a composition 95 prepared by graft polymerization by mixing 0.1 to 15 parts by weight of vinylmethoxy silane and 0.01 to 0.02 parts by weight of dicumyl peroxide in 100 parts by weight of a block copolymer of polystyrene and hydrogenated polyisoprene. 5% by weight of the composition prepared by mixing 0.01% by weight of dibutyl tin dilaurate and 1-3 parts by weight of the block copolymer of polystyrene and polyisoprene and 100 parts by weight of polystyrene and polyisoprene are mixed to form free radicals. A method for producing a thermoplastic rubber excellent in heat resistance, characterized in that it is made. 제 1 항에 있어서, 상기 조성물은 데카브로모디페닐에테르 15중량부 및 3산화안티몬 10중량부를 추가로 함유할 수 있는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.The method of claim 1, wherein the composition may further contain 15 parts by weight of decabromodiphenyl ether and 10 parts by weight of antimony trioxide. 제 1 항에 있어서, 상기 조성물은 CO₂용접선에 압출하여 피복층을 형성하도록 하는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.The method of claim 1, wherein the composition is extruded onto a CO 2 welding line to form a coating layer. 제 3 항에 있어서, 피복층을 압출하는 제 1, 제 2, 제 3의 실린더 온도를 160, 170℃ 및 180℃로 하여 연속 작업하도록 하는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.The method for producing a thermoplastic rubber having excellent heat resistance according to claim 3, wherein the first, second, and third cylinder temperatures for extruding the coating layer are continuously operated at 160, 170 ° C and 180 ° C.
KR1019980034067A 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance KR100291965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980034067A KR100291965B1 (en) 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980034067A KR100291965B1 (en) 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance

Publications (2)

Publication Number Publication Date
KR20000014579A KR20000014579A (en) 2000-03-15
KR100291965B1 true KR100291965B1 (en) 2001-11-05

Family

ID=19547937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980034067A KR100291965B1 (en) 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance

Country Status (1)

Country Link
KR (1) KR100291965B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912364B1 (en) 2007-09-04 2009-08-19 허수범 Making method of thermostability sheath composite for welding cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206113A (en) * 1985-03-08 1986-09-12 日立電線株式会社 Insulated wire for underwater motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206113A (en) * 1985-03-08 1986-09-12 日立電線株式会社 Insulated wire for underwater motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912364B1 (en) 2007-09-04 2009-08-19 허수범 Making method of thermostability sheath composite for welding cable

Also Published As

Publication number Publication date
KR20000014579A (en) 2000-03-15

Similar Documents

Publication Publication Date Title
CN101688046B (en) Flame-retardant silane-crosslinked olefin resin composition, insulated wire, and method for production of flame-retardant silane-crosslinked olefin resin
KR101845532B1 (en) Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing
JP6706854B2 (en) Heat-resistant cross-linked resin molded product and its manufacturing method, and heat-resistant product
JP2020007475A (en) Heat resistant crosslinked fluorine rubber molded body and manufacturing method therefor, silane master batch, master batch mixture, and heat resistant product
JPWO2018180689A1 (en) Flame-retardant crosslinked resin molded article and method for producing the same, silane masterbatch, masterbatch mixture and molded article thereof, and flame-retardant product
JP2000212291A (en) Preparation of nonhalogen flame-retardant silane- crosslinked polyolefin composition
JP6395745B2 (en) Silane-crosslinked resin molded body, silane-crosslinkable resin composition and production method thereof, silane masterbatch, and molded article
KR101583908B1 (en) Resin Composition for Producing of Insulating Material and method for manufacturing Insulating Material
JP6706870B2 (en) SILANE CROSSLINKABLE RUBBER COMPOSITION, SILANE CROSSLINKED RUBBER MOLDED BODY, PROCESS FOR PRODUCING THE SAME, AND SILANE CROSSLINKED RUBBER MOLDED ARTICLE
WO2020013187A1 (en) Heat-resistant crosslinked fluororubber molded product and production method thereof, and heat-resistant product
ITMI940411A1 (en) MIXTURES BASED ON FLUOROSILICONIC ELASTOMERS AND POLYMERS OF VINYLIDENE FLUORIDE
KR100291965B1 (en) Manufacturing method of thermoplastic rubber with excellent heat resistance
CN104592737A (en) Dynamic-vulcanization poly(phenylene oxide) elastomer and preparation method thereof
KR101010288B1 (en) Heat Resistance and retardant Plastic Resin Compositions
JP6639937B2 (en) Method for producing heat-resistant silane-crosslinked thermoplastic elastomer molded article, silane masterbatch, and heat-resistant product
JP2017141386A (en) Heat-resistant silane crosslinked resin molded body and method for producing the same, and silane masterbatch and heat-resistant product
JP7470552B2 (en) Crosslinked fluororubber composition, wiring material using same and method for producing same, and catalyst composition for silane crosslinking
JP2016037563A (en) Silane graft composition and method for producing the same, and wire and cable prepared therewith
JPH06145483A (en) Resin composition and tube made therefrom
JP4273596B2 (en) Production method of cross-linked polyethylene electric wire / cable and cross-linked polyethylene electric wire / cable
JP4968618B2 (en) Method for producing non-halogen flame retardant silane crosslinked insulated wire
JPH07179705A (en) Method for crosslinking fluororubber composition and its crosslinked molded product
JPS6143377B2 (en)
TWI805586B (en) A crosslinkable composition, an article and a method of conducting electricity
JP6490618B2 (en) Flame-retardant crosslinked resin molded body, flame-retardant crosslinked resin composition and production method thereof, flame-retardant silane masterbatch, and flame-retardant molded article

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090316

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee