KR20000014579A - Data recording method considering a defect characteristic - Google Patents

Data recording method considering a defect characteristic Download PDF

Info

Publication number
KR20000014579A
KR20000014579A KR1019980034067A KR19980034067A KR20000014579A KR 20000014579 A KR20000014579 A KR 20000014579A KR 1019980034067 A KR1019980034067 A KR 1019980034067A KR 19980034067 A KR19980034067 A KR 19980034067A KR 20000014579 A KR20000014579 A KR 20000014579A
Authority
KR
South Korea
Prior art keywords
thermoplastic rubber
weight
parts
composition
heat resistance
Prior art date
Application number
KR1019980034067A
Other languages
Korean (ko)
Other versions
KR100291965B1 (en
Inventor
허수범
Original Assignee
김현숙
경신공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김현숙, 경신공업 주식회사 filed Critical 김현숙
Priority to KR1019980034067A priority Critical patent/KR100291965B1/en
Publication of KR20000014579A publication Critical patent/KR20000014579A/en
Application granted granted Critical
Publication of KR100291965B1 publication Critical patent/KR100291965B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: Provided is a method for preparing thermoplastic rubber having superior heat resistance which is not deformed at high temperature of 110deg.C by crosslinking free radicals generated by incorporating vinyl methoxy silane, dicumyl peroxide, dibutyltin dilaurate, and anti-oxidant into raw rubber. CONSTITUTION: The thermoplastic rubber is prepared by (i) blending 0.1-15wt.% of vinyl methoxy silane, 0.01-0.02wt.% of dicumyl peroxide, 100wt.% of thermoplastic rubber, followed by grafting; (ii) blending 0.01wt.% of dibutyltin dilaurate, an effective amount of an anti-oxidant, and 100 wt.% of thermoplastic rubber; (iii) mixing 95 parts by weight of composition obtained in the step 1, and 5 parts by weight of a composition obtained in the step 2; (iv) crosslinking the composition at a temperature range of 160 to 180deg.C. In the method, deca bromo diphenyl and antimony oxides are added thereto for giving a fire-proofing property.

Description

내열성이 우수한 열가소성 고무의 제조방법Manufacturing method of thermoplastic rubber excellent in heat resistance

본 발명은 내열성이 우수한 열가소성 고무(thermoplastic rubber)의 제조방법에 관한 것으로, 보다 상세하게는, 반응성 실란화합물에 의한 수가교방법에 의해 열가소성 고무를 경화성 수지로 제조하여 내열성을 현저히 향상시키면서도 공정이 단순하고 추가적인 비용이 매우 저렴한 내열성이 우수한 열가소성 고무(thermoplastic rubber)의 제조방법에 관한 것이다.The present invention relates to a method for producing a thermoplastic rubber (excellent heat resistance), and more particularly, by manufacturing a thermoplastic rubber with a curable resin by a cross-linking method by a reactive silane compound, while improving the heat resistance significantly and simple process The present invention relates to a method for producing a thermoplastic rubber having excellent heat resistance and very low cost.

일반적으로, 탄성(elastomer)의 장점을 갖고 있는 고무(rubber)의 수요가 늘어나고 있지만 상품화 하는데 있어서는 복잡한 공정을 거쳐 제품이 제조된다.In general, there is an increasing demand for rubber, which has the advantage of elastomer, but the product is manufactured through a complicated process in commercialization.

열가소성 고무(thermoplastic rubber)는 우수한 탄성을 구비하고 있어 신발, 각종호스, 전선류 등 고무의 용도로 널리 사용되고 수요 또한 증가하고 있다. 이는 생산이 간편용이하여 작업생산성이 우수하고 설비비용이 저렴하여 제작단가가 낮기 때문이다. 그러나, 열가소성 고무의 단점은 열분해현상(가열되면서 분자고리가 풀어져 연화하여 변형되는 현상)이 발생하여 고온의 직접 열이나 간접 열이 발생되는 환경에는 사용할 수 없다. 즉, 110℃이상의 온도에서는 용융됨으로 전선의 경우 땜납작업 등의 작업에 의하여 피복층이 변형하기 때문에 150℃이상의 고온의 환경에서는 사용할 수 없는 단점이 있다.Thermoplastic rubber has excellent elasticity and is widely used for rubber, such as shoes, various hoses, and electric wires, and demand is increasing. This is because production is easy and production productivity is low due to excellent work productivity and low equipment cost. However, the disadvantage of the thermoplastic rubber is that it cannot be used in an environment in which high temperature direct heat or indirect heat is generated due to thermal decomposition phenomenon (a phenomenon in which molecular rings are loosened and softened while being heated). That is, since the coating layer deforms due to melting at a temperature of 110 ° C. or higher due to soldering or the like, there is a disadvantage that it cannot be used in a high temperature environment of 150 ° C. or higher.

따라서, 이러한 단점만 보완하게 되면 열가소성 고무의 응용범위는 크게 확대될 수 있을 것이다.Therefore, if only this disadvantage is compensated for, the application range of the thermoplastic rubber may be greatly expanded.

종래 고분자 재료의 내열성등의 개량방법으로서는 폴리에틸렌 등으로 행하여지고 있는 분자끼리의 가교라는 방법이 있다. 이 가교방법은 유리퍼옥사이드에 의한 화학가교, 전자선, r선에 의한 방사선 가교, 반응성 실란화합물에 의한 수가교등이 있다.Conventionally, as a method for improving the heat resistance and the like of a polymer material, there is a method called crosslinking of molecules made of polyethylene or the like. This crosslinking method includes chemical crosslinking by glass peroxide, electron beam, radiation crosslinking by r-ray, and crosslinking by reactive silane compound.

이러한 고분자 재료의 내열성등의 개량방법은 설비 투자비용이 매우 높고 제품의 제조시 불량율이 높아 고 부가가치의 제품을 만드는데 있어서 작업생산성이 현저히 저하됨은 물론 제조단가가 매우 높다는 문제점이 있었다.The improvement of the heat resistance of the polymer material has a problem in that the investment cost of the equipment is very high, the defect rate is high in the manufacture of the product, and the work productivity is significantly lowered as well as the manufacturing cost is high in making the value added product.

이러한 문제점을 해결하기 위하여 안출한 본 발명은 기존의 설비를 간소화하여 설비비용을 크게 낮춤과 동시에 가교공정을 크게 개선함으로써 작업생산성을 향상시킬 뿐만 아니라 제조단가를 낮춤과 동시에 제품의 내열성을 크게 향상시켜 고온환경에서도 열분해 현상이 발생되는 것을 예방할 수 있는 내열성이 우수한 열가소성 고무(thermoplastic rubber)의 제조방법을 제공하는데 그 목적이 있다.The present invention devised to solve these problems by simplifying the existing equipment to significantly lower the equipment cost and at the same time significantly improve the cross-linking process to improve the work productivity as well as to reduce the manufacturing cost and significantly improve the heat resistance of the product It is an object of the present invention to provide a method of manufacturing thermoplastic rubber having excellent heat resistance, which can prevent pyrolysis from occurring even in a high temperature environment.

상술한 본 발명의 목적은 열가소성 고무를 제조함에 있어서, 열가소성 고무 100중량부에 비닐메톡시실란(Vinylmethoxy silane) 0.1 내지 15중량부와 디큐밀퍼옥사이드(Dicumyl peroxide) 0.01∼0.02중량부를 배합하여 그라프트 시킨 조성물(A조성물이라 칭함) 95중량%와 열가소성 고무 100중량부에 디부틸틴 디라우레이트(Dibutyltin dilaurate) 0.01중량부와 산화방지제 1∼3중량부를 배합한 조성물(B 조성물이라 칭함) 5중량%를 혼합함으로써 자유라디칼을 생성시켜 실란화합물을 반응시키는 방식의 가교결합으로 이루어지는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법에 의해 달성된다.An object of the present invention described above is to produce a thermoplastic rubber, graft by mixing 0.1 to 15 parts by weight of vinylmethoxysilane and 0.01 to 0.02 parts by weight of dicumyl peroxide in 100 parts by weight of the thermoplastic rubber 95 parts by weight of the composition (referred to as A composition) and 0.01 part by weight of dibutyltin dilaurate and 1 to 3 parts by weight of an antioxidant (referred to as B composition) 5 parts by weight to 100 parts by weight of the thermoplastic rubber. It is achieved by a method for producing a thermoplastic rubber having excellent heat resistance, characterized in that it consists of crosslinking in a manner of mixing free% to generate free radicals to react silane compounds.

이하, 본 발명의 바람직한 실시예에 따른 내열성이 우수한 열가소성 고무의 제조방법에 대하여 설명하기로 한다.Hereinafter, a method of manufacturing a thermoplastic rubber having excellent heat resistance according to a preferred embodiment of the present invention will be described.

본 발명에 따른 내열성 열가소성 고무의 제조방법은 가교결합을 위한 자유라디칼의 생성 및 그라프팅 단계와; 가수분해반응 단계로 이루어진다.Method for producing a heat-resistant thermoplastic rubber according to the present invention comprises the steps of generating and grafting free radicals for crosslinking; It consists of a hydrolysis step.

상기 A 조성물에 대한 가교결합의 메카니즘은 전형적인 화학 가교제인 퍼옥사이드(peroxide)를 가교개시제로 소량 사용하여 비닐계(Vinyl group)로 가수분해 가능한 알콕시계(Alkoxy group)를 가진 다기능성 불포화 실란(silane)화합물과의 화학반응을 이용한 것이다.The crosslinking mechanism for the composition A is a multifunctional unsaturated silane having an alkoxy group hydrolyzable to a vinyl group using a small amount of a typical chemical crosslinker, a peroxide, as a crosslinking initiator. Chemical reaction with compounds.

실란화합물에 의한 열가소성 고무 분지의 가교는 자유라디칼에 의한 수분의 적용으로 가교가 일어난다.The crosslinking of the thermoplastic rubber branch by the silane compound occurs by the application of water by free radicals.

가교반응은 가교결합을 위한 자유라디칼의 생성시키는 그라프팅과 가수분해로 대별되며 이의 자세한 사항은 다음과 같다.Crosslinking reactions are roughly classified into grafting and hydrolysis of free radicals for crosslinking. Details are as follows.

상기 그라프팅 과정은 열가소성 고무에 불포화 실란 및 유기과산화물을 혼합한 후 160 내지 180℃에서 가열한다.The grafting process is heated at 160 to 180 ℃ after mixing the unsaturated silane and the organic peroxide in the thermoplastic rubber.

이때 전형적인 가교개시제인 과산화물의 분해에 의해 열가소성 고무(폴리 이소프렌)에 자유라디칼을 형성한다.At this time, free radicals are formed in the thermoplastic rubber (polyisoprene) by decomposition of the peroxide, which is a typical crosslinking initiator.

또한 자유라디칼 생성반응의 연쇄성은 실란화합물에 의해 방해를 받으며 불포화 실란 자체가 열가소성 고무(폴리 이소프렌)의 활성점을 공격하여 주쇄에 실란분자가 결합되어 지는 것이다.In addition, the chainability of the free radical formation reaction is interrupted by the silane compound, and unsaturated silane itself attacks the active point of the thermoplastic rubber (polyisoprene) so that the silane molecules are bonded to the main chain.

활성점은 폴리 이소프렌 주쇄에서 불포화 실란으로 이동된 후 폴리 이소프렌 주쇄의 수소를 받아서 안정한 상태로 전이한다.The active site is transferred from the polyisoprene backbone to unsaturated silane and then receives hydrogen from the polyisoprene backbone and transitions to a stable state.

새로운 활성점은 상기 반응을 반복하고 이 사이클과 양으로 혼합된 실란화합물이 전부 소비될 때가지 계속된다. 따라서, 유기과산화물은 소량이 필요한데 이는 최초 활성점을 생성시키는 개시제 역할을 하며 실란화합물은 불포화 비닐계와 가수분해 가능한 알콕시계를 가진 다기능성 불포화 실란이 바람직하다.The new active site is repeated until the reaction is repeated and the silane compound mixed in amount with this cycle is consumed. Therefore, a small amount of organic peroxide is required, which serves as an initiator to generate an initial active point, and the silane compound is preferably a multifunctional unsaturated silane having an unsaturated vinyl-based and a hydrolyzable alkoxy-based.

상기 가수분해(Hydrolysis)반응은 상기 A 조성물과 B 조성물을 혼합시킨 공정에서 이루어진다.The hydrolysis reaction is performed in a process of mixing the A composition and the B composition.

가수분해 반응 즉, 가교반응은 실란화합물로 그라프팅 된 폴리 이소프렌 두분자가 수분존재하에서 실란분자 사이의 화학반응으로 일어나며 물로부터 제공되는 산소로인해 가교결합이 생성된다.The hydrolysis reaction, that is, the crosslinking reaction, is a chemical reaction between silane molecules in the presence of two polyisoprene grafted with a silane compound, and crosslinking is generated by oxygen provided from water.

상기 가교반응은 DBTDL(dibutyltin dilanrate)의 촉매첨가로 화학반응속도를 증가시키기도 하고 제조가공 시간을 단축시킬 수 있다.The crosslinking reaction may increase the chemical reaction rate or shorten the processing time by adding a catalyst of DBTDL (dibutyltin dilanrate).

상기 가교반응에서 실록산결합(-si-si-)은 실리콘러버(silicone rubber)의 중추결합으로서 매우 높은 에너지의 알콕시계를 갖고 있어 그라프팅된 실란화합물(silane compound)은 다기능의 특성을 보인다.In the crosslinking reaction, the siloxane bond (-si-si-) is a backbone of silicone rubber (silicone rubber) and has a very high energy alkoxy system, and thus the grafted silane compound (silane compound) has a multifunctional characteristic.

따라서 그라프팅 된 폴리 이소프렌은 2개 이상의 동종 분자와 반응할 능력이 있어 이로 인해 다발형구조(Bunch-like structure) 즉, 가황고무와 같이 망상구조를 이루어 우수한 기계적 물성치를 보인다.Therefore, the grafted polyisoprene has the ability to react with two or more homogeneous molecules, thereby forming a network structure such as a bundle-like structure, that is, vulcanized rubber, thereby showing excellent mechanical properties.

본 발명은 상기와 같은 과정을 거쳐서 완성된 것으로써 열가소성 고무에 실란화합물을 혼합시켜 기존의 열가소성 고무을 분지끼리 가교시켜 내열성을 향상시킨 것이다.The present invention is completed through the process as described above is to mix the silane compound in the thermoplastic rubber to crosslink the existing thermoplastic rubber between branches to improve the heat resistance.

즉, 열가소성 고무에 불포화 실란 및 유기과산화물을 혼합하여 그라프팅시키고, 디부틸틴디라우레이트를 촉매로 하여 가교시켜 기존의 수지에 비해 내열성을 향상시킴으로써 180℃의 온도에서도 열변형이 일어나지 않도록 한 것이다.That is, grafted by mixing unsaturated silane and organic peroxide in the thermoplastic rubber, crosslinked with dibutyl tin dilaurate as a catalyst to improve the heat resistance compared to the conventional resin to prevent thermal deformation even at a temperature of 180 ℃.

난연성이 요구되는 내열성 열가소성 고무에는 데카브로모디페닐에테르와 3산화 안티몬을 20∼30중량부 함유시키므로써 UL94 V-1, V-2의 난연성 규격을 만족하는 물성을 얻을 수 있다.Heat-resistant thermoplastic rubbers requiring flame retardancy may contain 20 to 30 parts by weight of decabromodiphenyl ether and antimony trioxide, thereby obtaining properties satisfying the flame retardancy standards of UL94 V-1 and V-2.

이하, 본발명의 실시예와 비교예를 들어 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.

실시예 1∼3Examples 1-3

열가소성 고무(일본 구라레이 셉톤: 상품명)에 대하여 표1에 표시한 조성의 화합물을 혼합하여 그라프트시켜서 되는 A 조성물과 B 조성물을 혼합하여 전선압출기(65mm L/D 24/1)에서 전선(CO2용접선 60SQMM)을 피복하여 압출하되 실린더 1을 160℃, 실린더 2를170℃, 실린더 3을 180℃로 연속으로 작업하여 48시간이 경과된 후 피복된 내열성 열가소성 고무의 시료를 준비(KSM6518 펀칭형 담벨상 3호)하고 KSC3004(고무, 플라스틱 절연전선 시험방법)에서 천연고무 및 합성고무 재료에 적용되는 인장속도를 500mm/min으로 인스트론 인장시험기에 의하여 측정, 인장강도 및 신장율 산출방법에 따라 인장강도 및 신율을 산출하여 표 1에 기재하였다.The thermoplastic rubber (Japanese Guraray Septon: trade name) was mixed with a compound of the composition shown in Table 1 and grafted to the A composition and the B composition, and the wire (CO) was extruded from a wire extruder (65 mm L / D 24/1). 2 Weld line 60SQMM) and extrude, but cylinder 1 is operated at 160 ℃, cylinder 2 at 170 ℃ and cylinder 3 at 180 ℃ continuously to prepare samples of coated heat-resistant thermoplastic rubber after 48 hours (KSM6518 punching type) Dampbell No. 3) and the tensile velocity applied to natural and synthetic rubber materials at KSC3004 (rubber, plastic insulated wire test method) at 500 mm / min, measured by an Instron tensile tester, tensile strength and elongation rate Strength and elongation were calculated and listed in Table 1.

또한, 내열성 시험은 JASO D 608-92(일본 자동차용 내열저압전선 규격임)의 AEX(가교 폴리에틸렌 혼합물)에 준하고 그 결과를 표 1에 기재하였다.In addition, the heat resistance test was based on AEX (crosslinked polyethylene mixture) of JASO D 608-92 (a heat resistant low voltage wire standard for automobiles in Japan) and the results are shown in Table 1.

비교예 AComparative Example A

표 1에서와 같이 실란화합물을 혼합하지 아니하고 종래의 열가소성 고무로 전선을 피복하여 실시예와 마찬가지로 인장강도 및 신장율을 산출하고 내열성 시험을 실시하여 표 1에 기재하였다.As shown in Table 1, the wires were coated with a conventional thermoplastic rubber without mixing the silane compound, and thus the tensile strength and elongation rate were calculated in the same manner as in Example, and the heat resistance test was performed.

실시예 4∼6Examples 4-6

난연제를 표 2에 표시한 조성으로 혼합한 것외에는 실시예 1∼3과 마찬가지로 실시하였으며 JASO D 608-92에 의한 난연시험을 하여 그 결과를 표 2에 기재하였다.Except that the flame retardant was mixed in the composition shown in Table 2 and carried out in the same manner as in Examples 1 to 3, the flame retardant test according to JASO D 608-92 was shown in Table 2.

비교예 BComparative Example B

비교예 A와 마찬가지로 실시하되 난연제를 혼합하지 아니하였고 JASO D 608-92에 의한 난연시험을 하여 그 결과를 표 2에 기재하였다.It was carried out as in Comparative Example A, but did not mix the flame retardant was tested by the flame retardant by JASO D 608-92 and the results are shown in Table 2.

실시예-1Example-1 실시예-2Example-2 실시예-3Example-3 비교예 AComparative Example A A조성물A composition 열가소성 고무Thermoplastic rubber 100부100 copies 100부100 copies 100부100 copies 100부100 copies V M SV M S 88 55 55 -- D C PD C P 0.10.1 0.10.1 0.20.2 -- B조성물B composition 열가소성 고무Thermoplastic rubber 100부100 copies 100부100 copies 100부100 copies 100부100 copies DBTDLDBTDL 0.010.01 0.010.01 0.010.01 -- 산화방지제Antioxidant 22 1One 1One 1One 인장강도(kg±/mm2)Tensile Strength (kg ± / mm 2 ) 160160 155155 150150 135135 신 율(%)Elongation (%) 550550 540540 540540 450450 내열성Heat resistance II 견딤Withstand 견딤Withstand 견딤Withstand 파괴Destruction IIII 양호Good 양호Good 양호Good 균열및용융Crack and melting

VMS : Vinylmethoxy silaneVMS: Vinylmethoxy silane

DCP : Dicumyl peroxideDCP: Dicumyl peroxide

DBTDL : Dibutyltin dilaurateDBTDL: Dibutyltin dilaurate

실시예-4Example-4 실시예-5Example-5 실시예 -6Example-6 비교예 BComparative Example B A조성물A composition 열가소성 고무Thermoplastic rubber 100부100 copies 100부100 copies 100부100 copies 100부100 copies V M SV M S 88 55 55 -- D C PD C P 0.10.1 0.10.1 0.20.2 -- B조성물B composition 열가소성 고무Thermoplastic rubber 100부100 copies 100부100 copies 100부100 copies 100부100 copies DBTDLDBTDL 0.010.01 0.010.01 0.010.01 -- 산화방지제Antioxidant 22 1One 1One 1One DBDPDBDP 15부Part 15 15부Part 15 15부Part 15 -- 3산화 안티몬Antimony trioxide 10부Part 10 10부Part 10 10부Part 10 -- 난연성Flame retardant 5초5 sec 6초6 sec 6초6 sec 계속연소Combustion

DBDP : Decabromodiphenyl etherDBDP: Decabromodiphenyl ether

이상으로 설명한 본 발명에 의하면, 설비를 간소화하여 설비비용을 크게 낮춤과 동시에 가교공정을 크게 개선함으로써 작업생산성을 현저히 향상시킬 뿐만 아니라 제작단가를 현저히 낮춤과 동시에 제품의 내열성을 크게 향상시켜 고온환경에서도 열분해 현상이 발생되는 것을 예방할 수 있는 효과를 갖는다.According to the present invention described above, by simplifying the equipment to significantly lower the cost of the equipment and at the same time to significantly improve the crosslinking process, not only significantly improves the work productivity, but also significantly lowers the production cost and greatly improves the heat resistance of the product, even in a high temperature environment. It is effective to prevent the pyrolysis phenomenon from occurring.

Claims (4)

내열성 열가소성 고무를 제조함에 있어서, 열가소성 고무 100중량부에 비닐메톡시실란 0.1 내지 15중량부와 디큐밀퍼옥사이드 0.01∼0.02중량부를 배합하여 그라프트시킨 조성물 95중량%와 열가소성 고무 100중량부에 디부틸틴디라우레이트 0.01중량부와 산화방지제를 배합한 조성물 5중량%를 혼합, 자유라디칼을 생성시켜 가교결합으로 이루어지는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.In preparing a heat resistant thermoplastic rubber, 95 parts by weight of a composition grafted by mixing 0.1 to 15 parts by weight of vinyl methoxysilane and 0.01 to 0.02 parts by weight of dicumyl peroxide with 100 parts by weight of thermoplastic rubber and 100 parts by weight of thermoplastic rubber A method for producing a thermoplastic rubber having excellent heat resistance, characterized in that 0.01 parts by weight of tindilaurate and 5% by weight of a composition containing an antioxidant are mixed to form free radicals and crosslinked. 제 1 항에 있어서, 상기 조성물은 데카브로모디페닐에테르 및 3산화안티몬을 함유하고 있는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.The method for producing a thermoplastic rubber having excellent heat resistance according to claim 1, wherein the composition contains decabromodiphenyl ether and antimony trioxide. 제 1 항에 있어서, 상기 조성물은 CO₂용접선에 압출하여 피복층을 형성하도록 하는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.The method of claim 1, wherein the composition is extruded onto a CO 2 welding line to form a coating layer. 제 3 항에 있어서, 피복층을 압출하는 제 1, 제 2 제 3의 실린더 온도를 160℃,170℃ 및 180℃로 하여 연속 작업하도록 하는 것을 특징으로 하는 내열성이 우수한 열가소성 고무의 제조방법.4. The method for producing a thermoplastic rubber having excellent heat resistance according to claim 3, wherein the first and second third cylinder temperatures for extruding the coating layer are continuously operated at 160 ° C, 170 ° C and 180 ° C.
KR1019980034067A 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance KR100291965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980034067A KR100291965B1 (en) 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980034067A KR100291965B1 (en) 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance

Publications (2)

Publication Number Publication Date
KR20000014579A true KR20000014579A (en) 2000-03-15
KR100291965B1 KR100291965B1 (en) 2001-11-05

Family

ID=19547937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980034067A KR100291965B1 (en) 1998-08-21 1998-08-21 Manufacturing method of thermoplastic rubber with excellent heat resistance

Country Status (1)

Country Link
KR (1) KR100291965B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100912364B1 (en) 2007-09-04 2009-08-19 허수범 Making method of thermostability sheath composite for welding cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206113A (en) * 1985-03-08 1986-09-12 日立電線株式会社 Insulated wire for underwater motor

Also Published As

Publication number Publication date
KR100291965B1 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
KR101845532B1 (en) Environmental friendly non-toxic flame retardant silane-crosslinkable compound for extrusion sheath of indoor insulated cable and a method of insulating cable manufacturing
JP4902093B2 (en) Semiconductive shield composition
CN101688046B (en) Flame-retardant silane-crosslinked olefin resin composition, insulated wire, and method for production of flame-retardant silane-crosslinked olefin resin
EP1041583B1 (en) A crosslinkable polyethylene composition
JP2017521514A (en) Stabilized moisture curable polymer composition
JP2020007475A (en) Heat resistant crosslinked fluorine rubber molded body and manufacturing method therefor, silane master batch, master batch mixture, and heat resistant product
JP6395745B2 (en) Silane-crosslinked resin molded body, silane-crosslinkable resin composition and production method thereof, silane masterbatch, and molded article
US6191230B1 (en) Polyethylene crosslinkable composition
JP6706870B2 (en) SILANE CROSSLINKABLE RUBBER COMPOSITION, SILANE CROSSLINKED RUBBER MOLDED BODY, PROCESS FOR PRODUCING THE SAME, AND SILANE CROSSLINKED RUBBER MOLDED ARTICLE
WO2020013187A1 (en) Heat-resistant crosslinked fluororubber molded product and production method thereof, and heat-resistant product
EP1074580A2 (en) A polyethylene crosslinkable composition
KR20150102331A (en) Resin Composition for Producing of Insulating Material and method for manufacturing Insulating Material
CN112898688A (en) Medium-low voltage grade halogen-free flame-retardant ethylene propylene rubber insulating material and preparation method thereof
EP0966000A1 (en) A polyethylene crosslinkable composition
JP2003231817A (en) Supramolecular polymer composition, method for producing the same and cable including the same
JP7385355B2 (en) Stabilized moisture curable polymer composition
CN105623166B (en) Halogen-free flame-retardant resin composition and high-voltage cable
KR20000014579A (en) Data recording method considering a defect characteristic
KR100377862B1 (en) Flame retarding silane crosslinkable polyethylene composition and method of preparing flame retarding cable by the same
JP6639937B2 (en) Method for producing heat-resistant silane-crosslinked thermoplastic elastomer molded article, silane masterbatch, and heat-resistant product
EP0965999B1 (en) A crosslinkable polyolefin composition
JP7470552B2 (en) Crosslinked fluororubber composition, wiring material using same and method for producing same, and catalyst composition for silane crosslinking
EP1036804A1 (en) A polyethylene crosslinkable composition
JPH06145483A (en) Resin composition and tube made therefrom
JPH06128428A (en) Non-halogen flame-retardant composition and tube

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090316

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee