KR100290921B1 - Method for producing reflecting plate of reflecting liquid crystal displays - Google Patents

Method for producing reflecting plate of reflecting liquid crystal displays

Info

Publication number
KR100290921B1
KR100290921B1 KR1019970081169A KR19970081169A KR100290921B1 KR 100290921 B1 KR100290921 B1 KR 100290921B1 KR 1019970081169 A KR1019970081169 A KR 1019970081169A KR 19970081169 A KR19970081169 A KR 19970081169A KR 100290921 B1 KR100290921 B1 KR 100290921B1
Authority
KR
South Korea
Prior art keywords
electrode
transparent
reflective
liquid crystal
crystal display
Prior art date
Application number
KR1019970081169A
Other languages
Korean (ko)
Other versions
KR19990060923A (en
Inventor
김우현
박수현
Original Assignee
구본준, 론 위라하디락사
엘지.필립스 엘시디주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구본준, 론 위라하디락사, 엘지.필립스 엘시디주식회사 filed Critical 구본준, 론 위라하디락사
Priority to KR1019970081169A priority Critical patent/KR100290921B1/en
Publication of KR19990060923A publication Critical patent/KR19990060923A/en
Application granted granted Critical
Publication of KR100290921B1 publication Critical patent/KR100290921B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

PURPOSE: A method for producing a reflecting plate of a reflecting liquid crystal displays is provided to prevent drop of a contrast cost by equalizing a cell gap of the liquid crystal displays. CONSTITUTION: A reflecting plate of a reflecting typed liquid crystal display comprises a transparent material layer(45) formed by a nonconductor by flatting a surface; a reflecting electrode(44) exposing a convex portion; a transparent electrode(46) formed on an upper portion of the transparent material layer by being composed of ITO(Indium Tin Oxide); an orientation film(47) applied to an upper portion of the transparent electrode through a base plate(31); a thin film transistor(38); and an unevenness unit(39) formed on the base plate. Thereby, the reflecting plate of the reflecting typed liquid crystal display prevents drop of a contrast cost by equalizing a cell gap of the liquid crystal displays. Moreover, the reflecting plate of the reflecting typed liquid crystal display forming the transparent electrode by transparent conducing polymer and the ITO.

Description

반사형 액정표시소자의 반사판 및 그 제조방법Reflective plate of reflective liquid crystal display device and manufacturing method thereof

본 발명은 반사형 액정표시소자의 반사판에 관한 것으로, 특히 종래의 요철형상의 반사판 위에 표면이 평탄하도록 투명전극을 형성하여 요철면을 갖는 반사전극이 빛을 산란 반사하고 상기한 투명전극이 화소전극역할을 하여 우수한 산란반사특성을 가질 뿐만 아니라 표면이 평탄하여 셀갭을 균일하게 하고 배향특성을 향상시키며 액정층에 인가되는 전기장을 왜곡시키지 않는 반사형 액정표시소자의 반사판 및 그 제조방법에 관한 것이다.The present invention relates to a reflective plate of a reflective liquid crystal display device. In particular, a transparent electrode is formed to have a flat surface on a conventional uneven reflective plate so that a reflective electrode having an uneven surface scatters and reflects light, and the transparent electrode is a pixel electrode. The present invention relates to a reflective plate of a reflective liquid crystal display device and a method of manufacturing the same, which have not only excellent scattering reflection characteristics but also a flat surface to uniform cell gaps, improve alignment characteristics, and do not distort the electric field applied to the liquid crystal layer.

액정표시소자는 동작모드에 따라, 개략적으로 TN(Twisted Nematic)형, GH(Guest Host)형, ECB(Electrically Controlled Birefringence)형 및 OCB(Optically Compensated Birefringence)형 등으로 나눌 수 있고, 광원의 이용방법에 따라, 백라이트를 이용하는 투과형 액정표시소자와 외부의 광원을 이용하는 반사형 액정표시소자의 두 종류로 분류할 수 있다. 근래에는 백라이트(back light)를 광원으로 사용하는 투과형 액정표시소자가 널리 이용되고 있으나, 이러한 백라이트의 사용은 액정표시소자의 무게와 부피를 증가시킬 뿐만 아니라, 소비전력이 높다는 문제점을 가진다. 백라이트가 내장된 액정표시소자의 상기한 문제점들을 극복하고자, 최근에는 백라이트를 사용하지 않는 반사형 액정표시소자에 대한 연구가 활발하게 진행되고 있다.The liquid crystal display device can be roughly divided into twisted nematic (TN) type, guest host (GH) type, electrically controlled birefringence type (ECB) type, and optically compensated birefringence type (OCB) type according to the operation mode. Accordingly, the present invention can be classified into two types, a transmissive liquid crystal display using a backlight and a reflective liquid crystal display using an external light source. Recently, a transmissive liquid crystal display device using a backlight as a light source has been widely used, but the use of such a backlight not only increases the weight and volume of the liquid crystal display device but also has a problem in that power consumption is high. In order to overcome the above-mentioned problems of the liquid crystal display device with a built-in backlight, research on a reflective liquid crystal display device without a backlight has been actively conducted in recent years.

도 1은 종래의 반사형 액정표시소자의 반사판을 나타낸 도면으로서, 제1기판(1)과, 제1기판(1) 위에 형성되고 게이트전극(2), 게이트절연막(3), 반도체층(4), 오믹콘택트층(5), 및 소스/드레인전극(6,7)으로 이루어진 박막트랜지스터(8)와, 감광성수지로 이루어진 보호막 겸 요철부(9)와, 요철부(9) 위에 형성되고 콘택트홀(11)을 통하여 드레인전극(7)과 연결된 반사전극(12)과, 반사전극(12) 위로 제1기판(1) 전체에 걸쳐 형성된 제1배향막(13)으로 이루어진다. 도면에는 표시하지 않았지만, 제1기판(1) 위에 게이트배선 및 데이터배선이 종횡으로 형성되어 복수의 화소영역이 정의되고, 게이트배선은 외부의 주사신호회로에 연결되어 게이트전극(2)에 주사신호전압을 전달하며, 데이터배선은 외부의 데이터신호회로에 연결되어 주사신호에 따라 소스전극(6)에 데이터신호전압을 인가하고, 주사신호전압에 따라 반사전극(12)에 데이터신호전압이 전달된다.FIG. 1 is a view showing a reflecting plate of a conventional reflective liquid crystal display device, which is formed on a first substrate 1 and a first substrate 1, and includes a gate electrode 2, a gate insulating film 3, and a semiconductor layer 4 ), An ohmic contact layer (5), and a thin film transistor (8) composed of source / drain electrodes (6,7), a protective film and uneven portion (9) made of photosensitive resin, and formed on the uneven portion (9). The reflective electrode 12 connected to the drain electrode 7 through the hole 11 and the first alignment layer 13 formed over the first substrate 1 over the reflective electrode 12. Although not shown in the drawing, gate wirings and data wirings are formed vertically and horizontally on the first substrate 1 to define a plurality of pixel regions, and the gate wirings are connected to an external scanning signal circuit to scan signals to the gate electrode 2. The voltage is transferred, the data line is connected to an external data signal circuit to apply a data signal voltage to the source electrode 6 according to the scan signal, and to transmit the data signal voltage to the reflective electrode 12 according to the scan signal voltage. .

도 2는 일반적인 반사형 액정표시소자를 나타낸 도면으로서, 도 1에서와 같은 구조의 반사판(20)과, 제2기판(21)과, 제2기판(21) 위에 형성된 편광판(22)과, 제2기판(21) 아래에 형성되고 ITO로 이루어진 투명전극(23)과, 투명전극(23) 아래에 형성된 제2배향막(24)과, 제2기판(21)과 반사판(20) 사이에 형성된 액정층(25)으로 이루어진다. 상기한 구조의 반사형 액정표시소자는 반사전극(12)에 인가된 데이터신호전압에 따라 액정층(25)에 전기장이 인가되고 그에 따라 액정분자의 배향상태가 바뀌게 된다. 편광판(22)을 통과하여 특정방향으로 편광된 빛은 액정분자의 배향상태에 따라 편광방향이 바뀌게 되고 반사전극(12)에 의해 반사된 후 편광판(22)에 재입사되어, 결과적으로 각 화소에서 빛이 반사되는 휘도가 데이터신호에 따라 제어되게 된다. 요철부(9)는 반사전극(12)에 입사되는 빛을 여러각도로 산란반사시켜 시야각방향의 밝기를 증가시키기 위해 형성되며, 감광성수지를 도포한 후 패터닝하고 열처리하여 형성한다.FIG. 2 is a view illustrating a general reflective liquid crystal display device, wherein the reflective plate 20 having the structure as shown in FIG. 1, the second substrate 21, the polarizing plate 22 formed on the second substrate 21, and A transparent electrode 23 formed under the second substrate 21 and made of ITO, a second alignment layer 24 formed under the transparent electrode 23, and a liquid crystal formed between the second substrate 21 and the reflecting plate 20. Layer 25. In the reflective liquid crystal display device having the above structure, an electric field is applied to the liquid crystal layer 25 according to the data signal voltage applied to the reflective electrode 12, thereby changing the alignment state of the liquid crystal molecules. The light polarized in a specific direction through the polarizing plate 22 is changed according to the alignment state of the liquid crystal molecules, reflected by the reflecting electrode 12 and then re-entered into the polarizing plate 22, resulting in each pixel The luminance with which the light is reflected is controlled according to the data signal. The uneven portion 9 is formed to increase the brightness in the viewing angle direction by scattering and reflecting the light incident on the reflective electrode 12 at various angles, and is formed by applying a photosensitive resin, patterning and heat treatment.

상기와 같은 구조의 반사판(20)은 요철구조에 의해 우수한 산란특성을 갖지만, 도 2에 나타낸 바와 같이, 액정표시소자의 셀갭(cell gap)이 균일하지 않기 때문에 콘트라스트비(contrast ratio)가 저하되며, 액정층(25)에 인가되는 전기장이 왜곡되고, 요철면에 의한 단차로 인하여 러빙에 의한 효과가 배향막 전체에 균일하게 미치지 못하며, 프리틸트 각(pretilt angle)을 원하는 각으로 균일하게 할 수 없는 등의 여러 문제점을 가진다.The reflective plate 20 having the above structure has excellent scattering characteristics due to the uneven structure. However, as shown in FIG. 2, the contrast ratio is lowered because the cell gap of the liquid crystal display is not uniform. The electric field applied to the liquid crystal layer 25 is distorted, and the effect due to rubbing does not reach the entire alignment layer uniformly due to the step by the uneven surface, and the pretilt angle cannot be uniformed to the desired angle. Has various problems.

본 발명은 상기한 종래기술의 문제점을 감안하여 이루어진 것으로, 본 발명의 목적은 종래의 요철표면을 갖는 반사판과 같이 우수한 산란반사특성을 가질 뿐만 아니라, 표면이 평탄하여 셀갭을 균일하게 하여 콘트라스트비를 증가시키고 배향특성을 향상시키며 액정층에 인가되는 전기장을 왜곡시키지 않는 반사형 액정표시소자의 반사판 및 그 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and an object of the present invention is not only to have excellent scattering reflection characteristics like a reflecting plate having a concave-convex surface in the related art, but also to have a flat surface to make the cell gap uniform and to achieve a contrast ratio. The present invention provides a reflecting plate of a reflective liquid crystal display device and a method of manufacturing the same, which increase and improve orientation characteristics and do not distort the electric field applied to the liquid crystal layer.

상기한 목적을 달성하기 위한 본 발명에 따른 반사형 액정표시소자의 반사판은 복수의 화소영역을 가지는 기판과, 상기 화소영역에 형성된 요철부와, 상기 요철부의 요철면을 따라 형성된 반사전극과, 상기 반사전극 위에 형성되고 표면이 평탄하게 형성된 투명전극으로 이루어지며, 투명전극이 화소전극 역할을 하고 반사전극은 빛을 산란 반사하는 역할을 하여, 종래의 반사판과 같은 산란특성을 가질 뿐만 아니라 화소전극의 표면이 평탄하게 형성된다.Reflective plate of the reflective liquid crystal display device according to the present invention for achieving the above object is a substrate having a plurality of pixel areas, the uneven portion formed in the pixel region, the reflective electrode formed along the uneven surface of the uneven portion, The transparent electrode is formed on the reflective electrode and has a flat surface. The transparent electrode serves as a pixel electrode and the reflective electrode scatters and reflects light. The surface is formed flat.

상기 표면이 평탄한 투명전극을 형성하는 방법은 요철면을 갖는 반사전극 위에 투명도전폴리머(transparent conducting polymer)를 표면이 평탄하도록 스핀코팅(spin coating)하는 방법과, 투명유기물을 스핀코팅법으로 도포하여 표면을 평탄하게 한 후 ITO를 도포하는 방법이 있다.The method of forming a transparent electrode having a flat surface includes spin coating a transparent conducting polymer onto the reflective electrode having a concave-convex surface so as to have a flat surface, and applying a transparent organic coating by spin coating. There is a method of applying ITO after leveling the surface.

도 1은 종래기술의 반사형 액정표시소자의 반사판.1 is a reflection plate of a reflection type liquid crystal display device of the prior art.

도 2는 종래기술의 반사형 액정표시소자.2 is a reflection type liquid crystal display device of the prior art.

도 3은 본 발명에 따른 제1실시예.Figure 3 is a first embodiment according to the present invention.

도 4는 본 발명에 따른 제1실실예의 제조방법.4 is a manufacturing method of the first practical example according to the present invention.

도 5는 본 발명에 따른 제2실시예.5 is a second embodiment according to the present invention;

도 6은 본 발명에 따른 제3실시예.6 is a third embodiment according to the present invention.

도 7은 본 발명에 따른 제4실시예.7 is a fourth embodiment according to the present invention.

도 8은 본 발명에 따른 제5실시예.8 is a fifth embodiment according to the present invention.

-도면의 주요부분에 대한 부호의 설명-Explanation of symbols on the main parts of the drawing

38: 박막트랜지스터 39: 보호막 겸 요철부38: thin film transistor 39: protective film and uneven portion

41: 콘택트홀 42: 반사전극41: contact hole 42: reflective electrode

43: 투명전극43: transparent electrode

이하, 도면을 참조하여 본 발명에 따른 반사형 액정표시소자의 반사판을 상세히 설명한다.Hereinafter, the reflective plate of the reflective liquid crystal display device according to the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 제1실시예에 따른 반사판의 단위화소를 나타낸 도면으로서, 기판(31)과, 기판(31) 위에 형성되고 게이트전극(32), 게이트절연막(33), 반도체층(34), 오믹콘택트층(35), 및 소스/드레인전극(36,37)으로 이루어진 박막트랜지스터(38)와, 감광성수지로 이루어진 보호막 겸 요철부(39)와, 요철부(39) 위에 형성되고 콘택트홀(41)을 통하여 드레인전극(37)과 연결된 반사전극(42)과, 반사전극(42) 위에 표면이 평탄하도록 형성되고 비저항이 107Ωcm이하인 투명도전폴리머 물질로 이루어진 투명전극(43)으로 이루어진다. 투명전극(43)은 폴리아세틸렌계, 폴리페닐린계, 폴리아닐린계, 또는 폴리피아롤계 등의 투명도전폴리머를 표면이 평탄하도록 스핀코팅법으로 도포하여 형성되며, 전기전도성을 향상시키기 위해 투명도전폴리머 위에 ITO가 추가로 형성될 수도 있다. 투명전극(43) 자체에 배향처리가 실시될 수 있으며, 좀 더 안정된 배향특성을 위해서는 투명전극(43) 위에 배향막을 추가로 형성한다. 도면에는 표시하지 않았지만, 게이트전극(32) 및 소스전극(36)에 각각 연결되고 기판(31) 전체에 종횡으로 형성되어 복수의 화소영역을 나누는 복수의 게이트배선 및 데이터배선이 형성된다. 상기한 구조의 반사판은 반사전극(42)의 요철면에 의해 빛이 반사되고 투명전극(43) 표면이 평탄하기 때문에 전기장의 왜곡이 없고, 러빙효과가 기판 전체에 균일하게 미치며, 셀갭이 균일하여 콘트라스트비가 저하되지 않고, 반사전극(알루미늄)이 보호되며 알루미늄에 의한 힐락(hillock)이 방지되는 등의 장점을 갖는다.3 is a view illustrating unit pixels of a reflecting plate according to a first exemplary embodiment of the present invention, which is formed on a substrate 31, a substrate 31, and includes a gate electrode 32, a gate insulating film 33, and a semiconductor layer 34. ), An ohmic contact layer 35, and a thin film transistor 38 including source / drain electrodes 36 and 37, a protective film and uneven portion 39 made of photosensitive resin, and a concave and convex portion 39 formed thereon. The reflective electrode 42 connected to the drain electrode 37 through the hole 41 and the transparent electrode 43 made of a transparent conductive polymer material having a flat surface on the reflective electrode 42 and having a specific resistance of 10 7 Ωcm or less. Is done. The transparent electrode 43 is formed by spin coating a transparent conductive polymer such as polyacetylene, polyphenylene, polyaniline, or polypyrrole based on the surface to be flat, and is formed on the transparent conductive polymer to improve electrical conductivity. ITO may be further formed. An alignment treatment may be performed on the transparent electrode 43 itself, and an alignment layer is further formed on the transparent electrode 43 for more stable alignment characteristics. Although not shown in the figure, a plurality of gate wirings and data wirings connected to the gate electrode 32 and the source electrode 36 and formed vertically and horizontally across the substrate 31 to divide the plurality of pixel regions are formed. The reflective plate of the above structure has no electric field distortion because the light is reflected by the uneven surface of the reflective electrode 42 and the surface of the transparent electrode 43 is flat, the rubbing effect is uniformly spread over the entire substrate, and the cell gap is uniform. The contrast ratio is not lowered, the reflective electrode (aluminum) is protected, and the hillock caused by aluminum is prevented.

도 4는 상기한 구조를 갖는 반사판의 제조방법을 나타낸 도면이다.4 is a view showing a method of manufacturing a reflector having the above structure.

먼저, 도 4a에 나타내듯이, 기판(31)의 화소영역 각각에 게이트전극(32), 게이트절연막(33), 반도체층(34), 오믹콘택트층(35) 및 소스/드레인전극(36,37)으로 구성된 박막트랜지스터(38)를 형성한다. 이때, 도면에는 나타내지 않았지만, 게이트전극(32) 및 소스전극(36)에 각각 연결되는 게이트배선(미도시) 및 데이터배선(미도시)이 기판(31) 전체에 종횡으로 형성되어 상기 기판(31)을 복수의 화소영역으로 구획하며, 게이트절연막(33)은 기판(31) 전체에 걸쳐서 형성된다.First, as shown in FIG. 4A, the gate electrode 32, the gate insulating film 33, the semiconductor layer 34, the ohmic contact layer 35, and the source / drain electrodes 36 and 37 are respectively formed in the pixel regions of the substrate 31. A thin film transistor 38 composed of In this case, although not shown in the drawing, a gate wiring (not shown) and a data wiring (not shown) connected to the gate electrode 32 and the source electrode 36, respectively, are formed vertically and horizontally on the entire substrate 31 so that the substrate 31 is formed. ) Is divided into a plurality of pixel regions, and the gate insulating film 33 is formed over the entire substrate 31.

이어서, 도 4b에 나타내듯이, 스핀코팅법 등에 의해 요철재료인 감광성수지를 도포하고 상기 감광성수지막을 마스크로 차단하고 자외선을 조사하여 패터닝 한 후, 열처리하여 보호막 겸 요철부(39)와, 콘택트홀(41)을 형성한다.Subsequently, as shown in FIG. 4B, the photosensitive resin which is an uneven material is applied by spin coating or the like, the photosensitive resin film is blocked with a mask, irradiated with ultraviolet rays and patterned, and then heat treated to form a protective film and uneven portion 39 and a contact hole. To form 41.

이어서, 도 4c에 나타내듯이, 알루미늄(Al) 등으로 이루어진 금속막(42a)을 스퍼터링 법으로 기판(31) 전체에 도포한다.Next, as shown in FIG. 4C, the metal film 42a made of aluminum (Al) or the like is applied to the entire substrate 31 by the sputtering method.

이어서, 도 4d에 나타내듯이, 폴리아세틸렌계, 폴리페닐린계, 폴리아닐린계, 또는 폴리피아롤계 등의 투명도전폴리머물질을 스핀코팅법으로 도포하여 표면이 평탄한 투명도전폴리머막(43a)을 형성한다.Subsequently, as shown in FIG. 4D, a transparent conductive polymer material such as polyacetylene, polyphenyline, polyaniline, or polypyrrole is applied by spin coating to form a transparent conductive polymer film 43a having a flat surface.

이어서, 도 4e에 나타내듯이, 금속막(42a)과 투명도전폴리머막(43a)을 사진식각하여 반사전극(42)과 투명전극(43)을 동시에 형성한다.Subsequently, as shown in FIG. 4E, the metal film 42a and the transparent conductive polymer film 43a are photo-etched to simultaneously form the reflective electrode 42 and the transparent electrode 43.

마지막으로, 투명도전폴리머의 분자구조가 기존의 배향막과 유사하므로, 투명전극(43)에 직접 배향처리를 실시하거나, 투명전극(43)이 형성되기 전의 투명도전폴리머막(43a)에 배향처리를 실시한다. 이때, 투명전극(43) 위에 배향막을 형성하는 과정을 추가하는 것도 가능하다.Finally, since the molecular structure of the transparent conductive polymer is similar to that of the conventional alignment film, the alignment process is performed directly on the transparent electrode 43 or the alignment process is applied to the transparent conductive polymer film 43a before the transparent electrode 43 is formed. Conduct. At this time, it is also possible to add a process of forming an alignment film on the transparent electrode 43.

도 5a는 본 발명의 제2실시예에 따른 반사형 액정표시소자의 반사판을 나타낸 도면으로서, 표면이 평탄하고 부도체로 이루어진 투명물질층(45)이 반사전극(44)의 볼록부가 약간 노출되도록 형성되고, 투명물질층(45) 위에 ITO(indium tin oxide)로 이루어진 투명전극(46)이 형성되어 반사전극(44)의 노출된 부분과 연결되며, 투명전극(46) 위로 전 기판(31)에 걸쳐 배향막이 도포된다. 본 실시예서의 반사판은 제1실시예에 비해 배향막(47) 및 투명물질층(45)을 추가로 형성하는 단점을 갖지만, 투명전극(46)을 좀더 안정적이고 수급이 원활한 ITO로 형성한다는 장점을 가진다. 상기한 구조의 반사판을 제조하기 위해서는 박막트랜지스터(38), 보호막 겸 요철부(39)가 형성된 기판(31) 위에 금속막과, 감광성수지 등의 투명유기물과, ITO를 차례로 도포한 후, 사진식각하여 반사전극(44), 투명물질층(45) 및 투명전극(46)을 형성한다. 이때, 투명전극(46)은 투명유기물을 스핀코팅법으로 도포하여 형성하기 때문에 표면이 평탄화되고, ITO를 전극물질로 사용하므로써 전기전도도가 뛰어나고 전극물질의 수급이 원활한 장점을 갖는다. 물론, 공정을 단순화 하기 위해 박막트랜지스터(38) 영역에 형성된 투명물질층(45)을 제거하였지만, 도 5b에 나타낸 바와 같이, 투명전극(46)과 반사전극(44)이 연결되는 부분을 제외한 기판(31) 전체에 표면이 평탄하도록 투명물질층(45)을 형성할 수 있으며, 이점은 다음에 설명되는 모든 실시예에서도 마찬가지이다.FIG. 5A is a view showing a reflecting plate of a reflective liquid crystal display device according to a second exemplary embodiment of the present invention, wherein the transparent material layer 45 having a flat surface and an insulator is formed so that the convex portion of the reflecting electrode 44 is slightly exposed. In addition, a transparent electrode 46 made of indium tin oxide (ITO) is formed on the transparent material layer 45 to be connected to the exposed portion of the reflective electrode 44, and then to the entire substrate 31 above the transparent electrode 46. The alignment film is applied over it. The reflector of the present embodiment has the disadvantage of forming the alignment layer 47 and the transparent material layer 45 in addition to the first embodiment, but the advantage that the transparent electrode 46 is formed of more stable and smooth supply and demand of ITO Have In order to manufacture the reflective plate having the structure described above, a thin film transistor 38, a protective film and an uneven portion 39, a metal film, a transparent organic material such as a photosensitive resin, and ITO are sequentially applied, and then photo-etched. The reflective electrode 44, the transparent material layer 45, and the transparent electrode 46 are formed. At this time, since the transparent electrode 46 is formed by applying a spin coating method to the transparent organic material, the surface is flattened, and the ITO is used as the electrode material, thereby providing excellent electrical conductivity and smooth supply and demand of the electrode material. Of course, the transparent material layer 45 formed in the region of the thin film transistor 38 is removed to simplify the process. However, as shown in FIG. 5B, the substrate except for the portion where the transparent electrode 46 and the reflective electrode 44 are connected to each other is removed. It is possible to form the transparent material layer 45 so that the surface is flat throughout, and the advantages are the same in all the embodiments described below.

도 6은 본 발명에 따른 제3실시예를 나타낸 도면으로서, 투명물질층(45)이 반사전극(44) 보다 높게 형성되며 투명전극(46)과 반사전극(44)을 연결하기 위한 오픈영역이 반사전극(44) 위에 형성된다. 본 실시예의 반사판은 제2실시예에 비해 투명물질층(45)이 두꺼워진다는 단점이 있지만, 투명물질층(45)의 오픈영역을 제외한 기판의 전 영역이 평탄하게 형성된다는 장점을 가진다. 상기한 구조의 반사판을 제조하기 위해서는 우선, 박막트랜지스터(38), 보호막 겸 요철부(39)가 형성된 기판(31) 위에 금속막과 투명유기물을 차례로 도포한 후 투명유기물을 사진식각하여 오픈영역을 갖는 투명물질층(45)을 형성한다. 이때, 금속막 및 투명유기물은 각각 스퍼터링(sputtering)법 및 스핀코팅법으로 도포된다. 이어서, 기판(31) 위에 ITO를 스퍼터링법으로 도포한 후 금속막과 ITO를 사진식각하여 반사전극(44) 및 투명전극(46)을 형성한다.6 is a view showing a third embodiment according to the present invention, wherein the transparent material layer 45 is formed higher than the reflective electrode 44 and an open area for connecting the transparent electrode 46 and the reflective electrode 44 is shown. It is formed on the reflective electrode 44. The reflective plate of this embodiment has a disadvantage in that the transparent material layer 45 is thicker than the second embodiment, but has the advantage that the entire area of the substrate except for the open area of the transparent material layer 45 is formed flat. In order to manufacture the reflector having the above structure, first, a metal film and a transparent organic material are sequentially applied onto the substrate 31 on which the thin film transistor 38 and the protective film and uneven part 39 are formed, and then the transparent organic material is photographed to etch the open area. The transparent material layer 45 is formed. At this time, the metal film and the transparent organic material are applied by sputtering and spin coating, respectively. Subsequently, after the ITO is applied on the substrate 31 by the sputtering method, the metal film and the ITO are photo-etched to form the reflective electrode 44 and the transparent electrode 46.

도 7은 본 발명에 따른 제4실시예를 나타낸 도면으로서, 투명전극(46)이 박막트랜지스터(38) 영역에서 반사전극(44)의 끝부분과 연결된다. 도면에는 표시하지 않았지만, 데이터배선이나 게이트배선영역에서도 투명전극과 반사전극이 선택적으로 연결될 수 있다. 상기한 구조의 반사판을 제조하기 위해서는 우선, 보호막 겸 요철부(39)가 형성된 기판(31) 위에 금속막과 투명유기물을 차례로 도포한 후 투명유기물을 사진식각하여 오픈영역을 갖는 투명물질층(45)을 형성한다. 이때, 금속막 및 투명유기물은 각각 스퍼터링법 및 스핀코팅법으로 도포된다. 이어서, ITO를 스퍼터링법으로 도포한 후 금속막과 ITO를 사진식각하여 반사전극(44) 및 투명전극(46)을 형성한다.7 is a view showing a fourth embodiment according to the present invention, in which the transparent electrode 46 is connected to the end of the reflective electrode 44 in the region of the thin film transistor 38. Although not shown in the drawing, the transparent electrode and the reflective electrode may be selectively connected in the data wiring or gate wiring area. In order to manufacture the reflector having the above structure, first, a metal film and a transparent organic material are sequentially coated on the substrate 31 on which the protective film and the uneven portion 39 are formed, and then the transparent organic material layer 45 having the open area by photo etching the transparent organic material. ). At this time, the metal film and the transparent organic material are applied by sputtering and spin coating, respectively. Subsequently, after the ITO is applied by the sputtering method, the metal film and the ITO are photo-etched to form the reflective electrode 44 and the transparent electrode 46.

도 8은 본 발명에 따른 제5실시예를 나타낸 도면으로서, 반사전극(44)의 콘택트홀(41) 영역이 오픈되고 투명전극(46)이 콘택트홀(41)을 통하여 직접 드레인전극(37)과 연결되어 드레인전극(37)과 투명전극(46)과의 전기전도성이 향상되며, 공정을 단순화 하기 위해 투명물질층(45)과 반사전극(44)은 동시에 패터닝된다.8 is a view showing a fifth embodiment according to the present invention, in which the contact hole 41 region of the reflective electrode 44 is opened and the transparent electrode 46 is directly connected to the drain electrode 37 through the contact hole 41. In order to improve electrical conductivity between the drain electrode 37 and the transparent electrode 46, the transparent material layer 45 and the reflective electrode 44 are simultaneously patterned to simplify the process.

본 발명에 따른 반사형 액정표시소자의 반사판은 반사전극의 요철면에 의해 빛이 산란 반사되고, 반사전극 위에 표면이 평탄하도록 형성된 투명전극이 화소전극 역할을 하기 때문에 종래의 요철면을 갖는 반사판과 같이 우수한 산란반사특성을 가질 뿐만 아니라, 전기장의 왜곡이 없고, 러빙효과가 기판 전체에 균일하게 미치며, 액정표시소자의 셀갭이 균일하게 되고, 콘트라스트비가 저하되지 않는 등의 장점을 갖는다.The reflective plate of the reflective LCD according to the present invention includes a reflective plate having a conventional uneven surface because light is scattered and reflected by the uneven surface of the reflective electrode, and a transparent electrode formed to have a flat surface on the reflective electrode serves as a pixel electrode. As well as having excellent scattering reflection characteristics, there is no distortion of the electric field, the rubbing effect is uniformly spread over the entire substrate, the cell gap of the liquid crystal display element is uniform, and the contrast ratio is not lowered.

Claims (26)

복수의 화소영역을 갖는 기판과,A substrate having a plurality of pixel regions, 상기 화소영역에 형성된 요철부와,An uneven portion formed in the pixel region; 상기 요철부의 요철면을 따라 형성된 반사전극과,A reflective electrode formed along the uneven surface of the uneven portion; 상기 반사전극 위에 표면이 평탄하게 형성된 투명전극으로 이루어진 반사형 액정표시소자의 반사판.A reflective plate of a reflective liquid crystal display device comprising a transparent electrode having a flat surface on the reflective electrode. 제1항에 있어서, 상기 투명전극 위에 배향막이 추가로 구성된 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of claim 1, wherein an alignment layer is further formed on the transparent electrode. 제1항에 있어서, 상기 투명전극이 투명도전폴리머로 이루어진 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of a reflective liquid crystal display device according to claim 1, wherein the transparent electrode is made of a transparent conductive polymer. 제1항에 있어서, 상기 투명전극이 투명도전폴리머와, ITO(Indium Tin Oxide)로 이루어진 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of claim 1, wherein the transparent electrode is made of a transparent conductive polymer and indium tin oxide (ITO). 제1항에 있어서, 상기 투명전극이 스핀코팅에 의해 형성된 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflecting plate of claim 1, wherein the transparent electrode is formed by spin coating. 제1항에 있어서, 상기 투명전극이 배향막 역할을 하는 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of claim 1, wherein the transparent electrode serves as an alignment layer. 제3항 또는 제4항에 있어서, 상기 투명도전폴리머의 비저항이 107Ωcm이하인 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of the reflective liquid crystal display device according to claim 3 or 4, wherein a specific resistance of the transparent conductive polymer is 10 7 Ωcm or less. 제3항 또는 제4항에 있어서, 상기 투명도전폴리머가 폴리아세틸렌계, 폴리페닐린계, 폴리아닐린계, 또는 폴리피아롤계의 일군으로부터 선택되는 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflection plate according to claim 3 or 4, wherein the transparent conductive polymer is selected from the group consisting of polyacetylene, polyphenyline, polyaniline, and polypyrrole. 제1항에 있어서, 상기 기판 위에 종횡으로 형성되어 상기 기판을 복수의 화소영역으로 나누고 각각이 상기 게이트전극 및 소스전극과 연결된 게이트배선 및 데이터배선과,The semiconductor device of claim 1, further comprising: a gate wiring and a data wiring formed vertically and horizontally on the substrate, the substrate being divided into a plurality of pixel regions, each connected to the gate electrode and the source electrode; 상기 화소영역 각각에 형성되고 게이트전극, 게이트절연막, 반도체층 및 소스/드레인전극으로 구성된 박막트랜지스터와,A thin film transistor formed in each of the pixel regions, the thin film transistor comprising a gate electrode, a gate insulating film, a semiconductor layer, and a source / drain electrode; 상기 박막트랜지스터 위에 형성되고 상기 드레인전극 위에 콘택트홀을 갖는 보호막이 추가로 구성된 것을 특징으로 하는 반사형 액정표시소자의 반사판.And a passivation layer formed on the thin film transistor and having a contact hole on the drain electrode. 복수의 화소영역을 갖는 기판과,A substrate having a plurality of pixel regions, 상기 화소영역에 형성된 요철부와,An uneven portion formed in the pixel region; 상기 요철부의 요철면을 따라 형성된 반사전극과,A reflective electrode formed along the uneven surface of the uneven portion; 상기 반사전극 위에 형성되고 표면이 평탄한 투명물질층과,A transparent material layer formed on the reflective electrode and having a flat surface; 상기 투명물질층 위에 형성된 투명전극과,A transparent electrode formed on the transparent material layer; 상기 투명전극 위에 형성된 배향막으로 이루어진 반사형 액정표시소자의 반사판.A reflective plate of a reflective liquid crystal display device comprising an alignment layer formed on the transparent electrode. 제10항에 있어서, 상기 투명물질층이 기판 전체에 형성된 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of claim 10, wherein the transparent material layer is formed on the entire substrate. 제10항에 있어서, 상기 투명물질층이 투명유기물로 이루어진 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of claim 10, wherein the transparent material layer is made of a transparent organic material. 제12항에 있어서, 상기 투명유기물이 감광성수지인 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflecting plate of a reflective liquid crystal display device according to claim 12, wherein the transparent organic material is a photosensitive resin. 제10항에 있어서, 상기 투명전극이 ITO(Indium Tin Oxide)인 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective plate of claim 10, wherein the transparent electrode is indium tin oxide (ITO). 제10항에 있어서, 상기 기판 위에 종횡으로 형성되어 상기 기판을 복수의 화소영역으로 나누는 복수의 데이터배선 및 게이트배선과,11. The semiconductor device of claim 10, further comprising: a plurality of data wirings and gate wirings formed vertically and horizontally on the substrate to divide the substrate into a plurality of pixel regions; 상기 화소영역 각각에 형성되고 게이트전극, 게이트절연막, 반도체층 및 소스/드레인전극으로 구성된 박막트랜지스터와,A thin film transistor formed in each of the pixel regions, the thin film transistor comprising a gate electrode, a gate insulating film, a semiconductor layer, and a source / drain electrode; 상기 박막트랜지스터 위에 형성되고 상기 드레인전극 위에 콘택트홀을 갖는 보호막으로 이루어진 반사형 액정표시소자의 반사판.A reflective plate of a reflective liquid crystal display device formed on the thin film transistor and formed of a protective film having a contact hole on the drain electrode. 제15항에 있어서, 상기 박막트랜지스터, 데이터배선 또는 게이트배선 영역의 투명물질층에 오픈영역이 형성되고, 상기 오픈영역에서 상기 투명전극과 상기 반사전극이 연결된 것을 특징으로 하는 반사형 액정표시소자의 반사판.The reflective liquid crystal display of claim 15, wherein an open region is formed in the transparent material layer of the thin film transistor, data wiring, or gate wiring region, and the transparent electrode and the reflective electrode are connected to the open region. Reflector. 복수의 화소영역을 갖는 기판을 준비하는 단계와,Preparing a substrate having a plurality of pixel regions; 상기 화소영역에 요철부를 형성하는 단계와,Forming an uneven portion in the pixel region; 상기 요철부 위에 반사전극을 형성하는 단계와,Forming a reflective electrode on the uneven portion; 상기 반사전극 위에 표면이 평탄한 투명전극을 형성하는 단계로 이루어진 반사형 액정표시소자의 반사판 제조방법.A reflective plate manufacturing method of a reflective liquid crystal display device comprising the step of forming a transparent electrode having a flat surface on the reflective electrode. 제17항에 있어서, 상기 투명전극이 투명도전폴리머를 스핀코팅하여 형성된 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.18. The method of claim 17, wherein the transparent electrode is formed by spin coating a transparent conductive polymer. 제17항에 있어서, 상기 반사전극 및 투명전극을 형성하는 단계가18. The method of claim 17, wherein forming the reflective electrode and the transparent electrode 금속막을 성막하는 단계와,Forming a metal film, 상기 금속막 위에 투명도전폴리머를 스핀코팅하여 표면을 평탄하게 도포하는 단계와,Spin-coating the transparent conductive polymer on the metal film to apply a surface evenly; 상기 금속막 및 상기 투명도전폴리머를 함께 사진식각하는 단계로 이루어진 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.And a photolithography process of the metal film and the transparent conductive polymer together. 제18항 또는 제19항에 있어서, 상기 투명도전폴리머에 배향처리하는 단계가 추가로 포함되는 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.20. The method of manufacturing a reflective plate of a reflective liquid crystal display device according to claim 18 or 19, further comprising: aligning the transparent conductive polymer. 제17항에 있어서, 상기 투명전극에 배향처리하는 단계가 추가로 포함되는 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.18. The method of manufacturing a reflective plate of a reflective liquid crystal display device according to claim 17, further comprising an alignment process on the transparent electrode. 제17항에 있어서, 상기 투명전극 위에 배향막을 도포하는 단계가 추가로 포함되는 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.18. The method of claim 17, further comprising coating an alignment layer on the transparent electrode. 제17항에 있어서, 상기 반사전극 위에 표면이 평탄한 투명물질층을 형성하는 단계가 추가로 포함된 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.18. The method of claim 17, further comprising forming a transparent material layer having a flat surface on the reflective electrode. 제23항에 있어서, 상기 투명물질층이 투명유기물을 스핀코팅법으로 도포하여 이루어진 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.24. The method of claim 23, wherein the transparent material layer is formed by applying a transparent organic material by spin coating. 제23항에 있어서, 상기 투명전극이 ITO인 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.24. The method of manufacturing a reflective plate of a reflective liquid crystal display device according to claim 23, wherein the transparent electrode is ITO. 제23항에 있어서, 상기 반사전극, 투명물질층 및 투명전극을 형성하는 단계가The method of claim 23, wherein the forming of the reflective electrode, the transparent material layer, and the transparent electrode is performed. 상기 요철부 위에 금속막을 성막하는 단계와,Depositing a metal film on the uneven portion; 상기 금속막 위에 투명유기물을 스핀코팅법으로 도포하는 단계와,Coating a transparent organic material on the metal film by spin coating; 상기 투명유기물 위에 스퍼터링법으로 ITO를 성막하는 단계와,Depositing ITO on the transparent organic material by sputtering; 상기 금속막, 투명유기물 및 ITO를 사진식각하는 단계로 이루어진 것을 특징으로 하는 반사형 액정표시소자의 반사판 제조방법.A method of manufacturing a reflective plate of a reflective liquid crystal display device, comprising the step of photographing the metal film, the transparent organic material and the ITO.
KR1019970081169A 1997-12-31 1997-12-31 Method for producing reflecting plate of reflecting liquid crystal displays KR100290921B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970081169A KR100290921B1 (en) 1997-12-31 1997-12-31 Method for producing reflecting plate of reflecting liquid crystal displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970081169A KR100290921B1 (en) 1997-12-31 1997-12-31 Method for producing reflecting plate of reflecting liquid crystal displays

Publications (2)

Publication Number Publication Date
KR19990060923A KR19990060923A (en) 1999-07-26
KR100290921B1 true KR100290921B1 (en) 2001-06-01

Family

ID=37525911

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970081169A KR100290921B1 (en) 1997-12-31 1997-12-31 Method for producing reflecting plate of reflecting liquid crystal displays

Country Status (1)

Country Link
KR (1) KR100290921B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050878A (en) * 2002-12-09 2004-06-17 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560924B2 (en) * 2000-09-19 2010-10-13 ソニー株式会社 Liquid crystal display
KR100421480B1 (en) * 2001-06-01 2004-03-12 엘지.필립스 엘시디 주식회사 Method for Processing Surface of Organic Isolation Film and Method of Fabricating Thin Film Transistor Substate using the same
KR100768272B1 (en) * 2001-11-15 2007-10-17 삼성전자주식회사 Liquid crystal display panel and method for manufacturing the same
KR100793723B1 (en) * 2001-11-16 2008-01-10 삼성전자주식회사 Reflective-transmissive type liquid crystal display device and method of manufacturing the same
KR100782453B1 (en) * 2002-11-04 2007-12-05 삼성에스디아이 주식회사 Structure of OELDOrganic Electro Luminescence Display and Methode of fabricating the same
JP4277562B2 (en) * 2003-04-11 2009-06-10 株式会社豊田自動織機 EL display
KR100878762B1 (en) * 2006-11-27 2009-01-14 삼성전자주식회사 Liquid crystal display having reflecting region
KR102210210B1 (en) 2014-01-06 2021-02-02 삼성디스플레이 주식회사 Organic light emitting display apparatus
KR102529614B1 (en) * 2016-03-18 2023-05-09 삼성디스플레이 주식회사 Display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152630A (en) * 1995-11-30 1997-06-10 Sony Corp Reflection type guest-host liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09152630A (en) * 1995-11-30 1997-06-10 Sony Corp Reflection type guest-host liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050878A (en) * 2002-12-09 2004-06-17 엔이씨 엘씨디 테크놀로지스, 엘티디. Liquid crystal display device

Also Published As

Publication number Publication date
KR19990060923A (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US5408345A (en) Reflection type liquid crystal display device wherein the reflector has bumps
KR101174164B1 (en) Transflective Liquid Crystal Display device
JP2825713B2 (en) Reflective liquid crystal display device and method of manufacturing the same
US8169575B2 (en) Method of manufacturing liquid crystal display
JP2756206B2 (en) Reflective liquid crystal display device and method of manufacturing the same
US6597420B2 (en) Liquid crystal display device having color film on a first substrate and a method for manufacturing the same
KR100290921B1 (en) Method for producing reflecting plate of reflecting liquid crystal displays
JP3471246B2 (en) Manufacturing method of liquid crystal display device
JP3012596B2 (en) Reflective liquid crystal display device and method of manufacturing the same
JP2000029030A (en) Liquid crystal display device
JPH06175126A (en) Reflection type liquid crystal display device and its production
KR101311299B1 (en) Transelective thin film transistor liquid crystal display device and fabricating method thereof
JPH06235940A (en) Reflection type liquid crystal display device
KR100462376B1 (en) reflective type LCD and method for fabricating the same
KR100311530B1 (en) A reflector of reflective-type liquid crystal display device and method for manufacturing the same
KR20080070419A (en) Transflective liquid crystal and manufacturing method thereof
JP3193906B2 (en) Method for manufacturing reflective liquid crystal display device
JP2003195347A (en) Electrooptic device, electronic equipment, and method for manufacturing electrooptic device
KR20030035860A (en) Liquid crystal device for enhancing reflectance and method of manufacturing the same
KR20060066370A (en) Array substrate, method of manufacturing the same and liquid crystal display panel having the same
KR100565735B1 (en) Reflective type liquid crystal display device and method of manufacturing thereof
JP3575764B2 (en) Manufacturing method of liquid crystal display device
JPH10148845A (en) Liquid crystal display device and its production
KR100488946B1 (en) Method for forming topology in reflective LCD
JP2004045753A (en) Translucent/reflective electrooptical device and electronic appliance using the same

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 16

EXPY Expiration of term