KR100282461B1 - Metallocenes and preparation methods thereof - Google Patents

Metallocenes and preparation methods thereof Download PDF

Info

Publication number
KR100282461B1
KR100282461B1 KR1019940013126A KR19940013126A KR100282461B1 KR 100282461 B1 KR100282461 B1 KR 100282461B1 KR 1019940013126 A KR1019940013126 A KR 1019940013126A KR 19940013126 A KR19940013126 A KR 19940013126A KR 100282461 B1 KR100282461 B1 KR 100282461B1
Authority
KR
South Korea
Prior art keywords
cyclopentadienyl
cyclopentadiene
supported
fluorenyl
metallocenes
Prior art date
Application number
KR1019940013126A
Other languages
Korean (ko)
Other versions
KR950000722A (en
Inventor
지이 알트 헬무트
파트시디스 콘스탄티노스
부루스 웰치 엑
엘 기어츠 롤프
파이퍼어 버언드
제이 파락칼 시리아크
아아르 화헤이 데릴
아아르 데크 해롤드
Original Assignee
린다 에스 잘리
휘립프스 피트로오리암 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/075,712 external-priority patent/US5399636A/en
Application filed by 린다 에스 잘리, 휘립프스 피트로오리암 컴퍼니 filed Critical 린다 에스 잘리
Publication of KR950000722A publication Critical patent/KR950000722A/en
Application granted granted Critical
Publication of KR100282461B1 publication Critical patent/KR100282461B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • B01J31/1625Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups
    • B01J31/1633Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts immobilised by covalent linkages, i.e. pendant complexes with optional linking groups covalent linkages via silicon containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/703Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups
    • C07C49/747Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/373Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in doubly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/33Polycyclic acids
    • C07C63/331Polycyclic acids with all carboxyl groups bound to non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/33Polycyclic acids
    • C07C63/49Polycyclic acids containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/32Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups
    • C07C65/34Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups polycyclic
    • C07C65/36Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing keto groups polycyclic containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/0827Syntheses with formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • C07F7/2208Compounds having tin linked only to carbon, hydrogen and/or halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/61922Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/643Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/35Scandium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/36Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/37Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/49Hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/56Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/11Compounds covalently bound to a solid support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/07Heteroatom-substituted Cp, i.e. Cp or analog where at least one of the substituent of the Cp or analog ring is or contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61912Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61916Component covered by group C08F4/60 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/6192Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/61922Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/61927Component covered by group C08F4/60 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/63912Component covered by group C08F4/62 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/639Component covered by group C08F4/62 containing a transition metal-carbon bond
    • C08F4/6392Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/63922Component covered by group C08F4/62 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

활성 할로겐을 함유한 시클로펜타디엔-형 화합물을 표면 히드록실 기를 갖는 무기 지지체와 접촉시키는 것으로 구성되는 지지된 시클로펜타디엔-형 화합물 형성 방법이 제공된다. 또한 지지된 시클로펜타디엔-형 화합물을 적합한 조건하에 전이 금속 화합물과 반응시키는 것으로 구성되는 지지된 메탈로센 제조 방법이 제공된다. 또한 말단 비닐기를 갖는 분지를 갖는 가교를 갖는 가교된 시클로펜타디엔-형 리간드 생성 방법이 제공된다. 또한 상기 리단드의 메탈로센이 제공된다. 또한 부가로 말단 활성 할로겐을 갖는 분지를 갖는 가교를 갖는 가교된 시클로펜타디엔-형 리간드 생성방법이 제공된다. 결과얻어진 신규 리간드 및 그로부터 생성된 지지된 메탈로센이 또한 제공된다. 부가로 다른 효과를 갖는 적어도 두개의 메탈로센이 모두 표면 히드록시 기를 갖는 무기 지지체에 결합된 지지된 메탈로센 촉매가 제공된다. 발명의 가교된 지지된 메탈로센을 사용하는 올레핀 중합이 결과 얻어진 중합 생성물과 더불어 또한 제공된다.A method of forming a supported cyclopentadiene-type compound is provided which consists of contacting a cyclopentadiene-type compound containing an active halogen with an inorganic support having a surface hydroxyl group. Also provided is a method for preparing a supported metallocene, consisting of reacting a supported cyclopentadiene-type compound with a transition metal compound under suitable conditions. Also provided is a method of producing a crosslinked cyclopentadiene-type ligand having a crosslink having branches with terminal vinyl groups. Also provided are metallocenes of the reddide. Also provided is a method of producing a crosslinked cyclopentadiene-type ligand having a crosslink having branches with terminally active halogens. The resulting novel ligands and the supported metallocenes produced therefrom are also provided. In addition, a supported metallocene catalyst is provided in which at least two metallocenes with different effects are both bound to an inorganic support having surface hydroxy groups. Olefin polymerization using the crosslinked supported metallocene of the invention is also provided along with the resulting polymerization product.

Description

메탈로센 및 이의 제조 방법Metallocenes and preparation methods thereof

본 발명은 메탈로센 조성물, 이 조성물의 제조방법, 및 이 조성물의 사용 방법에 관한 것이다. 본 발명은 또한 메탈로센을 제조하는데 적합한 유기 화합물에 관한 것이다.The present invention relates to a metallocene composition, a method of preparing the composition, and a method of using the composition. The present invention also relates to organic compounds suitable for preparing metallocenes.

1951년 페로센의 발견 이후, 다수의 메탈로센이 시클로펜타디에닐 구조를 갖는 음이온과 다양한 전이금속을 배합함으로써 제조되었다. 본원에 사용된 용어 “시클로펜타디에닐 구조”는 하기 구조를 말한다.Since the discovery of ferrocene in 1951, many metallocenes have been prepared by combining various transition metals with anions having a cyclopentadienyl structure. As used herein, the term “cyclopentadienyl structure” refers to the structure below.

상기 “시클로펜타디에닐 구조”는 다양한 금속 알킬을 시클로펜타디엔 및 “시클로펜타디엔-형”화합물에 첨가하여 형성할 수 있다.The "cyclopentadienyl structure" can be formed by adding various metal alkyls to cyclopentadiene and "cyclopentadiene-type" compounds.

본원에 사용된 용어 “시클로펜타디엔-형 화합물”은 시클로펜타디엔 구조를 함유한 화합물을 말한다. 시클로펜타디엔-형 화합물의 예는 치환되지 않은 시클로펜타디엔, 치환되지않은 인덴, 치환되지않은 테트라히드로인덴, 치환되지않은 플루오렌, 및 상기 화합물들의 치환 변이체를 포함한다.As used herein, the term “cyclopentadiene-type compound” refers to a compound containing a cyclopentadiene structure. Examples of cyclopentadiene-type compounds include unsubstituted cyclopentadiene, unsubstituted indene, unsubstituted tetrahydroindene, unsubstituted fluorene, and substituted variants of these compounds.

많은 시클로펜타디엔-형 메탈로센이 올레핀의 중합을 위한 촉매 시스템에 유용한 것으로 밝혀졌다. 상기 시클로펜타디에닐-형 메탈로센의 화학구조에 있어서의 변화가 중합 촉매로서 메탈로센의 적합성에 상당한 영향을 미칠 수 있다는 것이 당 분야에서 주목되었다. 예를들면, 시클로펜티디에닐-형 리간드상의 치환체 및 크기가 촉매의 활성, 촉매의 입체선택성, 촉매의 안전성, 및 결과 얻어진 중합체의 다른 성질에 영향을 주는 것으로 밝혀졌지만; 다양한 치환체의 효과는 여전히 상당 부분 경험의 문제이며, 다시말해 실험은 단지 특성 변화가 시클로펜타디에닐-형 메탈로센의 특정 유형에 대해 어떤 효과를 줄 것인지를 결정하기 위해 수행되어야 한다. 몇몇 시클로펜타디에닐-형 메탈로센의 몇몇 예가 미합중국 특허 제4,530,914호, 4,808,561호 및 4,892,851호에 공개되며, 그의 공개는 본원에 참고 문헌으로 병합된다.Many cyclopentadiene-type metallocenes have been found to be useful in catalyst systems for the polymerization of olefins. It has been noted in the art that changes in the chemical structure of the cyclopentadienyl-type metallocenes can significantly affect the suitability of metallocenes as polymerization catalysts. For example, substituents and sizes on cyclopentidienyl-type ligands have been found to affect the activity of the catalyst, stereoselectivity of the catalyst, safety of the catalyst, and other properties of the resulting polymer; The effect of the various substituents is still a matter of considerable experience, in other words, experiments should only be performed to determine what effect the property change will have on a particular type of cyclopentadienyl-type metallocene. Some examples of some cyclopentadienyl-type metallocenes are disclosed in US Pat. Nos. 4,530,914, 4,808,561 and 4,892,851, the disclosures of which are incorporated herein by reference.

과거에는 대부분의 메탈로센이 중합중에 불용성인 이종 시스템보다는 균일한 즉 가용성의 메탈로센을 사용하여 중합 공정을 수행했다. 그러나, 많은 산업상 적용의 경우, 여전히 중합촉매로서 활성을 갖는 불용성 지지된 형태의 메탈로센을 얻는 것이 바람직했다.In the past, most metallocenes performed the polymerization process using a homogeneous, soluble metallocene, rather than a heterogeneous system insoluble during polymerization. However, for many industrial applications, it was desirable to obtain metallocenes in an insoluble supported form that still have activity as the polymerization catalyst.

또한 상기 이종 촉매가 다른 효용을 갖는다는 것이 기대된다. 예를들면, 조성물이 촉매로서 수소화, 알켄 에폭시화, 알켄 이성질체화, 케톤 환원, 입체선택적 알켄 중합에 사용될 수 있었으며, 반응시약으로서 입체 선택적 코발트-매개 반응, 알데히드와의 알킬티타늄 첨가 반응 및 알릴 아민 형성에 사용될 수 있었다.It is also expected that the heterogeneous catalysts have other utility. For example, the composition could be used as a catalyst for hydrogenation, alkene epoxidation, alkene isomerization, ketone reduction, stereoselective alkene polymerization, and as reaction reagents stereoselective cobalt-mediated reactions, alkyltitanium addition with aldehydes and allyl amine Could be used for formation.

따라서, 본 발명의 목적은 상기 이종 촉매를 생성하는 방법을 제공하는 것이다. 또한 다른 목적은 메탈로센을 제조하는데 사용하기에 적합한 신규한 유기 화합물을 제공하는 것이다.It is therefore an object of the present invention to provide a process for producing the heterogeneous catalyst. Another object is to provide novel organic compounds suitable for use in preparing metallocenes.

그러므로 본 발명의 목적은 다리결합된(bridged) 리간드 및 메탈로센을 포함하는, 특정한 신규 유기 화합물을 제공하는 것이다. 본 발명의 다른 목적은 다리결합된 리간드 및 메탈로센을 포함하는, 신규 유기 화합물의 제조 방법을 제공하는 것이다. 본 발명의 다른 부가의 목적은 지지되고 다리결합된 리간드 및 메탈로센을 제공하는 것이다. 본 발명의 다른 부가의 목적은 지지되고 다리결합된 리간드 및 메탈로센 제조 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 지지된 메탈로센을 사용하는 중합 촉매를 제공하는 것이다. 본 발명의 또 다른 목적은 지지된 메탈로센 촉매 시스템을 사용하는 올레핀와 중합 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 상기 지지된 메탈로센 촉매를 사용하여 생성된 중합체를 제공하는 것이다.It is therefore an object of the present invention to provide certain novel organic compounds, including bridged ligands and metallocenes. Another object of the present invention is to provide a process for the preparation of novel organic compounds, including bridged ligands and metallocenes. Another additional object of the present invention is to provide supported and bridged ligands and metallocenes. Another additional object of the present invention is to provide a supported and bridged ligand and method for preparing metallocenes. Another object of the present invention is to provide a polymerization catalyst using supported metallocenes. Another object of the present invention is to provide a process for the polymerization of olefins using supported metallocene catalyst systems. Another object of the present invention is to provide a polymer produced using the supported metallocene catalyst.

본 발명에 따라, 활성 할로겐을 함유한 시클로펜타디엔-형 화합물과 표면 히드록실기를 갖는 무기 지지체를 접촉시키는 것을 포함하는 지지된 시클로펜타디엔-형 화합물의 제조 방법이 제공된다. 또한 본 발명에 따라 지지된 시클로펜타디엔-형 화합물을 지지된 메탈로센을 형성하기에 적합한 조건하에 전이 금속 화합물과 반응시키는 것을 포함하는 지지된 메탈로센의 제조 방법이 제공된다.According to the present invention, there is provided a process for preparing a supported cyclopentadiene-type compound comprising contacting an active support containing cyclopentadiene-type compound with an inorganic support having a surface hydroxyl group. There is also provided a process for preparing supported metallocenes comprising reacting a supported cyclopentadiene-type compound with a transition metal compound under conditions suitable to form a supported metallocene in accordance with the present invention.

또한 부가로 본 발명에 따라 올레핀성 불포화를 갖는 하나이상의 분지를 갖는 다리를 갖는 다리결합된 시클로펜타디엔-형 리간드를 제조하는 방법이 제공된다. 상기 리간드의 메탈로센 또한 제공된다. 또 다른 본 발명의 실시예에 따라, 활성 할로겐을 갖는 하나이상의 분지를 갖는 다리를 갖는 다리 결합된 시클로펜타디엔-형 리간드의 제조 방법이 제공된다. 결과 얻어진 신규 리간드 및 이로부터 생성된 제조된 메탈로센이 또한 제공된다.Further according to the present invention there is also provided a process for preparing bridged cyclopentadiene-type ligands having a bridge having at least one branch with olefinic unsaturation. Metallocenes of such ligands are also provided. According to another embodiment of the present invention, there is provided a process for the preparation of bridged cyclopentadiene-type ligands having bridges having one or more branches with active halogens. The resulting novel ligands and the resulting metallocenes produced therefrom are also provided.

본 발명의 다른 면에 따라, 활성이 다른 두개이상의 메탈로센이 표면 히드록시기를 갖는 무기 지지체에 모두 결합된 지지된 메탈로센이 제공된다.According to another aspect of the present invention, a supported metallocene is provided in which at least two metallocenes with different activities are all bonded to an inorganic support having a surface hydroxyl group.

발명의 다른 실시예에 따라, 올레핀을, 임의로는 적합한 활성제와 함께 상기 서술된 바와 같이 제조된 발명의 다리결합되고 지지된 메탈로센을 포함하는 조성물과 올레핀 중합 조건하에서 접촉시키는 것을 포함하는 올레핀 중합 방법이 제공된다. 또 다른 발명의 실시예에 따라 상기 중합 방법으로부터 결과한 중합 생성물이 제공된다.According to another embodiment of the invention, an olefin polymerization comprising contacting an olefin under a olefin polymerization condition with a composition comprising a bridged and supported metallocene of the invention, optionally prepared as described above, together with a suitable active agent. A method is provided. According to another embodiment of the invention there is provided a polymerization product resulting from the polymerization process.

활성 할로겐을 갖는 광범위하게 다양한 시클로펜타디엔-형 화합물이 본 발명에 적합하다. 시클로펜타디엔-형 화합물이 활성 할로겐을 갖는 라디칼을 갖는 다리결합되지않은 시클로펜타디엔 화합물, 및 두개의 시클로펜타디엔-형 화합물이 활성 할로겐을 갖는 다리에 의해 상호 결합된 다리결합된 시클로펜타디엔 화합물이 포함된다. 다리결합되지 않은 화합물의 예는 하기 일반식을 갖는 화합물을 포함한다:A wide variety of cyclopentadiene-type compounds with active halogens are suitable for the present invention. An unbridged cyclopentadiene compound in which the cyclopentadiene-type compound has a radical having an active halogen, and a bridged cyclopentadiene compound in which two cyclopentadiene-type compounds are mutually bonded by a bridge having an active halogen This includes. Examples of unbridged compounds include compounds having the general formula:

Z-A-Xn ZAX n

(식에서 Z는 시클로펜타디엔-형 라디칼이고; A는 Si, Ge, Sn 이고; X는 수소, 히드로카르빌 라디칼, 및 할로겐으로부터 선택되며 이때 하나이상의 X는 할로겐이며, n은 A의 나머지 원자가를 채우는 수이다). 히드로카르빌 라디칼은 시클로펜타디엔-형 라디칼 이외의 것이고 일반적으로 1 내지 8개 탄소원자를 함유한다. 상기 화합물의 몇몇 구체적 예는 시클로펜타디에닐 디메틸 실릴 클로라이드, 플루오레닐 디메틸 실릴 클로라이드, 인데닐 디메틸 실릴 플로라이드, 플루오레닐 에틸 클로라이드, 플루오레닐 디메틸 메틸 클로라이드, 플루오레닐 메틸렌 클로라이드, 플루오레닐 디페닐 게르만 클로라이드, 플루오레닐 디페닐 틴(tin) 클로라이드, 플루오레닐 실릴 트리클로라이드, 플루오 레닐 게르만 트리클로라이드, 플루오레닐 메틸 게르만 디클로라이드 등을 포함하고, 시클로펜타디엔-형 기가 하나 이상의 치환체를 함유하는 상기 화합물을 포함한다. 본 발명에 바람직한 활성 할로겐은 실릴 할라이드이다.Wherein Z is a cyclopentadiene-type radical; A is Si, Ge, Sn; X is selected from hydrogen, hydrocarbyl radicals, and halogen, wherein at least one X is halogen and n is the remaining valency of A It is a filling number). Hydrocarbyl radicals are other than cyclopentadiene-type radicals and generally contain from 1 to 8 carbon atoms. Some specific examples of such compounds are cyclopentadienyl dimethyl silyl chloride, fluorenyl dimethyl silyl chloride, indenyl dimethyl silyl fluoride, fluorenyl ethyl chloride, fluorenyl dimethyl methyl chloride, fluorenyl methylene chloride, fluore Aryl diphenyl germane chloride, fluorenyl diphenyl tin chloride, fluorenyl silyl trichloride, fluorenyl germane trichloride, fluorenyl methyl germane dichloride, and the like, wherein the cyclopentadiene-type group is at least one It includes the compound containing a substituent. Preferred active halogens for the present invention are silyl halides.

다리결합되지않은 시클로펜타디엔-형 화합물은 상기 언급된 미합중국 특허 출원 S.N. 75,931; S.N. 734,853; 및 S.N. 697,363에 기재된 일반적 방법을 사용하여 제조할 수 있으며 상기 공개는 본원에 참고 문헌에서 병합된다. 바람직하게, 시클로펜타디엔-형 화합물은 일반식 Z-Si(R)n-X3-n의 화합물(식에서, n은 0 내지 2의 범위의 정수이고, X는 할로겐이고, R은 알킬 또는 아릴기이고, Z는 치환되거나 치환되지않은 시클로펜타디에닐, 인데닐, 또는 플루오레닐 라디칼인 시클로펜타디에닐-형 화합물임)이거나, 또는 일반식 Z-R′-Z 의 화합물(식에서, 각각의 Z는 같거나 다를 수 있고 치환되거나 치환되지않은 시클로펜타디에닐, 인데닐, 또는 플루오레닐 라디칼이고 R′는 두개의 Z 라디칼을 연결하며 활성 할로겐을 함유하는 다리임)이다. R′는 하기 일반식:Uncrosslinked cyclopentadiene-type compounds are described in the above-mentioned US patent application SN 75,931; SN 734,853; And the general methods described in SN 697,363, which publications are incorporated herein by reference. Preferably, the cyclopentadiene-type compound is a compound of the formula Z-Si (R) n -X 3-n , wherein n is an integer ranging from 0 to 2, X is halogen, R is alkyl or aryl Z is a cyclopentadienyl, indenyl, or cyclopentadienyl-type compound which is a substituted or unsubstituted radical, or a compound of the formula ZR'-Z, wherein Is a cyclopentadienyl, indenyl, or fluorenyl radical which may be the same or different and is substituted or unsubstituted and R 'is a bridge connecting two Z radicals and containing an active halogen). R ′ is the following general formula:

(식에서 R은 할라이드, 알킬라디칼 또는 아릴 라디칼이며, X는 할라이드임)을 가질 수 있다. R′이 하기 일반식:In which R is a halide, alkylradical or aryl radical, and X is a halide. R ′ is the following general formula:

(식에서, X는 할라이드, 바람직하게는 Cl이고, 각각의 R은 같거나 다를 수 있고 할라이드, 수소, 알킬 라디칼, 또는 아릴 라디칼일 수 있으나, 바람직하게는 메틸 라디칼이고, R″는 수소 또는 C1-10히드로카르빌기이며, R′″는 C1-10히드로카르빌기임)의 분지를 가질 수 있다. 바람직하게, 두개의 Z는 분지된 메틸렌 라디칼에 결합되거나 분지된 메틸 실릴 라디칼에 결합된다.Wherein X is a halide, preferably Cl, and each R may be the same or different and may be a halide, hydrogen, alkyl radical, or aryl radical, but is preferably a methyl radical, and R ″ is hydrogen or C 1 -10 hydrocarbyl group, and R '"is a C 1-10 hydrocarbyl group. Preferably, the two Z's are bonded to a branched methylene radical or to a branched methyl silyl radical.

다리결합된 리간드의 예는 일반식 Z-R′-Z 의 화합물을 포함하며 식에서 각각의 Z는 같거나 다른 치환되거나 치환되지않은 시클로펜타디엔-형 라디칼이고 R′는 2개의 Z′를 연결하는 구조적 다리 결합이고, 이때 R′은 적어도 하나의 활성 할로겐을 함유한다. 몇몇 상기 다리결합된 리간드는 미합중국 특허 제5,191,132 및 계류중인 미합중국 특허 S.N. 734,853에서 지시된 일반적 기술을 사용하여 제조할 수 있다. 예를들면, 시클로펜타디엔-형 화합물의 알칼리 금속 염을 다리 선구체 화합물 X-R′-X 와 반응시켜(식에서 각각의 X는 할라이드이고 R′은 하나이상의 활성 할라이드를 함유한다) 비스(시클로펜타디에닐-형) 다리결합된 화합물 또는 일반식 Z-R′-X의 모노(시클로 펜타디에닐-형) 화합물을 생성할 수 있고 상기는 그리고나서 다른 Z 화합물의 알칼리 금속염과 반응시켜 일반식 Z-R′-Z의 다리결합된 화합물을 생성하는데, 이때 두 Z는 다르다. X-R′-X 의 예는 Si, Ge, 및 Sn의 트리할로겐화 화합물을 포함한다.Examples of bridged ligands include compounds of the general formula ZR'-Z, wherein each Z is the same or different substituted or unsubstituted cyclopentadiene-type radical and R 'is a structural bridge connecting two Z' R 'contains at least one active halogen. Some such bridged ligands are described in US Pat. No. 5,191,132 and pending US Pat. It may be prepared using the general technique indicated at 734,853. For example, an alkali metal salt of a cyclopentadiene-type compound is reacted with a bridge precursor compound XR'-X (where each X is a halide and R 'contains one or more active halides) and a bis (cyclopentadiene Nil-type) bridged compounds or mono (cyclopentadienyl-type) compounds of the general formula ZR′-X may then be produced and then reacted with alkali metal salts of other Z compounds to form a general formula ZR′-Z Yields a bridged compound, wherein the two Z's are different. Examples of X-R'-X include trihalogenated compounds of Si, Ge, and Sn.

활성 할로겐을 갖는 실릴 다리결합된 리간드의 몇몇 구체적 예는 예를들어 1-시클로펜타디에닐-9-플루오레닐 메틸클로로실란, 비스(9-플루오레닐) 페닐클로로실란, 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란, 비스(9-플루오레닐)-페닐클로로실란, 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란, 비스(9-플루오레닐)페닐클로로실란, 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란, 비스(9-플루오레닐)페닐클로로실란 및 비스(2,8-디플루오로-9-플루오레닐)메틸클로로실란을 포함한다.Some specific examples of silyl bridged ligands having active halogens include, for example, 1-cyclopentadienyl-9-fluorenyl methylchlorosilane, bis (9-fluorenyl) phenylchlorosilane, 1-cyclopentadiene Nyl-9-fluorenylmethylchlorosilane, bis (9-fluorenyl) -phenylchlorosilane, 1-cyclopentadienyl-9-fluorenylmethylchlorosilane, bis (9-fluorenyl) phenylchloro Silane, 1-cyclopentadienyl-9-fluorenylmethylchlorosilane, bis (9-fluorenyl) phenylchlorosilane and bis (2,8-difluoro-9-fluorenyl) methylchlorosilane Include.

상기 할로겐화 분지된 다리결합된 화합물로부터 제조될 수 있는 메탈로센은 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란 지르코늄 디클로라이드, 비스(9-플루오레닐)페닐클로로실란 지르코늄 디클로라이드, 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란 하프늄 디클로라이드, 비스(9-플루오레닐)페닐클로로실란 하프늄 디클로라이드, 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란 바나듐 디클로라이드, 비스(9-플루오레닐)페닐클로로실란 바나듐 디클로라이드, 1-시클로펜타디에닐-9-플루오레닐메틸클로로실란 티타늄 디클로라이드, 비스(9-플루오레닐)페닐클로로실란 티타늄 디클로라이드 및 비스(2,8-디플루오로-9-플루오레닐)메틸클로로실란 지르코늄 디클로라이드를 포함한다.Metallocenes that may be prepared from the halogenated branched bridged compounds include 1-cyclopentadienyl-9-fluorenylmethylchlorosilane zirconium dichloride, bis (9-fluorenyl) phenylchlorosilane zirconium dichloride , 1-cyclopentadienyl-9-fluorenylmethylchlorosilane hafnium dichloride, bis (9-fluorenyl) phenylchlorosilane hafnium dichloride, 1-cyclopentadienyl-9-fluorenylmethylchlorosilane Vanadium dichloride, bis (9-fluorenyl) phenylchlorosilane vanadium dichloride, 1-cyclopentadienyl-9-fluorenylmethylchlorosilane titanium dichloride, bis (9-fluorenyl) phenylchlorosilane titanium Dichloride and bis (2,8-difluoro-9-fluorenyl) methylchlorosilane zirconium dichloride.

특히 바람직한 실시예에서 리간드 Z-R′-Z의 다리 R′은 이가 R′ 라디칼로부터 밖으로 뻗은 분지를 가지며, 상기 분지는 할로실릴기를 함유한다. 대표적으로 분지는 2 내지 12개 탄소원자, 보다 통상적으로 2 내지 5개 탄소원자를 함유하는 알킬 분지이다. 상기 할로겐화 분지된 다리결합된 화합물의 몇몇 예는 2-(비스-9-플루오레닐-메틸실릴)-1-트리클로로실릴에탄, 1-클로로디메틸실릴-5-시클로펜타디에닐-5-(9-플루오레닐)헥산; 및 5-시클로펜타디에닐-5-(9-플루오레닐)-1-트리클로로실릴헥산을 포함한다.In a particularly preferred embodiment the legs R 'of the ligands Z-R'-Z have branches which extend outward from the radicals R' which contain a halosilyl group. Typically the branch is an alkyl branch containing 2 to 12 carbon atoms, more typically 2 to 5 carbon atoms. Some examples of such halogenated branched bridged compounds are 2- (bis-9-fluorenyl-methylsilyl) -1-trichlorosilylethane, 1-chlorodimethylsilyl-5-cyclopentadienyl-5- ( 9-fluorenyl) hexane; And 5-cyclopentadienyl-5- (9-fluorenyl) -1-trichlorosilylhexane.

할로겐화 분지된 다리결합된 리간드는 올레핀성 불포화된 분지를 갖는 적합한 다리결합된 리간드의 할로겐화, 즉 염소화, 또는 히드로실릴화에 의해 제조할 수 있다. 상기 다리결합된 화합물의 예는 R′ 다리가 일반식 R″2C = CH-(R′″ )n- 의 분지를 갖는 화합물들을 포함하며, 식에서 R′″은 C1-10히드로카르빌 라디칼이고, n은 1 또는 0이고, 각각의 R″은 같거나 다르고 C1-10히드로카르빌 라디칼 및 수소로 구성된 군으로부터 선택된다. 본 발명의 실시예중 하나가 상기 올레핀성 분지된 다리결합된 시클로펜타디에닐 화합물을 제공한다.Halogenated branched bridged ligands can be prepared by halogenation, ie chlorination, or hydrosilylation of suitable bridged ligands with olefinically unsaturated branches. Examples of such bridged compounds include those in which the R ′ bridge has a branch of the general formula R ″ 2 C = CH— (R ′ ″) n −, wherein R ′ ″ is a C 1-10 hydrocarbyl radical And n is 1 or 0 and each R ″ is the same or different and is selected from the group consisting of C 1-10 hydrocarbyl radicals and hydrogen. One embodiment of the present invention provides the above olefinic branched bridged cyclopentadienyl compound.

상기 올레핀성 분지된 리간드는 디할로 올레핀 실란을 적합한 시클로펜타디엔-형 화합물의 알칼리 금속염과 반응시켜 일반식 Z-R′-Z(식에서 각각의 Z는 같다)의 화합물을 생성하거나 또는 대안적으로 먼저 일반식 Z-R′-X의 화합물(식에서 X는 할로겐이다)을 생성한 다음 상기 화합물을 다른 시클로펜타디엔-형 화합물의 알칼리 금속 염과 반응시켜 일반식 Z-R′-Z의 화합물(식에서 두 Z는 다르다)을 생성하여 제조할 수 있다. R′는 디할로 올레핀 실란의 유기 잔여부분이다. 상기 반응은 미합중국 특허 제5,191,132에 공개된 유형의 조건을 사용하여 수행할 수 있다. 그리고나서 결과 얻어진 올레핀성 분지된 리간드는 클로로실란 또는 클로로알킬 실란과 반응시켜 분지된 다리결합된 리간드를 생성할 수 있으며, 상기 분지는 활성 말단 할로겐을 갖는다. 히드로실릴화 반응은 Adv. Organomet. Chem., 49, 1849(1984)에서 J.L. Speier에 의해 공개된 바와 같은 조건을 사용하여 수행할 수 있다.The olefinic branched ligand reacts the dihalo olefin silane with an alkali metal salt of a suitable cyclopentadiene-type compound to produce a compound of formula ZR′-Z (where each Z is the same) or alternatively first general Compounds of the general formula ZR′-Z are produced by reacting a compound of the formula ZR′-X (wherein X is a halogen) and then reacting the compound with an alkali metal salt of another cyclopentadiene-type compound. It can be produced by producing. R 'is the organic remainder of the dihalo olefin silane. The reaction can be carried out using conditions of the type disclosed in US Pat. No. 5,191,132. The resulting olefinic branched ligand can then be reacted with chlorosilanes or chloroalkyl silanes to produce branched bridged ligands, the branches having active terminal halogens. The hydrosilylation reaction is described in Adv. Organomet. Chem., 49, 1849 (1984) J.L. This can be done using conditions as published by Speier.

올레핀 분지된 다리결합된 리간드를 제조하기 위한 대안적인 기술은 올레핀 불포화 카르보닐 화합물을 피롤리딘 및 메탄올의 존재하에 시클로펜타디엔과 반응시켜 알케닐 풀벤을 얻는 것을 포함하며 상기는 그리고나서 시클로펜타디엔 화합물, 예를들면 플루오레닐과 같은 화합물의 알칼리 금속 염과 반응하여 두개의 시클로펜타디에닐-형 기, 즉 플루오레닐 및 시클로펜타디에닐을 함유한 불포화-분지된 다리결합된 리간드를 얻는다. 예를들면, 실험자는 J. Org. Chem., 49, 1849(1984)에서 Stone 일동에 의해 공개된 것과 같은 방법을 사용하여 5-헥센-2-온을 시클로펜타디엔과 반응시켜 6-(3-부테닐)-6-메틸 풀벤을 얻을 수 있으며, 상기는 그리고나서 플루오레닐리튬과 반응시키고 연이어 가수분해시켜 5-시클로펜타디에닐-5-(9-플루오레닐)-1-헥센을 얻을 수 있다. 그리고나서 말단의 알케닐기는 앞 단락에서 서술한 바와 같이 히드로 실란화 시킬 수 있다.Alternative techniques for preparing olefin branched bridged ligands include reacting an olefin unsaturated carbonyl compound with cyclopentadiene in the presence of pyrrolidine and methanol to obtain alkenyl fulbene, which is then cyclopentadiene Reaction with an alkali metal salt of a compound, such as fluorenyl, to give an unsaturated-branched bridged ligand containing two cyclopentadienyl-type groups, ie fluorenyl and cyclopentadienyl . For example, the experimenter may have described J. Org. 5-hexen-2-one is reacted with cyclopentadiene to yield 6- (3-butenyl) -6-methyl fulvene using the same method as published by Stone et al. In Chem., 49, 1849 (1984). Which can then be reacted with fluorenyl lithium and subsequently hydrolyzed to yield 5-cyclopentadienyl-5- (9-fluorenyl) -1-hexene. The terminal alkenyl group can then be hydrosilanicated as described in the previous paragraph.

그러므로 본 발명은 하기 일반식의 비닐 말단 분지된 다리결합된 리간드에 관한 것이다:The present invention therefore relates to a vinyl terminal branched bridged ligand of the general formula:

(식에서 n은 일반적으로 약 0 내지 10 범위내 수이고: R은 Si, Ge, C 또는 Sn이고; R″은 수소 또는 일반적으로 C1-C10의 알킬기 또는 C6-C10의 아릴기로부터 선택된다). 그러므로 본 발명은 또한 상기 비닐 말단 화합물의 메탈로센 뿐만 아니라 상기 비닐 말단 화합물의 할로겐화 및 히드로실릴화 반응 생성물에 관한 것이다.Wherein n is generally a number in the range of about 0 to 10: R is Si, Ge, C or Sn; R ″ is from hydrogen or generally an alkyl group of C 1 -C 10 or an aryl group of C 6 -C 10 Is chosen). The present invention therefore also relates to the metallocenes of the vinyl end compounds as well as the halogenated and hydrosilylation reaction products of the vinyl end compounds.

상기 올레핀 불포화 분지된-다리결합된 리간드의 메탈로센은 분지된-다리결합된 비스(시클로펜타디에닐-형) 리간드를 알칼리 금속 알킬과 반응시켜 2가 리간드 염을 생성하고 상기를 그리고나서 상기 메탈로센의 형성을 위해 당 분야에 일반적으로 공지된 기술을 사용하여 전이 금속 화합물과 반응시켜 메탈로센을 제조할 수 있다. 예를 들면 계류중인 미합중국 특허 출원 S.N. 734,853에 대응하는 유럽 공개 출원 524,624을 참고하시오.The metallocene of the olefinically unsaturated branched-bridged ligand is reacted with a branched-bridged bis (cyclopentadienyl-type) ligand with an alkali metal alkyl to form a divalent ligand salt and then the above Metallocenes can be prepared by reacting with transition metal compounds using techniques generally known in the art for the formation of metallocenes. For example, pending US patent application S.N. See European Publication Application 524,624, corresponding to 734,853.

표면 히드록실 기를 갖는 무기 지지체 물질은 무기 산화물, 백악(chalk)과 같은 카르보네이트, 탈크와 같은 실리케이트, 점토 등을 포함한다. 몇몇 특히 바람직한 지지체는 실리카, 알루미나, 점토, 인산염화 알루미나, 및 상기의 혼합물을 포함한다.Inorganic support materials having surface hydroxyl groups include inorganic oxides, carbonates such as chalk, silicates such as talc, clays, and the like. Some particularly preferred supports include silica, alumina, clay, phosphated alumina, and mixtures thereof.

안산염화 알루미나는 하기를 포함하는 단계로 제조할 수 있다:Ansilicate alumina can be prepared in steps comprising:

(1) 질산 알루미늄을 인산염 화합물과 물 존재하에 혼합하여 용액을 형성시키고; (2) 염기성 화합물을 바람직하게 수용액 형태로 용액에 첨가하여 고체 생성물을 생성시키고; (3)고체 생성물을 회수하고; (4) 임의로, 고체 생성물을 용매로 세척하여 세척-생성물을 제조하고; (5) 고체 생성물 또는 세척 생성물을 건조시켜 건조된 생성물을 얻고; 및 (6) 건조된 생성물을 하소하여 인산염화 알루미나를 생성한다. 적합한 인산염 화합물은 인산 암모늄(이가), 인산 암모늄(일가), 인산 나트륨(일가), 인산 나트륨(이가), 인산 마그네슘, 인산칼륨(이가), 인산 칼륨(일가), 인산 망간 및 상기의 혼합물을 포함하지만, 그에 제한되지는 않는다. 본 발명에 바람직한 인산염 화함물은 인산 암모늄(일가)인데, 이는 쉽게 입수할 수 있고 사용이 용이하게 때문이다. 단계(2)에 사용되는 적합한 염기성 화합물은 용액으로부터 침전물을 생성할 수 있어야만 한다. 적합한 염기성 화합물의 예는 수산화 암모늄, 수산화리튬, 수산화 나트륨, 탄산 나트륨, 중탄산 나트륨, 수산화 칼륨, 수산화 마그네슘, 바륨 페녹사이드, 수산화 칼슘, 칼슘 페녹사이드, RONa, RSNa, 및 상기의 혼합물을 포함하지만, 그의 제한되지는 않으며, 상기 식에서 R은 C1-C6알킬 라디칼이다. 본 발명에 바람직한 염기성 화합물은 수산화 암모늄이다. 단계(4)에서 고체 생성물을 세척하기 위해 사용되는 용매는 고체 생성물과 반응하거나 또는 고체 생성물을 용해시키지 않는 한, 알콜, 에테르, 케톤, 산, 아미드 또는 물일 수 있다. 적합한 용매의 예는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, 이소부탄올, 펜탄올, 디에틸 에테르, 테트라히드로푸란, 아세톤, 메틸 에틸케톤, 아세트산, 디메틸포름아미드, 및 상기의 혼합물을 포함하지만 그의 제한되지는 않는다. 현재 바람직한 용매는 물 및 에탄올이며 이는 그들을 쉽게 입수할 수 있기 때문이다. 단계(5)의 건조는 종래의 건조법 또는 감압하의 건조법일 수 있다. 건조 온도는 약 1 내지 30시간동안 약 0.05 mmHg 내지 약 800 mmHg 압력 하에 약 50℃에서 부터 약 150℃까지, 바람직하게 약 5 내지 20시간동안 0.05내지 760mmHg 압력하에 60℃에서부터 100℃까지 광범위하게 변화할 수 있다. 하소 단계 또한 약 250℃에서부터 약 30분 내지 약 15시간 바람직하게 1 내지 7시간동안 광범위하게 변화할 수 있다.(1) aluminum nitrate was mixed with a phosphate compound in the presence of water to form a solution; (2) adding the basic compound to the solution, preferably in the form of an aqueous solution, to produce a solid product; (3) recovering the solid product; (4) optionally, washing the solid product with a solvent to produce a wash-product; (5) drying the solid product or the wash product to obtain the dried product; And (6) calcining the dried product to produce phosphated alumina. Suitable phosphate compounds include ammonium phosphate (divalent), ammonium phosphate (mono), sodium phosphate (mono), sodium phosphate (divalent), magnesium phosphate, potassium phosphate (divalent), potassium phosphate (mono), manganese phosphate and mixtures thereof Including but not limited to. Preferred phosphate compounds in the present invention are ammonium phosphate (monovalent), since they are readily available and easy to use. Suitable basic compounds used in step (2) must be able to produce a precipitate from solution. Examples of suitable basic compounds include ammonium hydroxide, lithium hydroxide, sodium hydroxide, sodium carbonate, sodium bicarbonate, potassium hydroxide, magnesium hydroxide, barium phenoxide, calcium hydroxide, calcium phenoxide, RONa, RSNa, and mixtures thereof, Without limitation, R is a C 1 -C 6 alkyl radical. Preferred basic compounds for the present invention are ammonium hydroxide. The solvent used to wash the solid product in step (4) can be alcohol, ether, ketone, acid, amide or water as long as it does not react with or dissolve the solid product. Examples of suitable solvents include, but are not limited to, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, diethyl ether, tetrahydrofuran, acetone, methyl ethyl ketone, acetic acid, dimethylformamide, and mixtures thereof It doesn't work. Preferred solvents at present are water and ethanol because they are readily available. The drying of step (5) may be a conventional drying method or a drying method under reduced pressure. Drying temperatures vary widely from about 50 ° C. to about 150 ° C. under a pressure of about 0.05 mmHg to about 800 mmHg for about 1 to 30 hours, preferably from 60 ° C. to 100 ° C. under 0.05 to 760 mmHg pressure for about 5 to 20 hours. can do. The calcination step can also vary widely from about 250 ° C. for about 30 minutes to about 15 hours, preferably 1 to 7 hours.

인산염화 알루미나 제조에 있어서, 발명의 조성물 성분으로 사용될때 인산염화 알루미나의 최적의 물리적 형태 및 촉매의 활성을 위한 인산염 화합물 대 질산 알루미늄의 몰비는 일반적으로 약 0.05:1 내지 약 5:1, 바람직하게 0.1:1 내지 약 2:1, 가장 바람직하게 0.2:1 내지 1:1 범위 내이다. 물 대 질산 알루미늄의 몰비는, 알루미늄 및 인산염 화합물 모두의 용해도에 따라, 약 10:1 내지 약 200:1, 바람직하게 약 20:1 내지 약 100:1, 가장 바람직하게 25:1 내지 50:1 범위내이다. 염기성 화합물 대 질산 암루미늄의 몰비는 약 0.05:1 내지 약 10:1, 바람직하게 약 0.2:1 내지 약 5:1, 가장 바람직하게 0.5:1 내지 2:1 의 범위내이다. 단계(3)에서 고체 생성물의 회수는 예를 들면 여과, 기울여 따르기 및 원심분리같은 공지된 방법에 의해 수행할 수 있다. 세척 용매 대 질산 알루미늄의 몰비는 사용되는 용매의 유형에 따라 약 5:1에서부터 약 1000:1까지 광범위하게 변화할 수 있다. 세척은 또한 1회 이상 및/또는 다른 용매들로 수행할 수 있다.In the preparation of phosphated alumina, the molar ratio of phosphate compound to aluminum nitrate for optimal physical form of the phosphated alumina and for the activity of the catalyst when used as a composition component of the invention is generally from about 0.05: 1 to about 5: 1, preferably 0.1: 1 to about 2: 1, most preferably 0.2: 1 to 1: 1. The molar ratio of water to aluminum nitrate is from about 10: 1 to about 200: 1, preferably from about 20: 1 to about 100: 1, most preferably 25: 1 to 50: 1, depending on the solubility of both aluminum and phosphate compounds. It is in range. The molar ratio of basic compound to ammonium nitrate is in the range of about 0.05: 1 to about 10: 1, preferably about 0.2: 1 to about 5: 1, most preferably 0.5: 1 to 2: 1. Recovery of the solid product in step (3) can be carried out by known methods such as, for example, filtration, decantation and centrifugation. The molar ratio of wash solvent to aluminum nitrate can vary widely from about 5: 1 to about 1000: 1 depending on the type of solvent used. Washing may also be performed one or more times and / or with other solvents.

점토의 예는 카올리나이트(kaolinite), 핼로이사이트(halloysite), 베어미클라이트(vermiculite), 녹니석(chlorite), 애터펄자이트(attapulgite), 스멕타이트(smectite), 몬모릴로나이트(montrnorillonite), 일라이트(illite), 사코나이트(saconite), 세피얼라이트(sepiolite), 팔리고르스카이트(palygorskite), 표포토(Fuller′s earth) 및 상기의 혼합물을 포함하지만 그에 제한되지는 않는다. 본 발명에 바람직한 점토는 몬모릴로나이트 점토이다. 본 발명에 가장 바람직한 점토는 일반적으로 벤토나이트로 알려진 나트륨 몬모릴로나이트이다.Examples of clays are kaolinite, halloysite, vermiculite, chlorite, attapulgite, smectite, montmornorillonite, illite ), Saconite, sepiolite, palygorskite, Fuller's earth, and mixtures thereof. Preferred clays for the present invention are montmorillonite clays. The most preferred clay for the present invention is sodium montmorillonite, commonly known as bentonite.

실리콘 및/또는 알루미늄의 다공성 산화물 또는 혼합 산화물의 예는 50 내지 1,000 sq.m/g, 보다 일반적으로 100 내지 800, 보다 바람직하게 150 내지 650 sq.m./g의 특정 표면적을 갖고 그의 구멍 부피가 0.2 내지 3, 바람직하게 0.4 내지 3, 특히 0.6 내지 2.7㎤/g의 범위내인 것이다. 상기 지지체는 일반적으로 약 1 내지 약 500 밀리미크론, 보다 대표적으로 약 10 내지 약 200, 보다 바람직하게 약 20 내지 100 밀리미크론 범위내의 평균 입자 크기를 갖는다. 특정 표면적 및 온도 예비처리에 따라, 상기 지지체의 히드록실기 수는 지지체 그램 당 히드록실기 약 0.5 내지 약 50밀리몰, 보다 대표적으로 약 1 내지 약 20, 보다 바람직하게 약 1.5 내지 약 10이다.Examples of porous or mixed oxides of silicon and / or aluminum have a specific surface area of 50 to 1,000 sq. M / g, more generally 100 to 800, more preferably 150 to 650 sq. M./g and their pore volume. Is in the range of 0.2 to 3, preferably 0.4 to 3, in particular 0.6 to 2.7 cm 3 / g. The support generally has an average particle size in the range of about 1 to about 500 milli microns, more typically about 10 to about 200, more preferably about 20 to 100 milli microns. Depending on the specific surface area and temperature pretreatment, the number of hydroxyl groups on the support is about 0.5 to about 50 mmol, more typically about 1 to about 20, more preferably about 1.5 to about 10 hydroxyl groups per gram of support.

활성 할로겐을 갖는 다리결합된 또는 다리결합되지않은 시클로펜타디엔-형 화합물을 적합한 반응 조건하에 히드록실-함유 지지체와 반응시켜 지지된 시클로펜타디엔-형 화합물을 얻는다. 바람직하게, 활성 할로겐을 갖는 두개이상의 다른 시클로펜타디에닐-형 화합물을 지지체와 반응시킨다.A bridged or uncrosslinked cyclopentadiene-type compound with active halogen is reacted with a hydroxyl-containing support under suitable reaction conditions to obtain a supported cyclopentadiene-type compound. Preferably, at least two other cyclopentadienyl-type compounds with active halogens are reacted with the support.

일반적으로, 지지체를 할로겐화 시클로펜타디엔-형 화합물과 반응시키기 전에, 약 120 내지 약 800℃, 보다 대표적으로 약 200 내지 약 500℃의 범위내 온도에서 건조시켜 그 지지체로부터 흡착 결합수(water)를 제거하는 것이 바람직하다. 건조는 n-부틸 마그네슘 클로라이드에 대해 지지체 물질의 OH 성분을 적정하여 분석적으로 관찰할 수 있다. 건조시킨후, 지지체를 불활성 기체, 예를 들면, 질소 또는 아르곤 하에 저장하여 공기 및 물을 차단할 수 있다.Generally, prior to reacting a support with a halogenated cyclopentadiene-type compound, it is dried at a temperature in the range of about 120 to about 800 ° C., more typically about 200 to about 500 ° C., thereby adsorbing bound water from the support. It is desirable to remove. Drying can be observed analytically by titrating the OH component of the support material against n-butyl magnesium chloride. After drying, the support can be stored under inert gas, such as nitrogen or argon, to block air and water.

따라서 본 발명은 일반식 Z-R′-Z을 갖는 다리결합된 리간드를 무기 물질 Q와 접촉시켜 무기 부분 Q에 화학적으로 결합되는 다리결합된 리간드를 형성하는데, 이때 각각의 Z는 시클로펜타디에닐, 인데닐, 테트라히드로인데닐, 플루오레닐, 및 그의 혼합물로 구성되는 군으로부터 선택되는, 같거나 다른, 치환되거나 치환되지않은, 활성 수소를 갖는 히드로카르빌 라디칼이고; R′은 반응성 할로겐 원자를 갖는 다리이며, Q는 예컨대 실리카, 알루미나, 점토, 인산염화 알루미나, 및 그의 혼합물과 같은, 표면 히드록실기를 갖는 무기 부분이다.The present invention thus contacts a bridged ligand having the general formula ZR′-Z with an inorganic substance Q to form a bridged ligand that is chemically bound to the inorganic portion Q, wherein each Z is cyclopentadienyl, Hydrocarbyl radicals having the same or different, substituted or unsubstituted active hydrogen, selected from the group consisting of nil, tetrahydroindenyl, fluorenyl, and mixtures thereof; R 'is a bridge having a reactive halogen atom, and Q is an inorganic moiety having surface hydroxyl groups, such as silica, alumina, clay, phosphated alumina, and mixtures thereof.

상기 유형의 2개 이상의 다리결합된 리간드와 무기 지지체를 접촉시키는 것 또한 본 발명의 범주 내에 있다. 2개 이상의 다리결합되지않은 시클로펜타디에닐-형 리간드 또는 다리결합되지않은 리간드와 다리결합된 리간드의 혼합물을 함유하는 지지된 리간드를 형성하는 것 또한 본 발명의 범주 내에 있다. 특히 바람직한 구체예로, 중합에 서로 다른 효과를 갖는 2개 이상의 활성 할로겐-함유 리간드가 사용된다.Contacting an inorganic support with two or more bridged ligands of this type is also within the scope of the present invention. It is also within the scope of the present invention to form supported ligands that contain two or more uncrosslinked cyclopentadienyl-type ligands or a mixture of unbridged ligands and bridged ligands. In a particularly preferred embodiment, two or more active halogen-containing ligands are used which have different effects on the polymerization.

다리결합된 또는 다리결합되지않은 활성 수소-함유 리간드와 무기 물질의 접촉에 사용되는 조건은 광범위하게 다양할 수 있다. 전형적으로, 이는 액체 희석제, 바람직하게 리간드를 위한 용매의 존재 하에 수행된다. 가장 바람직하게, 반응은 반응 중 형성된 임의의 산을 중화시킬 염기성 화합물의 존재 하에 수행된다. 전형적인 예는 피리딘일 것이다. 리간드 대 무기 물질의 몰비는 또한 광범위하게 다양할 수 있다. 일반적으로 리간드 대 무기 물질의 표면 상의 OH의 몰비는 약 1:1 - 약 0.0000:1 일 것이다.The conditions used for contacting the bridged or unbridged active hydrogen-containing ligand with the inorganic material can vary widely. Typically this is done in the presence of a liquid diluent, preferably a solvent for the ligand. Most preferably, the reaction is carried out in the presence of a basic compound which will neutralize any acid formed during the reaction. A typical example would be pyridine. The molar ratio of ligand to inorganic material can also vary widely. Generally, the molar ratio of OH on the surface of the ligand to the inorganic material will be about 1: 1 to about 0.0000: 1.

그리고나서 결과 지지된 시클로펜타디에닐-형 화합물은 지지된 메탈로센을 형성하기 위해 사용될 수 있다. 바람직하게 그 제조 중 생성되었을 수 있는 임의의 바람직하지 않은 부산물을 제거하기 위해, 지지된 시클로펜타디에닐-형 화합물을 정제시킨다. 추출, 용매 세척, 및 증발과 같은 기술이 사용될 수 있다.The resulting supported cyclopentadienyl-type compound can then be used to form the supported metallocenes. The supported cyclopentadienyl-type compound is preferably purified to remove any undesirable byproducts that may have been produced during its preparation. Techniques such as extraction, solvent washing, and evaporation can be used.

지지된 메탈로센을 형성하기 위해, 지지된 시클로펜타디에닐-형 화합물은 그리고나서 유기 알칼리 금속 화합물과 반응하여 상응하는 지지된 시클로펜타디에닐 알칼리 금속염을 형성한 후 적합한 조건 하에 적합한 전이 금속 화합물과 반응한다. 전형적으로 Me가 주기율표의 IIIB, IVB, VB, 및 VIB군의 금속으로로부터 선택된 전이 금속이고 n이 금속기를 나타내는 수, 일반적으로 3 또는 4인 일반식 MeXn의 전이 금속 할라이드 화합물이 사용된다. 일반식내 각각의 X는 같거나 다를 수 있으며 할로겐, 및 1 내지 약 20개의 탄소원자를 갖는 히드로카르빌 또는 히드로카르빌옥시기로 구성되는 군으로부터 선택될 수 있다. 바람직하게, X중 하나이상은 할로겐이다. 바람직한 전이 금속 화합물은 Ti, Zr, Hf, Sc, Y, V, 및 La로 구성되는 군으로부터 선택된 금속 화합물이다. 본 발명에 가장 바람직한 금속은 Ti, Zr, V, 또는 Hf 이다. 상기 전이 금속 화합물의 몇몇예는 지르코늄 테트라클로라이드, 하프늄 테트라클로라이드, 시클로펜타디에닐 티타늄 트리클로라이드, 시클로펜타디에닐 지르코늄 트리클로라이드, 시클로펜타디에닐 메틸 지르코늄 디클로라이드, 플루오레닐 지르코늄 디클로라이드, 3-메틸시클로펜타디에닐 지르코늄 트리클로라이드, 4-메틸플루오레닐 지르코늄 트리클로라이드, 인데닐 메틸 지르코늄 디클로라이드 등을 포함한다.To form a supported metallocene, the supported cyclopentadienyl-type compound is then reacted with the organoalkali metal compound to form the corresponding supported cyclopentadienyl alkali metal salt and then suitable transition metal compound under suitable conditions. React with Typically a transition metal halide compound of the general formula MeXn, wherein Me is a transition metal selected from the metals of the IIIB, IVB, VB, and VIB groups of the periodic table and n represents a metal group, generally 3 or 4 is used. Each X in the formula may be the same or different and may be selected from the group consisting of halogen and hydrocarbyl or hydrocarbyloxy groups having 1 to about 20 carbon atoms. Preferably, at least one of X is halogen. Preferred transition metal compounds are metal compounds selected from the group consisting of Ti, Zr, Hf, Sc, Y, V, and La. Most preferred metals for the present invention are Ti, Zr, V, or Hf. Some examples of such transition metal compounds include zirconium tetrachloride, hafnium tetrachloride, cyclopentadienyl titanium trichloride, cyclopentadienyl zirconium trichloride, cyclopentadienyl methyl zirconium dichloride, fluorenyl zirconium dichloride, 3- Methylcyclopentadienyl zirconium trichloride, 4-methylfluorenyl zirconium trichloride, indenyl methyl zirconium dichloride, and the like.

지지된 리간드가 다리결합되지않은 리간드이면, 이를 시클로펜타디에닐-형 함유 전이 금속 화합물과 반응시켜 메탈로센, 예컨대 시클로펜타디에닐 지르코늄 트리클로라이드, 시클로펜타디에닐 디메틸 지르코늄 클로라이드, 플루오레닐 디메틸 지르코늄 디클로라이드, 또는 시클로펜타디에닐 메틸 지르코늄 디클로라이드를 형성하는 것이 일반적으로 필요하다. 어떤 경우든, 반응은 상기 메탈로센의 지지되지 않은 형태를 형성하기 위해 과거에 사용된 동일한 일반적 기술을 사용하여 실시될 수 있다. 일반적으로, 이는 지지된 시클로펜타디에닐-형 화합물의 알칼리 금속염을 형성하고 이를 적합한 용매의 존재 하에 전이 금속 할라이드 화합물과 반응시킴을 포함한다.If the supported ligand is an unbridged ligand, it is reacted with a cyclopentadienyl-type containing transition metal compound to react with a metallocene such as cyclopentadienyl zirconium trichloride, cyclopentadienyl dimethyl zirconium chloride, fluorenyl dimethyl It is generally necessary to form zirconium dichloride, or cyclopentadienyl methyl zirconium dichloride. In any case, the reaction can be carried out using the same general techniques used in the past to form the unsupported forms of the metallocenes. Generally, this involves forming an alkali metal salt of a supported cyclopentadienyl-type compound and reacting it with the transition metal halide compound in the presence of a suitable solvent.

다리결합되지않은 리간드가 잔기 활성 할로겐기를 함유하면, 메탈로센을 제조하기 위해 반응이 시작되기 전에 활성 할라이드가 유기 알칼리 금속 화합물의 유기 라디칼로 대체되도록 지지된 리간드를 충분한 유기알칼리 금속 화합물과 반응시키는 것이 일반적으로 바람직하다. 본원에서 메탈로센을 형성하기 위해 시클로펜타디에닐 염을 형성하는 것과 같이, 본 발명에 바람직한 유기 알칼리 금속 화합물은 리튬 또는 나트륨의 지방족 또는 방향족염이다.If the unbridged ligand contains a residue active halogen group, the supported ligand is reacted with sufficient organoalkali metal compound so that the active halide is replaced with the organic radical of the organoalkali metal compound before the reaction begins to produce the metallocene. Is generally preferred. As forming cyclopentadienyl salts to form metallocenes herein, preferred organic alkali metal compounds are aliphatic or aromatic salts of lithium or sodium.

본 발명의 범주 내 다리결합된 지지된 메탈로센의 몇몇 예시적이나 비제한적인 예는 예컨대 실리카-O-1-시클로펜타디에닐-1-시클로펜타디에닐-메틸실란 지르코늄 디클로라이드, 실리카-O-비스(9-플루오레닐)페닐실란 지르코늄 디클로라이드, 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드, 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 하프늄 디클로라이드, 실리카-O-비스(9-플루오레닐)페닐실란 하프늄 디클로라이드, 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 바나듐 디클로라이드, 실리카-O-비스(9-플루오레닐)페닐실란 바나듐 디클로라이드, 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 티타늄 디클로라이드, 실리카-O-비스(9-플루오레닐)페닐실란 티타늄 디클로라이드, 실리카-O-비스(2,8-디플루오로-9-플루오레닐)메틸실란 지르코늄 디클로라이드, 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드, 알루미나-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드, 벤토나이트-O-1-시플로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드, 및 그의 혼합물을 포함한다. 본 발명에 바람직한 다리결합된 메탈로센은 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드이다. 이 문단에 주어진 명칭에서, 어구 실리카-O-란 단지 다리결합된 메탈로센이 지지체 표면 산소에 대한 다리를 통해 결합된다는 사실을 의미한다.Some illustrative but non-limiting examples of bridged supported metallocenes within the scope of the present invention are, for example, silica-O-1-cyclopentadienyl-1-cyclopentadienyl-methylsilane zirconium dichloride, silica-O -Bis (9-fluorenyl) phenylsilane zirconium dichloride, silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane zirconium dichloride, silica-O-1-cyclopentadienyl-9- Fluorenylmethylsilane Hafnium Dichloride, Silica-O-bis (9-fluorenyl) phenylsilane Hafnium Dichloride, Silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane Vanadium Dichloride, Silica -O-bis (9-fluorenyl) phenylsilane vanadium dichloride, silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane titanium dichloride, silica-O-bis (9-fluorenyl Phenylsilane titanium dichloride, silica-O-bis (2,8-difluoro-9- Luorenyl) methylsilane zirconium dichloride, silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane zirconium dichloride, alumina-O-1-cyclopentadienyl-9-fluorenylmethylsilane Zirconium dichloride, bentonite-O-1-ciflopentadienyl-9-fluorenylmethylsilane zirconium dichloride, and mixtures thereof. Preferred bridged metallocenes for the present invention are silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane zirconium dichloride. In the designations given in this paragraph, the phrase silica-O- simply means that the bridged metallocene is bound via the bridge to the support surface oxygen.

지지된 다리결합되지 않은 메탈로센의 몇몇 예는 실리카-O-디메틸 실릴 시클로펜타디에닐-플루오레닐 지르코늄 디클로라이드, 및 실리카-O-디페닐 실릴 시클로펜타디에닐-시클로펜타디에닐 지르코늄 디메틸 등을 포함한다.Some examples of supported uncrosslinked metallocenes are silica-O-dimethyl silyl cyclopentadienyl-fluorenyl zirconium dichloride, and silica-O-diphenyl silyl cyclopentadienyl-cyclopentadienyl zirconium dimethyl And the like.

본 발명에 사용될 수 있는 다리결합된 리간드의 몇몇 특별한 예는 일반식Some particular examples of bridged ligands that can be used in the present invention are shown in the general formula

를 갖는 것을 포함하며, 이때 각각의 Z는 시클로펜타디에닐, 인데닐, 테트라히드로 인데닐, 플루오레닐, 및 그의 혼합물로 구성되는 군으로부터 선택되는, 같거나 다른 치환되거나 치환되지않은 히드로카르빌 라디칼일 수 있고: E는 두 Z를 연결시키는 다리이며 C, Si, Sn, Ge, B, Al, N, 또는 P로 구성되는 군으로부터 선택되고; 각각의 X는 같거나 다를 수 있고, 수소, 불소, 염소, 브롬, 요오드, R, OR, NR2, PR2, 또는 그의 혼합물로 구성되는 군으로부터 선택되는데, 이때 R은 C1-C20히드로카르빌 라디칼이고, X중 하나이상은 할라이드이고, n은 E의 원자가를 채우기 충분한 수, 일반적으로 1 또는 2이다. 다리결합된 메탈로센은 (1) 두개이상의 산성, 치환가능한 수소 원자를 가지며 일반식 ZH2를 가지는 탄화수소를 유기리튬 및 유기할로실란과 접촉시켜 일반식 HZ-EXn+1(식에서, 하나이상의 X는 할로겐임)을 갖는 리간드 선구체를 제조하고; (2) 상기 리간드 선구체를 일반식 HZMa를 갖는 유기 알칼리 금속 화합물과 접촉시켜 일반식 ZH-EXn-ZH(식에서, 하나이상의 X는 할로겐임)을 갖는 다리결합된 리간드를 형성하고; (3) 상기 다리결합된 리간드를 무기 물질 QH와 접촉시켜 무기 부분 Q에 화학적으로 결합된 다리결합된 리간드를 형성하고; (4) 상기 무기 부분 Q에 화학적으로 결합된 상기 다리결합된 리간드를 유기리튬 및 일반식 MYm의 금속 할라이드와 접촉시켜 상기 다리결합된 메탈로센을 제조함으로써 제조되고, 상기 각각의 Z는 시클로펜타디에닐, 인데닐, 테트라히드로인데닐, 플루오레닐, 및 그의 혼합물로 구성된 군으로부터 선택된 같거나 다른 히드로카르빌 라디칼일 수 있고; 각각의 X는 같거나 다를 수 있으며, 수소, 불소, 염소, 브롬, 요오드, R, OR, NR2, PR2, 또는 OQ 및 그의 혼합물로 구성된 군으로부터 선택되는데, 이때 R은 C1-C20히드로카르빌 라디칼이고, Q는 실리카, 알루미나, 점토, 인산염화된 알루미나, 및 그의 혼합물로 구성된 군으로부터 선택된 무기 부분이고; 각각의 Y는 같거나 다를 수 있으며 알킬기, 수소, 불소, 염소, 브롬, 요오드, 및 그의 혼합물로 구성된 군으로부터 선택되고, 각각의 E는 C, Sn, Si, Ge, B, Al, N, P, 및 그의 혼합물로 구성된 군으로부터 선택되고, M은 Ti, Zr, Hf, Sc, Y, V, La, 및 그의 혼합물로 구성된 군으로부터 선택되는 금속이고, m은 금속 M의 나머지 원자가를 채우기에 충분한 수이며; n은 1 또는 2이다.Wherein each Z is the same or different substituted or unsubstituted hydrocarbyl selected from the group consisting of cyclopentadienyl, indenyl, tetrahydro indenyl, fluorenyl, and mixtures thereof May be a radical: E is a bridge connecting two Z and is selected from the group consisting of C, Si, Sn, Ge, B, Al, N, or P; Each X may be the same or different and is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, R, OR, NR 2 , PR 2 , or mixtures thereof, wherein R is C 1 -C 20 hydro Is a carbyl radical, at least one of X is a halide, and n is a number sufficient to fill the valence of E, generally 1 or 2. With the bridged metallocene (1) has an acid at least two, optionally substituted hydrogen atoms is contacted with a silane hydrocarbon having the formula ZH 2 with an organolithium and to organic general formula HZ-EX n + 1 (wherein a X is halogen) to prepare a ligand precursor; (2) contacting said ligand precursor with an organoalkali metal compound having the general formula HZMa to form a bridged ligand having the general formula ZH-EX n -ZH, wherein at least one X is halogen; (3) contacting the bridged ligand with inorganic material QH to form a bridged ligand chemically bound to inorganic portion Q; (4) the bridged ligand chemically bonded to the inorganic portion Q is prepared by contacting an organolithium and a metal halide of the general formula MY m to produce the bridged metallocene, wherein each Z is cyclo May be the same or different hydrocarbyl radicals selected from the group consisting of pentadienyl, indenyl, tetrahydroindenyl, fluorenyl, and mixtures thereof; Each X may be the same or different and is selected from the group consisting of hydrogen, fluorine, chlorine, bromine, iodine, R, OR, NR 2 , PR 2 , or OQ and mixtures thereof, wherein R is C 1 -C 20 Hydrocarbyl radical, Q is an inorganic moiety selected from the group consisting of silica, alumina, clay, phosphated alumina, and mixtures thereof; Each Y may be the same or different and is selected from the group consisting of alkyl groups, hydrogen, fluorine, chlorine, bromine, iodine, and mixtures thereof, each E being C, Sn, Si, Ge, B, Al, N, P , And M is a metal selected from the group consisting of Ti, Zr, Hf, Sc, Y, V, La, and mixtures thereof, and m is sufficient to fill the remaining valence of metal M Number; n is 1 or 2.

본 발명은 일 구체예 하에서, 산성의 치환가능한 수소 원자를 갖는 치환된 또는 치환되지않은 시클로펜타디에닐-형 탄화수소는 유기리튬 및 유기할로실란과 접촉된다. Z는 상기된 바와 같다. 산성의 치환가능 수소를 갖는 본 발명에 바람직한 탄화 수소는 시클로펜타디엔, 인덴, 테트라히드로인덴, 플루오렌, 또는 그의 혼합물이다. 바람직한 유기리튬은 부틸리튬, 메틸리튬, 에틸리튬, 프로필리튬 또는 그의 혼합물을 포함하는 알킬리튬이다. 본 발명에 가장 바람직한 유기리튬은 부틸리튬이다. 본 발명에 바람직한 유기할로실란은 알킬할로실란 또는 아릴할로실란, 예컨대 메틸트리클로로실란, 에틸트리클로로실란, 프로필트리클로로실란, 페닐트리클로로실란, 톨릴트리클로로실란 또는 그의 혼합물이다. 본 발명에 가장 바람직한 유기할로실란은 메틸트리클로로실란, 페닐트리클로로실란, 또는 그의 혼합물이다.In one embodiment of the present invention, a substituted or unsubstituted cyclopentadienyl-type hydrocarbon having an acidic substitutable hydrogen atom is contacted with an organolithium and an organohalosilane. Z is as described above. Preferred hydrocarbons with acidic substitutable hydrogens are cyclopentadiene, indene, tetrahydroindene, fluorene, or mixtures thereof. Preferred organolithium is alkyllithium comprising butyllithium, methyllithium, ethyllithium, propyllithium or mixtures thereof. Most preferred organolithium for the present invention is butyllithium. Preferred organic halosilanes for the present invention are alkylhalosilanes or arylhalosilanes such as methyltrichlorosilane, ethyltrichlorosilane, propyltrichlorosilane, phenyltrichlorosilane, tolyltrichlorosilane or mixtures thereof. Most preferred organic halosilanes for the present invention are methyltrichlorosilane, phenyltrichlorosilane, or mixtures thereof.

본 발명의 이 구체예의 제1단계는 적합한 용매의 존재 하에 실시될 수 있다. 적합한 용매의 예는 디에틸 에테르, 테트라히드로푸란, 탄화 수소 예컨대 펜탄, 헥산, 헵탄, 시클로헥산, 및 톨루엔 등을 포함하나 이에 제한되지는 않는다. 본 발명에 따라, 이 구체예를 위한 반응 압력 및 온도는 특별히 중요하지는 않으며 광범위하게 다양할 수 있다. 대기압보다 높거나 낮은 압력이 사용될 수 있으나 대기압이 본 발명에 바람직하다. 전형적으로, 반응 온도는 약 -100℃ 내지 약 100℃이다. 일반적으로, 주변 온도에서 제1단계를 실시하는 것이 편리하다.The first step of this embodiment of the invention can be carried out in the presence of a suitable solvent. Examples of suitable solvents include, but are not limited to, diethyl ether, tetrahydrofuran, hydrocarbons such as pentane, hexane, heptane, cyclohexane, toluene, and the like. According to the invention, the reaction pressure and temperature for this embodiment are not particularly critical and can vary widely. Pressures higher or lower than atmospheric pressure may be used but atmospheric pressure is preferred for the present invention. Typically, the reaction temperature is about -100 ° C to about 100 ° C. In general, it is convenient to carry out the first step at ambient temperature.

적어도 2개의 산성, 치환가능 수소를 갖는 탄화 수소 대 유기리튬의 몰비는 원하는 결과에 따라 광범위하게 다양할 수 있으며, 일반적으로 약 5:1- 약 1:5, 바람직하게 약 2:1 - 약 2:1, 및 가장 바람직하게 약 1:1 이다. 유기할로실란 대 리튬화된 탄화 수소에 대해 유사한 몰비가 사용될 수 있다. 용매 대 유기 리튬의 몰비는 일반적으로 약 1000:1 ∼ 약 0.1:1, 바람직하게 약 500:1 - 약 0.5:1 이다.The molar ratio of hydrocarbon to organolithium having at least two acidic, substitutable hydrogens can vary widely depending on the desired result and is generally from about 5: 1 to about 1: 5, preferably from about 2: 1 to about 2 : 1, and most preferably about 1: 1. Similar molar ratios can be used for organohalosilane to lithiated hydrocarbons. The molar ratio of solvent to organolithium is generally from about 1000: 1 to about 0.1: 1, preferably from about 500: 1 to about 0.5: 1.

하나의 X가 할로겐이어야 하고 n 이 1 또는 2의 정수인 것을 제외하고는 E 및 X의 범주가 상기된 바와 같은, 일반식 Z-EXn+1을 갖는, 제1단계 중에 형성된 리간드는 그리고나서 Z가 상기된 바와 같고 Ma가 알칼리 금속인 일반식 ZMa를 갖는 유기 알칼리 금속 화합물과 접촉될 수 있다. 일반식 ZMa로 표현되는 본 발명에 바람직한 유기 알칼리 금속 화합물은 시클로펜타디에닐나트륨, 인데닐나트륨, 테트라히드로인데닐나트륨, 플루오레닐나트륨, 시클로펜타디에닐리튬, 인데닐리튬, 테트라히드로인데닐리튬, 플루오레닐리튬, 또는 그의 혼합물을 포함한다. 반응 조건은 일반식 Z-EXn+1의 할로겐화된 화합물의 제조에 대해 기재되어 있는 바와 같을 수 있다. 이 단계는 또한 용매의 존재 하에서 실시될 수 있다. 용매의 범주는 상기된 바와 같다. 리간드 대 유기 알칼리 금속 화합물의 몰비는 광범위하게 다양할 수 있으며, 일반적으로 약 5:1 ∼ 약 1:5, 바람직하게 약 2:1∼ 1:2, 및 가장 바람직하게 약 1.2:1- 1:1.2이다. 용매 대 유기 알칼리 금속 화합물의 몰비는 일반적으로 본 발명의 이 구체예의 제1단계에서 용매 대 유기리튬에 대해 기재된 바와 같을 수 있다.The ligand formed during the first step, wherein the category of E and X has the general formula Z-EX n + 1 as described above, except that one X must be halogen and n is an integer of 1 or 2, then Z is May be contacted with an organoalkali metal compound having the general formula ZMa as described above and Ma is an alkali metal. Preferred organoalkali metal compounds represented by the general formula ZMa are cyclopentadienyl sodium, indenyl sodium, tetrahydroindenyl sodium, fluorenyl sodium, cyclopentadienyl lithium, indenyl lithium, tetrahydro indenyl Lithium, fluorenyl lithium, or mixtures thereof. The reaction conditions may be as described for the preparation of halogenated compounds of the general formula Z-EX n + 1 . This step can also be carried out in the presence of a solvent. The categories of solvents are as described above. The molar ratio of ligand to organoalkali metal compound can vary widely and is generally about 5: 1 to about 1: 5, preferably about 2: 1 to 1: 2, and most preferably about 1.2: 1-: 1. 1.2. The molar ratio of solvent to organic alkali metal compound may generally be as described for solvent to organolithium in the first step of this embodiment of the invention.

하나의 X가 할로겐인 것을 제외하고 Z, E, X, 및 n이 상기된 바와 같은 일반식 Z-EXn-Z를 갖는 다리결합된 리간드가 본 방법의 이 구체예의 제2단계에서 형성된다. 본 방법의 이 구체예의 제3단계에서, 결과 형성된 다리결합된 리간드가 무기 물질과 접촉된다. 무기 물질은 일반적으로 촉매 지지체로서 사용되며, 상기된 바와 같은 범주를 갖는다. 이는 무기 지지체에 화학적으로 결합된 다리결합된 리간드를 결과시킨다. 무기 지지체에 화학적으로 결합된 다리결합된 리간드는 그리고나서 본 방법의 이 구체예의 제4단계에서 다리결합된 메탈로센을 형성하는 조건 하에 유기 리튬, 및 일반식 MXm을 갖는 금속 할라이드와 더 접촉될 수 있으며, 이때 M 은 Ti, Zr, Hf, Sc, Y, V, 또는 La로부터 선택된 금속이고; m은 금속 M의 나머지 원자가를 채우기 충분한 수이고; 각각의 X는 같거나 다를 수 있으며 알킬기, 수소, 불소, 염소, 브롬 및 요오드로 구성되는 군으로부터 선택된다. 이 단계를 위한 반응 조건은 또한 일반적으로 제1단계에 대해 기재된 바와 같을 수 있다. 유사하게, 본 발명의 이 단계에서 용매가 또한 존재할 수 있다. 용매의 범주는 제1단계에서와 같을 수 있으며, 이 단계에서 용매 대 유기리튬의 몰비는 제1단계에서의 용매 대 유기리튬의 몰비와 같다. 다리결합된 리간드 대 유기리튬의 몰비는 약 5:1∼ 약 1:5, 바람직하게 약 3:1∼약 1:3, 및 가장 바람직하게 약 1:2 일 수 있다. 유기리튬 대 금속 할라이드의 몰비는 일반적으로 약 2:1 이다.A bridged ligand having Z, E, X, and n having the general formula Z-EX n -Z as described above, except that one X is halogen is formed in the second step of this embodiment of the method. In a third step of this embodiment of the method, the resulting bridged ligand is contacted with an inorganic material. Inorganic materials are generally used as catalyst supports and have the same categories as described above. This results in bridged ligands chemically bound to the inorganic support. The bridged ligand chemically bonded to the inorganic support is then further contacted with organolithium, and a metal halide having the general formula MX m under conditions to form a bridged metallocene in the fourth step of this embodiment of the method. Wherein M is a metal selected from Ti, Zr, Hf, Sc, Y, V, or La; m is a sufficient number to fill the remaining valence of the metal M; Each X may be the same or different and is selected from the group consisting of alkyl groups, hydrogen, fluorine, chlorine, bromine and iodine. Reaction conditions for this step may also be as generally described for the first step. Similarly, solvents may also be present at this stage of the invention. The category of solvent may be the same as in the first step, in which the molar ratio of solvent to organolithium is equal to the molar ratio of solvent to organolithium in the first step. The molar ratio of bridged ligand to organolithium may be about 5: 1 to about 1: 5, preferably about 3: 1 to about 1: 3, and most preferably about 1: 2. The molar ratio of organolithium to metal halide is generally about 2: 1.

본 발명으로부터 결과되는 지지된 메탈로센은 여과 및 추출과 같은 당분야에 공지된 통상적인 기술을 사용하여 회수하고 정제될 수 있다. 임의의 실질적 양의 부산 불순물이 없는 형태로 메탈로센을 회수하는 것이 일반적으로 바람직하다. 일반적 규칙으로서, 다리결합되지않은 플루오레닐 화합물을 기재로하는 메탈로센은 다리결합된 플루오레닐 화합물로부터 형성된 메탈로센 화합물보다 덜 안정하다. 여러 메탈로센의 안전성이 다양하므로, 그 제조 후 곧 메탈로센을 사용하거나 적어도 그 안전성을 돕는 조건하에 메탈로센을 저장하는 것이 일반적으로 바람직하다. 예컨대, 메탈로센은 일반적으로 어두운 곳에서 저온, 즉 0℃ 미만에서, 그리고 산소 또는 물의 부재하에 저장될 수 있다.The supported metallocenes resulting from the present invention can be recovered and purified using conventional techniques known in the art, such as filtration and extraction. It is generally desirable to recover the metallocene in a form free of any substantial amount of by-product impurities. As a general rule, metallocenes based on unbridged fluorenyl compounds are less stable than metallocene compounds formed from bridged fluorenyl compounds. Since the safety of the various metallocenes varies, it is generally desirable to store the metallocene soon after its preparation or under conditions which at least aid the safety. For example, metallocenes can generally be stored at low temperatures in the dark, ie below 0 ° C., and in the absence of oxygen or water.

지지된 메탈로센은 올레핀 단량체의 중합을 위해 적합한 활성화제와 함께 사용될 수 있다. 상기 방법에서 메탈로센 또는 활성화제는 고체 불용성 미립 지지체상에 사용될 수 있다.Supported metallocenes can be used with suitable activators for the polymerization of olefin monomers. In this method the metallocene or activator can be used on a solid insoluble particulate support.

적합한 활성화제의 예는 일반적으로, 유기알루미녹산, 트리스-퍼플루오로페닐 보레이트, 트리틸 테트라-퍼플루오로페닐 보레이트를 포함하며, 전이 금속 함유 올레핀 중합 촉매와 함께 과거에 사용되었던 임의의 유기 금속 보조-촉매를 포함한다. 몇몇 전형적 예는 주기율표의 IA, IIA, 및 IIIB 군 금속의 유기금속 화합물을 포함한다. 상기 화합물의 예는 유기 금속 할라이드 화합물, 유기 금속 하이드리드 및 또한 금속 하이드리드를 포함했다. 몇몇 특별한 예는 트리에틸 알루미늄, 트리-이소부틸 알루미늄, 디에틸 알루미늄 클로라이드, 디에틸 알루미늄 하이드리드, 등을 포함한다.Examples of suitable activators generally include organoaluminoxanes, tris-perfluorophenyl borate, trityl tetra-perfluorophenyl borate, and any organic metal that has been used in the past with transition metal containing olefin polymerization catalysts. Co-catalysts. Some typical examples include organometallic compounds of the IA, IIA, and IIIB group metals of the periodic table. Examples of such compounds include organometallic halide compounds, organometallic hydrides and also metal hydrides. Some particular examples include triethyl aluminum, tri-isobutyl aluminum, diethyl aluminum chloride, diethyl aluminum hydride, and the like.

본 발명에 가장 바람직한 활성화제는 유기알루미녹산이다. 상기 화합물은 일반식의 반복 단위를 갖는 화합물을 포함하며, 식에서 R′는 일반적으로 1-5개의 탄소 원자를 갖는 알킬기이며; P는 0 내지 약 100, 바람직하게 약 5~약 50, 및 가장 바람직하게 10-40의 수이다. 본 발명에 가장 바람직한 유기알루미녹산은 메틸알루미녹산이다. 종종 폴리(히드로카르빌 알루미늄 옥사이드)로도 언급되는 유기알루미녹산이 당분야에 잘 알려져 있으며, 일반적으로 유기히드로카르빌알루미늄 화합물과 물을 반응시킴으로써 제조된다.Most preferred activators for the present invention are organoaluminoxanes. The compound is a general formula A compound having a repeating unit of wherein R ′ is generally an alkyl group having 1-5 carbon atoms; P is a number from 0 to about 100, preferably from about 5 to about 50, and most preferably from 10-40. Most preferred organic aluminoxanes for the present invention are methylaluminoxanes. Organoaluminoxanes, sometimes referred to as poly (hydrocarbyl aluminum oxide), are well known in the art and are generally prepared by reacting an organic hydrocarbylaluminum compound with water.

상기 제조 기술은 제4,808,561호에 설명되어 있으며, 그의 설명은 본원에 참고로 포함되어 있다. 본 발명에 바람직한 보조 촉매는 가끔 폴리(메틸 알루미늄 옥사이드)및 폴리(에틸 알루미늄 옥사이드)로 각각 언급되는 트리메틸알루미늄 또는 트리에틸알루미늄으로부터 제조된다. 또한, 그의 공개가 본원에 참고문헌으로 병합되는 미합중국 특허 제4,794,096호에 설명된 바와 같이 트리알킬알루미늄과 함께 알루미녹산을 사용하는 것이 본 발명의 범주내에 있다.Such manufacturing techniques are described in US Pat. No. 4,808,561, the description of which is incorporated herein by reference. Preferred cocatalysts for the present invention are prepared from trimethylaluminum or triethylaluminum, sometimes referred to as poly (methyl aluminum oxide) and poly (ethyl aluminum oxide), respectively. It is also within the scope of the present invention to use aluminoxanes with trialkylaluminum, as described in US Pat. No. 4,794,096, the disclosure of which is incorporated herein by reference.

지지된 메탈로센이 유기알루미녹산 활성화제와 함께 올레핀을 중합하기 위해 사용될 수 있다. 상기 중합은 촉매 및 활성화제가 가용성인 균질 시스템 내에서 실시되며; 일반적으로 지지된 형태의 촉매 및/또는 활성화제의 존재하에 슬러리 또는 기체상 중합으로 중합을 실시하는 것이 본 발명의 범주내에 있다. 2개 이상의 메탈로센 혼합물 또는 본 발명의 다리결합된 메탈로센과 하나 이상의 다른 유형의 메탈로센의 혼합물을 사용하는 것이 본 발명의 범주 내에 있다.Supported metallocenes can be used to polymerize the olefins with the organoaluminoxane activator. The polymerization is carried out in a homogeneous system in which the catalyst and activator are soluble; It is generally within the scope of the present invention to conduct the polymerization by slurry or gas phase polymerization in the presence of a catalyst and / or activator in supported form. It is within the scope of the present invention to use two or more metallocene mixtures or mixtures of bridged metallocenes of the invention with one or more other types of metallocenes.

유기알루미녹산과 사용될 때, 지지된 메탈로센은 2-10개의 탄소 원자를 갖는 모노-치환되지않은 지방족 α-올레핀의 중합에 특히 유용하다. 상기 올레핀의 예는 에틸렌, 프로필렌, 부텐-1, 펜텐-1, 3-메틸부텐-1, 헥센-1, 4-메틸펜텐-1, 3-에틸부텐-1, 헵텐-1, 옥텐-1, 데센-1, 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센, 3,4-디메틸-1-헥센 등 및 그의 혼합물을 포함한다. 촉매는 에틸렌 또는 프로필렌, 및 일반적으로 소량, 즉 약 12몰% 이하, 보다 전형적으로 약 10몰% 이하의 고분자량 올레핀의 공중합체를 제조하는데 특히 유용하다.When used with organoaluminoxanes, supported metallocenes are particularly useful for the polymerization of mono-unsubstituted aliphatic α-olefins having 2-10 carbon atoms. Examples of the olefin include ethylene, propylene, butene-1, pentene-1, 3-methylbutene-1, hexene-1, 4-methylpentene-1, 3-ethylbutene-1, heptene-1, octene-1, Decene-1, 4,4-dimethyl-1-pentene, 4,4-diethyl-1-hexene, 3,4-dimethyl-1-hexene and the like and mixtures thereof. The catalyst is particularly useful for preparing copolymers of ethylene or propylene, and generally high molecular weight olefins, typically of up to about 12 mole percent, more typically up to about 10 mole percent.

중합은 사용된 특정 메탈로센, 및 원하는 결과에 따라 광범위한 조건하에 실시될 수 있다. 메탈로센이 올레핀의 중합에 사용될 수 있는 전형적 조건의 예는 미합중국 특허 제3,242,099; 4,892,851; 4,530,914호에 설명된 바와 같은 조건을 포함하며; 이들의 설명은 본원에 참고로 포함되어 있다. 일반적으로, 임의의 전이 금속 기재 촉매 시스템을 사용하는 선행 기술에서 사용된 임의의 중합 절차를 본 발명의 플루오레닐-함유 메탈로센과 함께 사용할 수 있다고 여겨진다.The polymerization can be carried out under a wide range of conditions depending on the particular metallocene used and the desired result. Examples of typical conditions under which metallocenes can be used for the polymerization of olefins are described in US Pat. Nos. 3,242,099; 4,892,851; Includes conditions as described in 4,530,914; Their description is incorporated herein by reference. In general, it is believed that any polymerization procedure used in the prior art using any transition metal based catalyst system may be used with the fluorenyl-containing metallocenes of the present invention.

일반적으로, 유기알루미녹산 내 알루미늄 대 메탈로센 내 전이 금속의 몰비는 약 0.1:1∼약 105:1, 및 보다 바람직하게 약 5:1∼약 104:1 일것이다. 일반적 규칙으로, 중합은 촉매 시스템에 역효과를 갖지 않는 액체 희석제의 존재하에 실시될 것이다. 상기 액체 회석제의 예는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 시클로헥산, 메틸시클로헥산, 톨루엔, 크실렌, 등을 포함한다. 중합온도는 광범위하게 다양할 수 있으며, 온도는 전형적으로 약 -60℃∼약 280℃, 보다 바람직하게 약 20℃-약 160℃일 것이다. 전형적으로 압력은 약 1-약 500 기압 이상일 것이다.In general, the molar ratio of the transition metal in the aluminum to the metallocene in the organoaluminoxane will be from about 0.1: 1 to about 10 5 : 1, and more preferably from about 5: 1 to about 10 4 : 1. As a general rule, the polymerization will be carried out in the presence of a liquid diluent which has no adverse effect on the catalyst system. Examples of such liquid diluents include butane, isobutane, pentane, hexane, heptane, octane, cyclohexane, methylcyclohexane, toluene, xylene, and the like. The polymerization temperature can vary widely and the temperature will typically be from about -60 ° C to about 280 ° C, more preferably from about 20 ° C to about 160 ° C. Typically the pressure will be at least about 1-about 500 atmospheres.

본 발명으로 생성된 중합체는 각각의 중합체의 물리적 성질로부터 당업자에게 분명한 광범위한 용도를 가질 것이다. 촉매 중 몇가지는 신디오택틱 중합체를 제조하는데 유용하다. 본원에서 사용된 용어 신디오택틱 중합체는 각각의 연속적 단량체 단위의 알킬기가 중합체 평면의 반대쪽면 상에 있는 10개 이상의 단량체 반복 단위의 세그먼트를 갖는 중합체를 포함하고자 한다. 일반적으로, 상기 신디오택틱 미소 구조를 갖는 중합체 세그먼트는 중합체 평면에 대해 알킬기의 위치가 한 단량체 단위에서 다른 단량체 단위로 바뀌는 적어도 약 40개의 단량체 반복단위로 형성된다.The polymers produced by the present invention will have a wide range of uses that are apparent to those skilled in the art from the physical properties of each polymer. Some of the catalysts are useful for preparing syndiotactic polymers. The term syndiotactic polymer, as used herein, is intended to include polymers having segments of at least 10 monomer repeat units in which the alkyl group of each successive monomer unit is on the opposite side of the polymer plane. Generally, the polymer segment having the syndiotactic microstructure is formed of at least about 40 monomer repeat units in which the position of the alkyl group with respect to the polymer plane is changed from one monomer unit to another.

[실시예]EXAMPLE

본 발명을 더 이해하기 위해, 그 다양한 양상, 목적 및 잇점이 하기 실시예에 의해 제공될 것이다. 이들 실시예에서, 모든 실행은 산소 및 수분을 배제하고 Schlenk 기술을 사용하여 관례적으로 실시하였다. 일반적으로, D.F.Shriver, The Manipulation of Air-sensitive Compounds, McGraw-Hill, 1969를 참조하라. 정제된 그리고 건조된 아르곤은 보호 기체로서 작용했다. 사용된 용매는 아르곤하에 Na/K 합금(펜탄, 헥산, 톨루엔, 메틸렌 클로라이드, 에테르, 및 테트라히드로푸란) 또는 오산화인상에서 증류시켜 건조시켰다. 테트라히드로푸란은 리튬 알란테이트상에서 부가적으로 정제하고 메틸렌 클로라이드는 칼슘 하이드리드상에서 부가적으로 정제했다. 플루오렌은 사용전에 실리카 겔 상에서 정제했다. 플루오란텐 및 페난트렌을 사용하여 유사한 절차를 따랐다. 중합 시도를 위해 사용된 프로필렌은 메틸알루미녹산을 사용하여 30℃에서 1시간 동안 정제했다. 중합 실시를 위해 바아 오토클레이브(1ℓ)를 사용했다.To further understand the present invention, its various aspects, objects, and advantages will be provided by the following examples. In these examples, all runs were customary using Schlenk technology, excluding oxygen and moisture. In general, see D. F. Shriver, The Manipulation of Air-sensitive Compounds, McGraw-Hill, 1969. Purified and dried argon acted as protective gas. The solvent used was distilled off under argon over a Na / K alloy (pentane, hexane, toluene, methylene chloride, ether, and tetrahydrofuran) or phosphorus pentoxide. Tetrahydrofuran was further purified on lithium allantate and methylene chloride was additionally purified on calcium hydride. Fluorene was purified on silica gel prior to use. Similar procedures were followed using fluoranthene and phenanthrene. The propylene used for the polymerization attempt was purified for 1 hour at 30 ° C. using methylaluminoxane. Bar autoclave (1 L) was used for polymerization.

[실시예 I]Example I

이 실시예는 실리카-결합된, 다리결합된 리간드의 제조를 예시한다.This example illustrates the preparation of silica-bonded, bridged ligands.

플루오렌(20g; 120 mmol)을 에테르 200mL에 용해시키고 부틸리튬 76mL(헥산내 1.6M)과 천천히 혼합했다. 기체 발생이 끝난 후, 혼합물을 실온에서 1시간동안 교반한 후 용매를 제거했다. 그리고나서 고체 플루오레닐 리튬을 펜탄 700mL 내 메틸트리클로로실란 36g(40mL, 241 mmol)의 용액에 분량으로 첨가했다. 첨가를 완결한 후, 혼합물을 실온에서 1시간 더 교반한 후 반응 혼합물을 황산 나트륨 상에서 여과했다. 용액을 그 부피의 30% 까지 증발시켜 농축시키고 -30℃에서 결정화했다. 생성물, 9-플루오레닐메틸디클로로실란을 백색 결정성 분말 형태로 생성했다(수율: 95%).Fluorene (20 g; 120 mmol) was dissolved in 200 mL of ether and slowly mixed with 76 mL of butyllithium (1.6 M in hexane). After gas evolution, the mixture was stirred at room temperature for 1 hour before the solvent was removed. Solid fluorenyl lithium was then added in portions to a solution of 36 g (40 mL, 241 mmol) of methyltrichlorosilane in 700 mL of pentane. After the addition was completed, the mixture was stirred for another 1 hour at room temperature before the reaction mixture was filtered over sodium sulfate. The solution was concentrated by evaporation to 30% of its volume and crystallized at -30 ° C. The product, 9-fluorenylmethyldichlorosilane, was produced in the form of a white crystalline powder (yield: 95%).

그리고 나서 9-플루오레닐메틸디클로로실란(5g; 17.9 mmol)을 에테르 100㎖에 용해시키고 결과 용액을 시클로펜타디에닐 나트륨 1.6g(18 mmol)과 혼합했다. 실온에서 4시간 교반한 후, 반응 혼합물을 황산 나트륨 상에서 여과시키고 용매를 제거했다. 10% 비스플루오레닐메틸클로로 실란을 함유한 미황색 조생성물(1-시클로펜타디에닐-9-플루오레닐메틸클로로실란)을 얻었다.Then 9-fluorenylmethyldichlorosilane (5 g; 17.9 mmol) was dissolved in 100 mL of ether and the resulting solution was mixed with 1.6 g (18 mmol) of cyclopentadienyl sodium. After stirring for 4 hours at room temperature, the reaction mixture was filtered over sodium sulfate and the solvent was removed. A pale yellow crude product (1-cyclopentadienyl-9-fluorenylmethylchlorosilane) containing 10% bisfluorenylmethylchloro silane was obtained.

상기 얻어진 조생성물 (5g)을 톨루엔 100㎖에 용해시키고 결과 용액을 실리카 겔(Merck No. 7713) 5g 및 피리딘 10㎖와 혼합했다. 혼합물을 80℃에서 34시간 동안 유지한 후 실온으로 냉각시켰다. 상층 용액을 기울여 따르고, 결과 생성물 (실리카-O-1-시클로펜타디에닐-9-플루오레닐 메틸실란)을 에테르로 여러회 세척한 후 건조시켰다.The crude product (5 g) obtained above was dissolved in 100 ml of toluene and the resulting solution was mixed with 5 g of silica gel (Merck No. 7713) and 10 ml of pyridine. The mixture was kept at 80 ° C. for 34 hours and then cooled to room temperature. The supernatant solution was decanted and the resulting product (silica-O-1-cyclopentadienyl-9-fluorenyl methylsilane) was washed several times with ether and then dried.

[실시예 II]Example II

이 실시예는 무기 지지체 물질에 화학적으로 결합된 다리결합된 메탈로센의 제조를 예시한다.This example illustrates the preparation of a bridged metallocene chemically bonded to an inorganic support material.

실시예 I에서 제조된 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란을 에테르 100ml에 현탁시키거나 슬러리화하고 실란 당 부틸리튬(헥산 내 1.6 M) 2몰 당량(20ml)과 혼합했다. 반응 혼합물을 실온에서 24시간 동안 진탕시킨 후 에테르(100ml)로 여러회 세척했다. 혼합물을 다시 에테르 100ml에 현탁시키고 실란 당 지르코늄 테트라클로라이드 5g (1mol 당량)을 첨가하고 혼합물을 24시간 더 진탕시켰다.Silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane prepared in Example I was suspended or slurried in 100 ml of ether and 2 molar equivalents (20 ml) of butyllithium (1.6 M in hexane) per silane Mixed with. The reaction mixture was shaken at room temperature for 24 hours and then washed several times with ether (100 ml). The mixture was again suspended in 100 ml of ether, 5 g (1 mol equiv) of zirconium tetrachloride per silane was added and the mixture was shaken for another 24 hours.

반응 혼합물을 상기와 같이 에테르로 세척하고 현탁액을 황산 나트륨 상에서 여과했다. 실리카에 화학적으로 결합된 메탈로센, 즉 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드를 얻었다.The reaction mixture was washed with ether as above and the suspension was filtered over sodium sulfate. Metallocenes chemically bonded to silica, ie, silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane zirconium dichloride, were obtained.

[실시예 III]Example III

이 실시예는 올레핀 중 중합을 위한 촉매로서 실시예 II에서 제조된 다리결합된 메탈로센의 사용을 예시한다.This example illustrates the use of the bridged metallocene prepared in Example II as a catalyst for polymerization in olefins.

이소부탄 희석제, 분자량 조절제로서 수소 및 보조 촉매로서 메틸 알루미녹산의 존재하에 3.8ℓ 교반 스테인레스 스틸 반응기내에서 90℃에서 1시간 동안 에틸렌 중합을 수행했다. 먼저 메탈로센 촉매를 건조상자내에서 중량측정하고, 메틸알루미녹산 용액이 첨가된 n-헥산내에서 슬러리화했다. 톨루엔 메틸알루미녹산 용액 1ml를 사용했다. 이는 1.1M 농도로 Schering으로부터 구입했다. 장입 순서는 메탈로센/메틸알루미녹산 슬러리에 이어 이소부탄 2ℓ였다. 이들 물질을 90℃로 가열한 후, 30cc 실린더 내 압력 저하로부터 측정된 바와 같이 수소 45 psi를 도입하고, 그리고나서 에틸렌을 도입하여 총 반응기 압력을 전체 시간 동안 435 psig에서 유지되도록 했다. 에틸렌을 각 실시도중 요구되는 대로 가압 저장기로부터 필요할 때 공급했다. 에틸렌 및 희석제를 분출시켜 중합을 종결시켰다. 중합체를 회수하고 건조시키고 중량측정하여 수율을 결정했다. 중합체 중량(g)을 사용된 메탈로센 중량(g)으로, 또는 메탈로센 + 메틸 알루미녹산 중량(g)으로 나누어 촉매 생산율을 계산하고, 편리하게 시간 당 원하는 촉매성분 g당 중합체 g (g/g-hr)으로 표현한다.Ethylene polymerization was performed for 1 hour at 90 ° C. in a 3.8 L stirred stainless steel reactor in the presence of an isobutane diluent, hydrogen as molecular weight regulator and methyl aluminoxane as cocatalyst. The metallocene catalyst was first weighed in a dry box and slurried in n-hexane to which methylaluminoxane solution was added. 1 ml of toluene methylaluminoxane solution was used. It was purchased from Schering at a concentration of 1.1 M. The charging order was 2 L of isobutane followed by a metallocene / methylaluminoxane slurry. After heating these materials to 90 ° C., 45 psi of hydrogen was introduced as measured from the pressure drop in the 30 cc cylinder, and then ethylene was introduced to maintain the total reactor pressure at 435 psig for the entire time. Ethylene was fed from the pressurized reservoir as needed during each run. Ethylene and diluent were blown off to terminate the polymerization. The polymer was recovered, dried and weighed to determine the yield. Calculate the catalyst production rate by dividing the polymer weight (g) by the weight of metallocene used (g) or the weight of metallocene + methyl aluminoxane (g), and conveniently g of the polymer per g of the desired catalyst component per hour / g-hr).

중합 결과는 하기 표 1에 제시되어 있다.The polymerization results are shown in Table 1 below.

[표 1]TABLE 1

a MAO, 메틸알루미녹산a MAO, methylaluminoxane

b 이 실시에서 사용된 촉매는 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드 였음.b The catalyst used in this example was silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane zirconium dichloride.

c 이 실시에서 사용된 촉매는 실리카-O-1-시클로펜타디에닐-9-플루오레닐메틸실란 지르코늄 디클로라이드 였음. 이 촉매는 실시 2의 실리카가 건조되지 않았다는데 있어서 실시 1과 다름.c The catalyst used in this example was silica-O-1-cyclopentadienyl-9-fluorenylmethylsilane zirconium dichloride. This catalyst is different from Example 1 in that the silica of Example 2 was not dried.

결과는 지지된 다리결합된 메탈로센이 올레핀 중합 촉매로서 유용함을 증명한다.The results demonstrate that supported bridged metallocenes are useful as olefin polymerization catalysts.

[실시예 IV]Example IV

플루오렌 25g을 디에틸 에테르 150mL에 용해시키고 헥산 내 부틸리튬 1.6 M 용액 94mL와 천천히 반응시켰다. 반응 용기는 얼음 내에서 냉각시켰다. 반응으로부터의 암적색 용액을 실온에서 밤새 교반했다. 그리고나서 디클로로메틸비닐실란 9.8 mL를 첨가했다. 반응 용기는 여전히 얼음 내에서 냉각되었다. 반응 혼합물을 실온에서 4시간 교반한 후 물 50 mL와 혼합했다. 유기상을 황산 나트륨 상에서 건조시키고 용매를 진공하에서 증발시켰다. 잔류물을 펜탄내에서 용해시키고 -18℃에서 결정화했다. 비스-9-플루오레닐메틸비닐실란으로 결정된 백색 결정상 고체를 얻었다. 비스-9-플루오레닐메틸비닐실란 1.80g을 실온에서 트리클로로실란 30 mL에 용해시켰다. 헥사클로로플라틴산 약 1 mg을 첨가하고 반응 혼합물을 실온에서 밤새 교반했다. 용매를 진공에서 증발시켰다. 백색 고체가 침전되었으며 2-(비스-9-플루오레닐-메틸실릴)-1-트리 클로로실릴에탄으로 규명되었다.25 g of fluorene was dissolved in 150 mL of diethyl ether and slowly reacted with 94 mL of a 1.6 M solution of butyllithium in hexane. The reaction vessel was cooled in ice. The dark red solution from the reaction was stirred at rt overnight. Then 9.8 mL of dichloromethylvinylsilane was added. The reaction vessel was still cooled in ice. The reaction mixture was stirred at rt for 4 h and then mixed with 50 mL of water. The organic phase was dried over sodium sulfate and the solvent was evaporated in vacuo. The residue was dissolved in pentane and crystallized at -18 ° C. A white crystalline solid was obtained, determined by bis-9-fluorenylmethylvinylsilane. 1.80 g of bis-9-fluorenylmethylvinylsilane was dissolved in 30 mL of trichlorosilane at room temperature. About 1 mg of hexachloroplatinic acid was added and the reaction mixture was stirred at rt overnight. The solvent was evaporated in vacuo. A white solid precipitated out and was identified as 2- (bis-9-fluorenyl-methylsilyl) -1-tri chlorosilylethane.

그리고나서 2-(비스-9-플루오레닐메틸실릴)-1-트리클로로실릴에탄 0.6g을 실리카 겔 (Merck No. 7734) 2.91g과 함께 톨루엔 20 mL에 현탁시키고 실리카겔을 400℃에서 탈수시켰다.Then 0.6 g of 2- (bis-9-fluorenylmethylsilyl) -1-trichlorosilylethane were suspended together with 2.91 g of silica gel (Merck No. 7734) in 20 mL of toluene and the silica gel was dehydrated at 400 ° C. .

현탁액은 또한 피리딘 1 mL를 함유했다. 반응 혼합물을 환류하에 48시간 동안 가열한 후, 상층액을 따르고 실리카 겔을 메탄을 50 mL로 2회 세척하고 디에틸 에테르 50 mL로 5회 세척했다. 회수된 지지되고 다리결합된 플루오레닐 화합물의 양은 3.16g이었다.The suspension also contained 1 mL of pyridine. The reaction mixture was heated at reflux for 48 h, then the supernatant was poured and the silica gel washed twice with 50 mL of methane and 5 times with 50 mL of diethyl ether. The amount of recovered supported bridged fluorenyl compound was 3.16 g.

그리고나서 회수된 지지된 리간드를 디에틸 에테르 50 mL에서 현탁시키고 헥산내 n-부틸리튬 1.6 M 용액 20 mL와 혼합했다. 반응 혼합물을 실온에서 48시간 동안 교반했다. 그리고나서 상층액을 기울여 따르고 잔류물을 디에틸 에테르 50 mL로 5회 세척했다. 그리고나서 고체를 디에틸 에테르 50 mL 및 지르코늄 디플로라이드 0.42g과 합했다. 상기 반응 혼합물을 실온에서 48시간동안 교반한 후 상층액을 기울여 따르고 잔류물을 디에틸 에테르 50 mL로 5회 세척했다. 그리고나서 결과 지지된 메탈로센을 건조함(drying cabinet)에서 밤새 건조시켰다. 이는 지지된 촉매 33으로 언급될 것이다.The recovered supported ligand was then suspended in 50 mL of diethyl ether and mixed with 20 mL of a n-butyllithium 1.6 M solution in hexanes. The reaction mixture was stirred at rt for 48 h. The supernatant was then decanted off and the residue washed five times with 50 mL of diethyl ether. The solid was then combined with 50 mL of diethyl ether and 0.42 g of zirconium difluoride. The reaction mixture was stirred at rt for 48 h before the supernatant was decanted and the residue was washed 5 times with 50 mL of diethyl ether. The resultant supported metallocene was then dried overnight in a drying cabinet. This will be referred to as supported catalyst 33.

[실시예 V]Example V

이 합성에서는 시클로펜타디엔 20.6 mL 및 5-헥센-2-온 11.7 mL를 메탄을 100 mL에 용해시켰다. 얼음에서 냉각시키면서 피롤리딘 12.4 mL를 첨가하고 반응 혼합물을 실온에서 밤새 교반했다. 그리고나서 빙초산 9.6 mL를 첨가했다. 반응 혼합물을 30분 동안 교반한 후 용매를 진공하에 증발시켰다. 잔류물을 디에틸 에테르 200 mL에 용해시키고 물 100 mL로 5회 세척했다. 실리카 겔을 사용하여 유기상을 여과하고 황산 나트륨 상에 건조시켰다. 용매를 진공하여 증발시켰다. 6-(3-부테닐)-6-메틸풀벤으로 결정된 황색오일을 회수했다.In this synthesis, 20.6 mL of cyclopentadiene and 11.7 mL of 5-hexen-2-one were dissolved in 100 mL of methane. 12.4 mL of pyrrolidine was added while cooling on ice and the reaction mixture was stirred at rt overnight. Then 9.6 mL of glacial acetic acid was added. The reaction mixture was stirred for 30 minutes and then the solvent was evaporated in vacuo. The residue was dissolved in 200 mL of diethyl ether and washed five times with 100 mL of water. The organic phase was filtered using silica gel and dried over sodium sulfate. The solvent was evaporated in vacuo. The yellow oil which was determined to be 6- (3-butenyl) -6-methylpulbene was recovered.

THF 100 mL에 플루오렌 10g을 용해시킴으로서 용액을 제조한 후 이를 헥산 내 n-부틸리튬 1.6 M 용액 37.6 mL와 천천히 반응시켰다. 이 암적색 용액을 실온에서 밤새 교반시켰다. 그리고나서 6-(부테닐)-6-메틸풀벤 8.8g을 THF 50 mL와 합하여 용액을 제조했다. 그리고나서 이 용액을 플루오레닐 리튬 염 용액에 30분에 걸쳐 적가했다. 상기 반응 혼합물을 실온에서 밤새 교반한 후 물 100 mL를 첨가했다. 유기상을 황산 나트륨 상에서 밤새 건조시키고 용매를 진공하에 중발시켰다. 황색 잔류물을 펜탄에 용해시키고 실리카 겔을 사용하여 여과했다. 용매를 증발에 의해 농축시켰다. 약 -18℃에서 결정화가 일어나 5-시클로펜타디에닐-5-(9-플루오레닐)-1-헥센을 백색 고체 형태로 생성했다.A solution was prepared by dissolving 10 g of fluorene in 100 mL of THF and then slowly reacted with 37.6 mL of an n-butyllithium 1.6 M solution in hexane. This dark red solution was stirred overnight at room temperature. Then a solution was prepared by combining 8.8 g of 6- (butenyl) -6-methylfulbene with 50 mL of THF. This solution was then added dropwise to the fluorenyl lithium salt solution over 30 minutes. The reaction mixture was stirred at rt overnight before 100 mL of water was added. The organic phase was dried over sodium sulfate overnight and the solvent was triturated in vacuo. The yellow residue was dissolved in pentane and filtered using silica gel. The solvent was concentrated by evaporation. Crystallization took place at about −18 ° C. to yield 5-cyclopentadienyl-5- (9-fluorenyl) -1-hexene in the form of a white solid.

그리고나서 비닐 종결된 분지를 갖는 다리결합된 리간드, 즉 5-시클로펜타디에닐-5-(9-플루오레닐)-1-헥센 1.61g을 실온에서 클로로디메틸실란 10 mL에 용해시켰다 그리고나서 헥사클로로플라틴산 약 1 mL를 첨가하고 반응 혼합물을 실온에서 밤새 교반했다. 그리고나서 용매를 진공하에 증발시켰다. 1-클로로디메틸-실릴-5-시클로펜타디에닐톤-(9-플루오레닐)-헥산으로 결정된 백색 고체를 회수했다. 그리고나서 이 물질의 일부를 실리카 겔 (Merk No.7734)과 접촉시켰으며, 본 방법은 실시예 IV의 유사 단계에서 사용된 바와 유사한 방법으로 실시예 IV에서 설명된 바와 같이 건조된 실리카 겔 2g과 1-클로로디메틸-실릴톨-5-시클로펜타디에닐-5-(9-플루오레닐)-헥산 1.56g을 접촉시킴을 포함했다. 그리고나서 실시예 IV에 설명된 일반적 유형의 기술을 사용하여 상기 고체 1.74g과 지르코늄 테트라클로라이드 0.8g을 반응시킴으로써 지지된 지르코노센을 제조했다. 결과 지지된 메탈로센은 본원에 촉매 34A로 언급될 것이다.Then 1.61 g of the bridged ligand having a vinyl terminated branch, namely 5-cyclopentadienyl-5- (9-fluorenyl) -1-hexene, was dissolved in 10 mL of chlorodimethylsilane at room temperature and then hexa About 1 mL of chloroplatinic acid was added and the reaction mixture was stirred at rt overnight. The solvent was then evaporated in vacuo. A white solid determined as 1-chlorodimethyl-silyl-5-cyclopentadienyltone- (9-fluorenyl) -hexane was recovered. A portion of this material was then contacted with silica gel (Merk No.7734), the method being similar to that used in the analogous steps of Example IV with 2 g of dried silica gel as described in Example IV. Contacting 1.56 g of 1-chlorodimethyl-silyltol-5-cyclopentadienyl-5- (9-fluorenyl) -hexane. Supported zirconocene was then prepared by reacting 1.74 g of the solid with 0.8 g of zirconium tetrachloride using the general type of technique described in Example IV. The resulting supported metallocene will be referred to herein as catalyst 34A.

[실시예 VI]Example VI

실시예 V에 기재된 것과 유사한 방법으로 실리카 겔(Merck No. 15111) 4.11g과 1-클로로디메틸-실릴-5-시클로펜타디에닐-5-(9-플루오레닐)헥산 2.96g을 합하여 다른 지지된 리간드를 제조했다. 이 지지된 플루오레닐 화합물 약 4.4g을 회수했다. 그리고나서 실시예 IV의 메탈로센을 수행하는데 사용된 것과 유사한 방법으로 상기 지지된 플루오레닐 화합물 3.81g과 지루코늄 테트라클로라이드 1.76g을 반응시켰다. 회수된 지지된 메탈로센을 본원에서 촉매 34B로 언급될 것이다.4.11 g of silica gel (Merck No. 15111) and 2.96 g of 1-chlorodimethyl-silyl-5-cyclopentadienyl-5- (9-fluorenyl) hexane were combined in a similar manner to that described in Example V. Prepared ligands. About 4.4 g of this supported fluorenyl compound was recovered. Then, 3.81 g of the supported fluorenyl compound and 1.76 g of zirconium tetrachloride were reacted in a manner similar to that used to perform the metallocene of Example IV. The recovered supported metallocene will be referred to herein as catalyst 34B.

[실시예 VII]Example VII

실시예 IV 및 V의 지지된 지르코노센 촉매를 에틸렌의 중합에 대해 평가했다. 1ℓ 실험용 오토클레이브에서 중합을 실시했다. 이 기술은 헥산 500 mL 및 메틸알루미녹산 10 mL를 오토클레이브에 장입시킴을 포함했다. 그리고나서 지지된 지르코노센을 톨루엔 내에 현탁시키고 메틸 알루미녹산과 혼합시키고 오토클레이브에 첨가했다. 오토클레이브를 60℃에서 항온으로 조절하고 9 바아의 일정한 에틸렌 압력을 가하고 1시간후 반응을 중지시켰다. 이들 중합의 결과는 하기 표 2에 요약되어있다.The supported zirconocene catalysts of Examples IV and V were evaluated for the polymerization of ethylene. The polymerization was carried out in a 1 L experimental autoclave. This technique involved loading 500 mL of hexane and 10 mL of methylaluminoxane into an autoclave. Supported zirconocene was then suspended in toluene, mixed with methyl aluminoxane and added to the autoclave. The autoclave was adjusted to constant temperature at 60 ° C. and a constant ethylene pressure of 9 bar was added and the reaction was stopped after 1 hour. The results of these polymerizations are summarized in Table 2 below.

[표 2]TABLE 2

결과는 지지된 메탈로센이 에틸렌의 중합에 사용될 수 있음을 나타낸다.The results show that supported metallocenes can be used for the polymerization of ethylene.

프로필렌의 중합에 대해 촉매 34B를 또한 평가했다. 이 경우, 메틸알루미녹산 10 mL를 오토플레이브에 첨가하고 프로필렌 500 mL를 그대로 응축시켰다. 내용물을 20℃에서 30분간 교반하여 프로필렌을 건조시켰다. 지지된 지르코노센을 다시 메틸알루미녹산과 함께 톨루엔내에 현탁시키고 오토클레이브에 첨가했다. 다시 반응을 60℃에서 실시하고 1시간 후 중단시켰다. 반응은 폴리프로필렌 62g을 생성했다. 메탈로센 g 당 폴리에틸렌 g으로 활성은 129 였다.Catalyst 34B was also evaluated for the polymerization of propylene. In this case, 10 mL of methylaluminoxane was added to the autoplate and 500 mL of propylene was condensed as it was. The contents were stirred at 20 ° C. for 30 minutes to dry propylene. Supported zirconocene was again suspended in toluene with methylaluminoxane and added to the autoclave. Again the reaction was carried out at 60 ° C. and stopped after 1 hour. The reaction produced 62 g of polypropylene. The activity was 129 with polyethylene g per gram metallocene.

상기 실시예에서 제시된 결과는 본 발명의 목적을 수행하고 언급된 결과 및 잇점 뿐 아니라 그내에 내재된 것을 얻기 위해 잘 맞는다는 것을 분명하게 나타낸다. 당업자에 의해 변화가 이루어질 수 있으나 상기 변화는 명세서 및 특허 청구의 범위에 의해 규정된 바와 같이 본 발명의 정신내에 포함된다.The results presented in the above examples clearly show that they are well suited to carry out the objects of the present invention and to obtain the results and advantages mentioned as well as those inherent therein. Changes may be made by those skilled in the art, but such changes are included within the spirit of the invention as defined by the specification and claims.

Claims (9)

활성 할로겐을 갖는 시클로펜타디엔-형 화합물을 표면 히드록실기를 갖는 무기 지지체와, 상기 활성 할로겐과 상기 지지체상 히드록기 간의 반응을 초래시켜 상기 시클로펜타디엔-형 기를 상기 지지체에 화학적으로 결합시키기에 적합한 조건하에서 접촉시키는 것으로 이루어지는, 지지된 시클로펜타디엔-형 화합물 제조 방법.To cause the cyclopentadiene-type compound having an active halogen to react with the inorganic support having a surface hydroxyl group, and the active halogen and the hydroxyl group on the support to chemically bond the cyclopentadiene-type group to the support. A process for preparing a supported cyclopentadiene-type compound, which consists of contacting under suitable conditions. 제1항에 있어서, 상기 시클로펜타디에닐-형 화합물은 2-(비스-9-플루오레닐메틸실릴)-1-트리클로로실릴에탄, 5-시클로펜타디에닐-5-(9-플루오레닐)-1-트리클로로실릴 헥산, 또는 1-클로로디메틸실릴-5-시클로펜타디에닐-5-(9-플루오레닐) 헥산인 방법.The cyclopentadienyl-type compound of claim 1, wherein the cyclopentadienyl-type compound is 2- (bis-9-fluorenylmethylsilyl) -1-trichlorosilylethane, 5-cyclopentadienyl-5- (9-fluore). Nil) -1-trichlorosilyl hexane, or 1-chlorodimethylsilyl-5-cyclopentadienyl-5- (9-fluorenyl) hexane. 제2항에 있어서, 상기 지지체가 본질적으로 실리카로 구성되는 방법.The method of claim 2, wherein the support consists essentially of silica. 하기 일반식의 다리결합된 시클로펜타디에닐-형 화합물:Crosslinked cyclopentadienyl-type compounds of the general formula: (식에서 각각의 Z는 같거나 다를 수 있으며 시클로펜타디에닐, 인데닐, 테트라히드로인데닐 또는 플루오레닐 라디칼이고, n은 0-10 범위내 수이고; R은 Si, Ge, C 또는 Sn이고; R″은 수소, 또는 C1-10알킬기, 또는 C6-10아릴기로부터 선택된다.).Wherein each Z may be the same or different and is a cyclopentadienyl, indenyl, tetrahydroindenyl or fluorenyl radical, n is a number in the range 0-10; R is Si, Ge, C or Sn R ″ is selected from hydrogen, or a C 1-10 alkyl group, or a C 6-10 aryl group.). 제4항에 있어서, 비스-9-플루오레닐메틸비닐실란인 다리결합된 시클로펜타디에닐-형 화합물.5. The bridged cyclopentadienyl-type compound of claim 4, which is bis-9-fluorenylmethylvinylsilane. 제4항에 있어서, 5-시클로펜타디에닐-4-(9-플루오레닐)-1-헥센인 다리결합된 시클로펜타디에닐-형 화합물.5. The bridged cyclopentadienyl-type compound of claim 4, which is 5-cyclopentadienyl-4- (9-fluorenyl) -1-hexene. 제4-6항 중 어느 한 항에 따르거나 또는 제1, 2 또는 3항 중 어느 한 항에 따른 방법에 의해 생성된 지지된 시클로펜타디에닐-형 생성물을 적합한 반응 조건하에 적합한 전이 금속 화합물과 반응시키는 것으로 이루어지는 메탈로센 생성 방법.Supported cyclopentadienyl-type products produced according to any one of claims 4-6 or by a method according to any one of claims 1, 2 or 3, are selected from suitable transition metal compounds with suitable reaction conditions. A metallocene production method comprising reacting. 올레핀을 적합한 중합 조건하에 제7항에 따른 방법에 의해 생성된 지지된 메탈로센과 접촉시키는 것을 포함하는 올레핀 중합 방법.An olefin polymerization process comprising contacting an olefin with a supported metallocene produced by the process according to claim 7 under suitable polymerization conditions. 제8항에 있어서, 상기 지지된 메탈로센이 올레핀 중합에 다른 효과를 주는 두개이상의 다른 메탈로센을 함유하는 방법.The method of claim 8, wherein the supported metallocene contains at least two different metallocenes that have different effects on olefin polymerization.
KR1019940013126A 1993-06-11 1994-06-10 Metallocenes and preparation methods thereof KR100282461B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US8/075.712 1993-06-11
US08/075,712 1993-06-11
US08/075,712 US5399636A (en) 1993-06-11 1993-06-11 Metallocenes and processes therefor and therewith
US8/154.224 1993-11-17
US08/154,224 US5466766A (en) 1991-05-09 1993-11-17 Metallocenes and processes therefor and therewith
US08/154,224 1993-11-17

Publications (2)

Publication Number Publication Date
KR950000722A KR950000722A (en) 1995-01-03
KR100282461B1 true KR100282461B1 (en) 2001-04-02

Family

ID=26757198

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940013126A KR100282461B1 (en) 1993-06-11 1994-06-10 Metallocenes and preparation methods thereof

Country Status (13)

Country Link
US (3) US5466766A (en)
EP (2) EP1304319A3 (en)
JP (1) JPH07149781A (en)
KR (1) KR100282461B1 (en)
AU (1) AU669442B2 (en)
BR (1) BR9402391A (en)
CA (1) CA2124731C (en)
DE (1) DE69432330T2 (en)
ES (1) ES2196015T3 (en)
FI (1) FI942744A (en)
NO (1) NO942193L (en)
SG (1) SG52550A1 (en)
TW (1) TW287176B (en)

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69525679T2 (en) * 1994-05-18 2002-11-07 Mitsubishi Chem Corp Catalyst for polymerizing an olefin and process for polymerizing the olefin
US5498581A (en) * 1994-06-01 1996-03-12 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
FR2725993B1 (en) * 1994-10-21 1996-11-29 Atochem Elf Sa SOLID CATALYTIC COMPONENT CONTAINING ZIRCONIUM AND CYCLOALCADIENYL GROUPS, PROCESS FOR OBTAINING SAME AND PROCESS FOR POLYMERIZATION OF OLEFINS IN ITS PRESENCE
US5770755A (en) * 1994-11-15 1998-06-23 Phillips Petroleum Company Process to prepare polymeric metallocenes
IT1272939B (en) * 1995-02-01 1997-07-01 Enichem Spa METALLOCENIC CATALYST SUPPORTED FOR THE (CO) POLYMERIZATION OF OLEFINS
DE19519884A1 (en) * 1995-05-31 1996-12-05 Basf Ag Process for the production of bridged metallocene complexes
US5885924A (en) * 1995-06-07 1999-03-23 W. R. Grace & Co.-Conn. Halogenated supports and supported activators
DE19527652A1 (en) * 1995-07-28 1997-01-30 Hoechst Ag Metallocene compound
ES2120868B1 (en) * 1995-08-03 2000-09-16 Repsol Quimica Sa METALOGEN TYPE HETEREOGENEOUS CATALYST SYSTEM, FOR PROCESSES OF OBTAINING POLYOLEFINS.
WO1997015582A1 (en) * 1995-10-27 1997-05-01 The Dow Chemical Company Supportable biscyclopentadienyl metal complexes
IT1276084B1 (en) * 1995-11-07 1997-10-24 Enichem Spa CYCLOPENTADIENIL BRIDGED DERIVATIVES AND PROCEDURE FOR THEIR PREPARATION
FI107533B (en) * 1996-04-03 2001-08-31 Fortum Oil & Gas Oy Functional surfaces for conducting chemical reactions and processes for their preparation
FI961511A (en) * 1996-04-03 1997-10-04 Mikrokemia Oy Process for the preparation of olefin polymerization catalysts
ES2129323B1 (en) * 1996-04-18 2000-09-16 Repsol Quimica Sa PROCEDURE FOR OBTAINING A CATALYTIC SYSTEM FOR THE POLYMERIZATION OF ALPHA-OLEFINS IN SUSPENSION IN GAS PHASE AT LOW AND HIGH TEMPERATURES OR IN MASS AT HIGH PRESSURES AND HIGH OR LOW TEMPERATURES
IT1283010B1 (en) * 1996-05-15 1998-04-03 Enichem Spa SUPPORTED METALLOCENE COMPLEX AND PROCEDURE FOR ITS PREPARATION
US5723402A (en) * 1996-05-30 1998-03-03 Pq Corporation Silicas with specific contents of cations as supports for olefin polymerization catalysts
US5726264A (en) * 1996-06-14 1998-03-10 Phillips Petroleum Company Processes to produce metallocene compounds and polymerization processes therewith
JP2000514493A (en) 1996-07-15 2000-10-31 モービル・オイル・コーポレーション Comonomer pretreatment bimetallic catalysts for blow molding and film applications
EP0839834B1 (en) 1996-10-30 2001-06-13 Repsol Quimica S.A. Catalyst systems for the polymerization and copolymerization of alpha-olefins
ES2154017T3 (en) * 1996-10-31 2001-03-16 Repsol Quimica Sa CATALYTIC SYSTEMS FOR THE POLYMERIZATION AND COPOLYMERIZATION OF ALFA-OLEFINS.
US6180736B1 (en) 1996-12-20 2001-01-30 Exxon Chemical Patents Inc High activity metallocene polymerization process
US5854363A (en) * 1997-01-08 1998-12-29 Phillips Petroleum Company (Omega-alkenyl) (cyclopentacarbyl) metallocene compounds
US6329541B1 (en) 1997-01-08 2001-12-11 Phillips Petroleum Company Organo omega-alkenyl cyclopentacarbyl silane-bridged metallocene compounds
US5856547A (en) * 1997-01-08 1999-01-05 Phillips Petroleum Company Organo omega-alkenyl cyclopentacarbyl silane compounds
JP2001509185A (en) 1997-01-08 2001-07-10 ハーキュリーズ・インコーポレーテッド Solid acids as catalysts for the production of hydrocarbon resins
EP0856524A1 (en) 1997-02-01 1998-08-05 Repsol Quimica S.A. Heterogeneous catalyst components for olefins polymerization, preparation process and use thereof
JP3609609B2 (en) * 1997-03-19 2005-01-12 コリア インスティテュート オブ サイエンス アンド テクノロジー Organosilane derivative substituted with fluorenyl group and method for producing the same
US6143683A (en) * 1997-04-09 2000-11-07 Fina Technology, Inc. Metallocene catalyst and catalyst system for polymerizing an olefin having at least 3 carbon atoms
AU3212997A (en) * 1997-05-22 1998-12-11 Phillips Petroleum Company Method for making and using a prepolymerized olefin polymerization catalyst
FR2765225B1 (en) * 1997-06-30 2000-01-14 Atochem Elf Sa SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION
CA2313244A1 (en) 1997-12-08 1999-06-17 Steven P. Diefenbach Catalyst compositions of enhanced productivity
US6677265B1 (en) 1997-12-08 2004-01-13 Albemarle Corporation Process of producing self-supported catalysts
US6551955B1 (en) 1997-12-08 2003-04-22 Albemarle Corporation Particulate group 4 metallocene-aluminoxane catalyst compositions devoid of preformed support, and their preparation and their use
EP1046246A4 (en) * 1998-02-04 2004-06-09 Robert F Friedman Method and apparatus for combining transponders on multiple satellites into virtual channels
KR100358225B1 (en) 1998-04-09 2003-01-24 주식회사 엘지화학 Polymerization method using metallocene enabling cocatalyst to be recirculated
KR100380018B1 (en) 1998-04-09 2003-10-04 주식회사 엘지화학 Supported metallocene catalyst and olefin polymerization method using the catalyst
DE69914012T2 (en) 1998-04-27 2004-12-09 Repsol Quimica S.A. Catalyst systems for the polymerization and copolymerization of alpha olefins
ATE264344T1 (en) * 1998-04-29 2004-04-15 Repsol Quimica Sa METHOD AND USE OF HETERGENEOUS CATALYST COMPONENTS FOR OLEFIN POLYMERIZATION
US6207606B1 (en) * 1998-05-15 2001-03-27 Univation Technologies, Llc Mixed catalysts and their use in a polymerization process
BR9917674B1 (en) 1998-05-18 2012-06-12 A process for producing a catalyst composition for polymerizing monomers.
US6159888A (en) * 1998-09-09 2000-12-12 Phillips Petroleum Company Polymerization catalyst systems, their preparation, and use
KR100430438B1 (en) 1998-10-22 2004-07-19 대림산업 주식회사 Supported metallocence catalyst, preparing method thereof and preparing method of polyolefin using the same
DE19858016A1 (en) * 1998-12-16 2000-06-21 Basf Ag New metallocene complexes
US6187880B1 (en) 1999-02-16 2001-02-13 Phillips Petroleum Company Process for producing an olefin polymer using a metallocene
US6239300B1 (en) 1999-02-17 2001-05-29 Phillips Petroleum Company Metallocene production process
US6559091B1 (en) * 1999-02-22 2003-05-06 Eastman Chemical Company Catalysts containing N-pyrrolyl substituted nitrogen donors
US6545108B1 (en) 1999-02-22 2003-04-08 Eastman Chemical Company Catalysts containing N-pyrrolyl substituted nitrogen donors
KR100367463B1 (en) * 1999-03-03 2003-01-14 주식회사 엘지화학 Metallocene compounds and their use for olefin polymerization
US6288181B1 (en) 1999-03-30 2001-09-11 Eastman Chemical Company Process for producing polyolefins
US6313236B1 (en) 1999-03-30 2001-11-06 Eastman Chemical Company Process for producing polyolefins
US6232415B1 (en) 1999-03-31 2001-05-15 Phillips Petroleum Company Process to produce a monovinylaromatic/ monoolefin polymer and said monovinylaromatic/monoolefin polymer
EP1046642B1 (en) * 1999-04-22 2004-06-30 Basell Polyolefine GmbH Process for preparation of silyl-bridged fluorenyl-cyclopentadienyl ligands and silyl-bridged fluorenyl-cyclopentadienyl metallocenes
US6291382B1 (en) * 1999-05-24 2001-09-18 Phillips Petroleum Company Metallocenes, polymerization catalyst systems, their preparation, and use
US6417301B1 (en) 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
US6417299B1 (en) 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
US6417298B1 (en) 1999-06-07 2002-07-09 Eastman Chemical Company Process for producing ethylene/olefin interpolymers
DE19927766A1 (en) * 1999-06-17 2000-12-21 Basf Ag Supported catalyst for olefin polymerization comprises copolymer support, metallocene complex and metallocenium ion forming compound
US7041618B2 (en) * 1999-06-22 2006-05-09 Lg Chemical Ltd. Supported metallocene catalyst and olefin polymerization using the same
US7247595B2 (en) * 1999-06-22 2007-07-24 Lg Chem, Ltd. Supported metallocene catalyst and olefin polymerization using the same
US6187879B1 (en) 1999-08-31 2001-02-13 Eastman Chemical Company Process for producing polyolefins
BR9917469B1 (en) 1999-08-31 2008-11-18 process for polymerizing an olefin and / or an olefin and at least one or more other olefins, film, and article.
US6391816B1 (en) * 1999-10-27 2002-05-21 Phillips Petroleum Organometal compound catalyst
US6420580B1 (en) 1999-11-05 2002-07-16 Univation Technologies, Llc Catalyst compositions and method of polymerization therewith
EP1242179B1 (en) 1999-12-16 2013-05-15 Chevron Phillips Chemical Company LP Organometal compound catalyst
US6632894B1 (en) * 1999-12-30 2003-10-14 Phillips Petroleum Company Organometal catalyst compositions
US7041617B2 (en) 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
US20040127658A1 (en) * 2000-02-18 2004-07-01 Eastman Chemical Company Productivity catalysts and microstructure control
US6579823B2 (en) 2000-02-18 2003-06-17 Eastman Chemical Company Catalysts containing per-ortho aryl substituted aryl or heteroaryl substituted nitrogen donors
US7056996B2 (en) * 2000-02-18 2006-06-06 E. I. Du Pont De Nemours And Company Productivity catalysts and microstructure control
US6605677B2 (en) 2000-02-18 2003-08-12 Eastman Chemical Company Olefin polymerization processes using supported catalysts
US8721783B2 (en) * 2000-06-06 2014-05-13 Dow Corning Corporation Compositions for treating materials and methods of treating same
PT1286592E (en) * 2000-06-06 2008-12-16 Woodholdings Environmental Inc Preservative compositions for wood products
US7192470B2 (en) * 2003-05-27 2007-03-20 Woodholdings Environmental, Inc. Preservative compositions for materials and method of preserving same
US7964031B2 (en) * 2000-06-06 2011-06-21 Dow Corning Corporation Compositions for treating materials and methods of treating same
US6706891B2 (en) 2000-11-06 2004-03-16 Eastman Chemical Company Process for the preparation of ligands for olefin polymerization catalysts
FR2826957B1 (en) * 2001-07-09 2005-09-30 Centre Nat Rech Scient METHOD FOR FUNCTIONALIZING SOLID SUBSTRATES, FUNCTIONALIZED SOLID SUBSTRATES AND USES THEREOF
US8008412B2 (en) 2002-09-20 2011-08-30 Exxonmobil Chemical Patents Inc. Polymer production at supersolution conditions
US8058371B2 (en) 2002-09-20 2011-11-15 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization
RU2339650C2 (en) 2003-03-21 2008-11-27 Дау Глобал Текнолоджиз, Инк. Method for olefin polymerisation with adjustable morphology
KR100579843B1 (en) * 2003-04-01 2006-05-12 주식회사 엘지화학 Supported hybrid metallocene catalysts, method for preparing the same, and method for preparing polyolefin using the same
US6953764B2 (en) 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US7119153B2 (en) 2004-01-21 2006-10-10 Jensen Michael D Dual metallocene catalyst for producing film resins with good machine direction (MD) elmendorf tear strength
US7696280B2 (en) 2004-04-30 2010-04-13 Chevron Phillips Chemical Company, Lp HDPE resins for use in pressure pipe and related applications
US7064225B2 (en) * 2004-06-25 2006-06-20 Chevron Phillips Chemical Company, L.P. Synthesis of ansa-metallocenes and their parent ligands in high yield
US7294599B2 (en) 2004-06-25 2007-11-13 Chevron Phillips Chemical Co. Acidic activator-supports and catalysts for olefin polymerization
US7148298B2 (en) * 2004-06-25 2006-12-12 Chevron Phillips Chemical Company, L.P. Polymerization catalysts for producing polymers with low levels of long chain branching
US20050288461A1 (en) * 2004-06-25 2005-12-29 Jensen Michael D Polymerization catalysts for producing polymers with low levels of long chain branching
KR100690345B1 (en) * 2004-09-03 2007-03-09 주식회사 엘지화학 Supported metallocene catalyst using the metallocene compound, method for preparing the same and method for manufacturing polyolefins using the same
US7163906B2 (en) * 2004-11-04 2007-01-16 Chevron Phillips Chemical Company, Llp Organochromium/metallocene combination catalysts for producing bimodal resins
WO2006065844A2 (en) * 2004-12-16 2006-06-22 Exxonmobil Chemical Patents Inc. Process for producing substituted metallocene compounds for olefin polymerization
US7834204B2 (en) 2005-05-25 2010-11-16 Mitsui Chemicals, Inc. Fluorene derivative, transition metal compound, catalyst for olefin polymerization, and process for producing olefin polymer
US7420010B2 (en) * 2005-11-02 2008-09-02 Chevron Philips Chemical Company Lp Polyethylene compositions
US7538168B2 (en) 2005-12-14 2009-05-26 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
US7868197B2 (en) 2005-12-14 2011-01-11 Exxonmobil Chemical Patents Inc. Halogen substituted heteroatom-containing metallocene compounds for olefin polymerization
US7763562B2 (en) * 2005-12-14 2010-07-27 Exxonmobil Chemical Patents Inc. Heteroatom bridged metallocene compounds for olefin polymerization
US7667064B2 (en) * 2005-12-14 2010-02-23 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
US7550544B2 (en) 2005-12-14 2009-06-23 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
EP1803747A1 (en) 2005-12-30 2007-07-04 Borealis Technology Oy Surface-modified polymerization catalysts for the preparation of low-gel polyolefin films
US7517939B2 (en) 2006-02-02 2009-04-14 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US7576163B2 (en) * 2006-03-31 2009-08-18 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing polymers with low levels of long chain branching
RU2008147906A (en) 2006-05-05 2010-06-10 Дау Глобал Текнолоджиз Инк. (Us) HAFNI COMPLEXES WITH SUBSTITUTED CARBAZOLYL AND IMIDAZOLE LIGANDS
US8017705B2 (en) * 2006-11-17 2011-09-13 Mitsui Chemicals, Inc. Process for production of syndiotactic propylene polymer
US8242237B2 (en) 2006-12-20 2012-08-14 Exxonmobil Chemical Patents Inc. Phase separator and monomer recycle for supercritical polymerization process
US20080276970A1 (en) * 2007-05-09 2008-11-13 John Christopher Cameron Apparatus and method for treating materials with compositions
US7897539B2 (en) * 2007-05-16 2011-03-01 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US7572948B2 (en) * 2007-05-16 2009-08-11 Chevron Phillips Chemical Company, Lp Fulvene purification
US8058200B2 (en) * 2007-05-17 2011-11-15 Chevron Phillips Chemical Company, L.P. Catalysts for olefin polymerization
US8119553B2 (en) 2007-09-28 2012-02-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with low melt elasticity
US7799721B2 (en) * 2007-09-28 2010-09-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation
TW200932762A (en) 2007-10-22 2009-08-01 Univation Tech Llc Polyethylene compositions having improved properties
TW200936619A (en) 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
US7812104B2 (en) * 2008-01-18 2010-10-12 Exxonmobil Chemical Patents Inc. Production of propylene-based polymers
US8318875B2 (en) 2008-01-18 2012-11-27 Exxonmobil Chemical Patents Inc. Super-solution homogeneous propylene polymerization and polypropylenes made therefrom
KR101698618B1 (en) 2009-01-08 2017-01-20 유니베이션 테크놀로지즈, 엘엘씨 Additive for polyolefin polymerization processes
WO2010080871A1 (en) 2009-01-08 2010-07-15 Univation Technologies, Llc Additive for gas phase polymerization processes
SG176790A1 (en) 2009-06-16 2012-01-30 Chevron Phillips Chemical Co Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends
EP2456796B1 (en) 2009-07-23 2013-07-17 Univation Technologies, LLC Polymerization reaction system
KR101154507B1 (en) 2009-07-31 2012-06-13 주식회사 엘지화학 Metallocene compounds, catalyst composition comprising the same, and method for preparation of olefin-based polymer using the same
MY159256A (en) 2010-02-18 2016-12-30 Univation Tech Llc Methods for operating a polymerization reactor
BR112012021122B1 (en) 2010-02-22 2020-01-07 Univation Technologies, Llc CATALYTIC SYSTEM, METHOD FOR PREPARING THE CATALYTIC SYSTEM AND METHOD FOR POLYMERIZATION OF OLEFINS
WO2011129956A1 (en) 2010-04-13 2011-10-20 Univation Technologies, Llc Polymer blends and films made therefrom
BR112013000679A2 (en) 2010-07-16 2016-05-31 Univation Tech Llc systems and methods for measuring particle accumulation on reactor surfaces
WO2012009215A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring static charge on particulates
WO2012015898A1 (en) 2010-07-28 2012-02-02 Univation Technologies, Llc Systems and methods for measuring velocity of a particle/fluid mixture
US8476394B2 (en) 2010-09-03 2013-07-02 Chevron Philips Chemical Company Lp Polymer resins having improved barrier properties and methods of making same
US8932975B2 (en) 2010-09-07 2015-01-13 Chevron Phillips Chemical Company Lp Catalyst systems and methods of making and using same
CN103298842B (en) 2010-12-17 2016-08-31 尤尼威蒂恩技术有限责任公司 System and the method for hydrocarbon is reclaimed from polyolefin purging gaseous product
RU2577324C2 (en) 2010-12-22 2016-03-20 Юнивейшн Текнолоджиз, Ллк Additive for methods of polyolefin polymerisation
CN103328717B (en) 2011-01-18 2016-07-06 派特拉国际控股有限责任公司 The method processing base material with halogenated silanes
US8440772B2 (en) 2011-04-28 2013-05-14 Chevron Phillips Chemical Company Lp Methods for terminating olefin polymerizations
WO2013028283A1 (en) 2011-08-19 2013-02-28 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
EP2776476B1 (en) 2011-11-08 2019-03-13 Univation Technologies, LLC Methods for producing polyolefins with catalyst systems
US8487053B2 (en) 2011-11-30 2013-07-16 Chevron Phillips Chemical Company Lp Methods for removing polymer skins from reactor walls
US8501882B2 (en) 2011-12-19 2013-08-06 Chevron Phillips Chemical Company Lp Use of hydrogen and an organozinc compound for polymerization and polymer property control
US8703883B2 (en) 2012-02-20 2014-04-22 Chevron Phillips Chemical Company Lp Systems and methods for real-time catalyst particle size control in a polymerization reactor
EP2800766B1 (en) 2012-03-05 2019-09-04 Univation Technologies, LLC Methods for making catalyst compositions and polymer products produced therefrom
US10273315B2 (en) 2012-06-20 2019-04-30 Chevron Phillips Chemical Company Lp Methods for terminating olefin polymerizations
US8916494B2 (en) 2012-08-27 2014-12-23 Chevron Phillips Chemical Company Lp Vapor phase preparation of fluorided solid oxides
US8940842B2 (en) 2012-09-24 2015-01-27 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations
JP5925100B2 (en) * 2012-10-03 2016-05-25 本田技研工業株式会社 Method for producing polypropylene composition
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
CA2800056A1 (en) 2012-12-24 2014-06-24 Nova Chemicals Corporation Polyethylene blend compositions
EP2938434B1 (en) 2012-12-28 2022-05-04 Univation Technologies, LLC Supported catalyst with improved flowability
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
KR102113899B1 (en) 2013-02-07 2020-05-21 유니베이션 테크놀로지즈, 엘엘씨 Preparation of polyolefin
US8815357B1 (en) 2013-02-27 2014-08-26 Chevron Phillips Chemical Company Lp Polymer resins with improved processability and melt fracture characteristics
US9181369B2 (en) 2013-03-11 2015-11-10 Chevron Phillips Chemical Company Lp Polymer films having improved heat sealing properties
US10654948B2 (en) 2013-03-13 2020-05-19 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US10577440B2 (en) 2013-03-13 2020-03-03 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
CN107266620B (en) 2013-03-15 2020-09-01 尤尼威蒂恩技术有限责任公司 Ligands for catalysts
JP6360549B2 (en) 2013-03-15 2018-07-18 ユニベーション・テクノロジーズ・エルエルシー Tridentate nitrogen-based ligands for olefin polymerization catalysts
EP3287473B1 (en) 2013-06-05 2019-10-16 Univation Technologies, LLC Protecting phenol groups
US10208139B2 (en) 2014-08-19 2019-02-19 Univation Technologies, Llc Fluorinated catalyst supports and catalyst systems
BR112017003306B1 (en) 2014-08-19 2022-03-03 Univation Technologies, Llc Method for preparing a fluorinated catalyst support and catalyst system
CA2957809C (en) 2014-08-19 2023-01-03 Univation Technologies, Llc Fluorinated catalyst supports and catalyst systems
US9828451B2 (en) 2014-10-24 2017-11-28 Chevron Phillips Chemical Company Lp Polymers with improved processability for pipe applications
WO2016118566A1 (en) 2015-01-21 2016-07-28 Univation Technologies, Llc Methods for gel reduction in polyolefins
EP3915759A1 (en) 2015-01-21 2021-12-01 Univation Technologies, LLC Method for controlling polymer chain scission
KR102006096B1 (en) 2015-05-08 2019-07-31 엑손모빌 케미칼 패턴츠 인코포레이티드 Polymerization method
KR102578006B1 (en) 2015-05-11 2023-09-12 더블유.알. 그레이스 앤드 캄파니-콘. Modified clay, process for preparing supported metallocene polymerization catalyst, prepared catalyst, and use thereof
CA2985613C (en) 2015-05-11 2021-05-25 W.R. Grace & Co.-Conn. Process to produce modified clay, modified clay produced and use thereof
US9708426B2 (en) 2015-06-01 2017-07-18 Chevron Phillips Chemical Company Lp Liquid-solid sampling system for a loop slurry reactor
WO2017078974A1 (en) 2015-11-05 2017-05-11 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US9645131B1 (en) 2015-12-04 2017-05-09 Chevron Phillips Chemical Company Lp Polymer compositions having improved processability and methods of making and using same
US9645066B1 (en) 2015-12-04 2017-05-09 Chevron Phillips Chemical Company Lp Polymer compositions having improved processability and methods of making and using same
US10005861B2 (en) 2016-06-09 2018-06-26 Chevron Phillips Chemical Company Lp Methods for increasing polymer production rates with halogenated hydrocarbon compounds
WO2018063767A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018063765A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
EP3519466B1 (en) 2016-09-27 2023-07-05 Univation Technologies, LLC Method for long chain branching control in polyethylene production
WO2018063764A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018067259A1 (en) * 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Metallocene catalysts, catalyst systems, and methods for using the same
WO2018118155A1 (en) 2016-12-20 2018-06-28 Exxonmobil Chemical Patents Inc. Polymerization process
US11311870B2 (en) 2017-02-07 2022-04-26 Exxonmobil Chemical Patents Inc. Processes for reducing the loss of catalyst activity of a Ziegler-Natta catalyst
US11193008B2 (en) 2017-04-10 2021-12-07 Exxonmobil Chemical Patents Inc. Methods for making polyolefin polymer compositions
US10550252B2 (en) 2017-04-20 2020-02-04 Chevron Phillips Chemical Company Lp Bimodal PE resins with improved melt strength
US10947329B2 (en) 2017-05-10 2021-03-16 Univation Technologies, Llc Catalyst systems and processes for using the same
US11591417B2 (en) 2017-12-13 2023-02-28 Exxonmobil Chemical Patents Inc. Deactivation methods for active components from gas phase polyolefin polymerization processes
WO2019173030A1 (en) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Methods of preparing and monitoring a seed bed for polymerization reactor startup
EP3788081A1 (en) 2018-05-02 2021-03-10 ExxonMobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
US11459408B2 (en) 2018-05-02 2022-10-04 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
US10774161B2 (en) 2019-01-31 2020-09-15 Chevron Phillips Chemical Company Lp Systems and methods for polyethylene recovery with low volatile content
EP4097153A1 (en) 2020-01-27 2022-12-07 Formosa Plastics Corporation, U.S.A. Process for preparing catalysts and catalyst compositions
US11339229B2 (en) 2020-01-27 2022-05-24 Formosa Plastics Corporation, U.S.A. Process for preparing catalysts and catalyst compositions
CN116234837A (en) 2020-07-22 2023-06-06 埃克森美孚化学专利公司 Polyolefin composition and articles thereof
WO2022126068A1 (en) 2020-12-08 2022-06-16 Exxonmobil Chemical Patents Inc. High density polyethylene compositions with long-chain branching
US20230183390A1 (en) 2021-12-15 2023-06-15 Chevron Phillips Chemical Company Lp Production of polyethylene and ethylene oligomers from ethanol and the use of biomass and waste streams as feedstocks to produce the ethanol
US11845814B2 (en) 2022-02-01 2023-12-19 Chevron Phillips Chemical Company Lp Ethylene polymerization processes and reactor systems for the production of multimodal polymers using combinations of a loop reactor and a fluidized bed reactor
US20230331875A1 (en) 2022-04-19 2023-10-19 Chevron Phillips Chemical Company Lp Loop slurry periodogram control to prevent reactor fouling and reactor shutdowns
WO2023239560A1 (en) 2022-06-09 2023-12-14 Formosa Plastics Corporaton, U.S.A. Clay composite support-activators and catalyst compositions

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530912A (en) * 1981-06-04 1985-07-23 Chemplex Company Polymerization catalyst and method
US4530914A (en) * 1983-06-06 1985-07-23 Exxon Research & Engineering Co. Process and catalyst for producing polyethylene having a broad molecular weight distribution
US4808561A (en) * 1985-06-21 1989-02-28 Exxon Chemical Patents Inc. Supported polymerization catalyst
US5055438A (en) * 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
BG44908A1 (en) * 1987-05-14 1989-03-15 Nedjalko K Ljakov
US5202398A (en) * 1987-06-05 1993-04-13 Hoechst Aktiengesellschaft Process for the preparation of a 1-olefin polymer
DE3718888A1 (en) * 1987-06-05 1988-12-22 Hoechst Ag METHOD FOR PRODUCING A 1-OLEFIN POLYMER
US5086025A (en) * 1988-03-29 1992-02-04 Exxon Chemical Patents Inc. Method for preparing a silica gel supported metallocene-alumoxane catalyst
JPH01259004A (en) * 1988-04-11 1989-10-16 Mitsui Toatsu Chem Inc Polymerization of olefin
JPH01259005A (en) * 1988-04-11 1989-10-16 Mitsui Toatsu Chem Inc Polymerization of olefin
US4892851A (en) * 1988-07-15 1990-01-09 Fina Technology, Inc. Process and catalyst for producing syndiotactic polyolefins
DE3840772A1 (en) * 1988-12-03 1990-06-07 Hoechst Ag METHOD FOR PRODUCING A HETEROGENIC METALLOCENE CATALYST COMPONENT
DE3844282A1 (en) * 1988-12-30 1990-07-05 Hoechst Ag BISINDENYL DERIVATIVE AND METHOD FOR THE PRODUCTION THEREOF
DE3916555A1 (en) * 1989-05-20 1990-11-22 Hoechst Ag PROCESS FOR THE PRODUCTION OF ETHYLENE POLYMERS
DE3922546A1 (en) * 1989-07-08 1991-01-17 Hoechst Ag METHOD FOR THE PRODUCTION OF CYCLOOLEFINPOLYMERS
JP3115595B2 (en) * 1990-07-24 2000-12-11 三井化学株式会社 Polymerization catalyst for α-olefin and method for producing poly-α-olefin using the same
US5243001A (en) * 1990-11-12 1993-09-07 Hoechst Aktiengesellschaft Process for the preparation of a high molecular weight olefin polymer
ES2071888T3 (en) * 1990-11-12 1995-07-01 Hoechst Ag BISINDENILMETALOCENOS SUBSTITUTED IN POSITION 2, PROCEDURE FOR ITS PREPARATION AND USE AS CATALYSTS IN THE POLYMERIZATION OF OLEFINS.
DE59107926D1 (en) * 1990-11-12 1996-07-18 Hoechst Ag Metallocenes with ligands from 2-substituted indenyl derivatives, processes for their preparation and their use as catalysts
US5169818A (en) * 1991-01-12 1992-12-08 Hoechst Aktiengesellschaft Metallocene (co)polymers, process for their preparation and their use as catalysts
ATE166895T1 (en) * 1991-03-09 1998-06-15 Targor Gmbh METHOD FOR PRODUCING CHEMICALLY UNIFORM CYCLOOLEFIN COPOLYMERS
US5401817A (en) * 1991-05-09 1995-03-28 Phillips Petroleum Company Olefin polymerization using silyl-bridged metallocenes
US5399636A (en) * 1993-06-11 1995-03-21 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5393911A (en) * 1991-05-09 1995-02-28 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5191132A (en) * 1991-05-09 1993-03-02 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5347026A (en) * 1993-06-11 1994-09-13 Phillips Petroleum Company Fluorene compounds and methods for making
ATE136040T1 (en) * 1991-05-27 1996-04-15 Hoechst Ag METHOD FOR PRODUCING POLYOLEFINS WITH BROAD MOLAR MASS DISTRIBUTION
US5391789A (en) * 1991-08-08 1995-02-21 Hoechst Aktiengesellschaft Bridged, chiral metallocenes, processes for their preparation and their use as catalysts
TW300901B (en) * 1991-08-26 1997-03-21 Hoechst Ag
TW318184B (en) * 1991-11-30 1997-10-21 Hoechst Ag
EP0578838A1 (en) * 1992-04-29 1994-01-19 Hoechst Aktiengesellschaft Olefin polymerization catalyst, process for its preparation, and its use
TW294669B (en) * 1992-06-27 1997-01-01 Hoechst Ag
EP0648230B1 (en) * 1992-07-01 1999-09-15 Exxon Chemical Patents Inc. Transition metal olefin polymerization catalysts
JPH0656929A (en) * 1992-08-07 1994-03-01 Ube Ind Ltd Solid catalyst for olefin polymerization
TW322495B (en) * 1992-12-15 1997-12-11 Hoechst Ag
BE1006438A3 (en) * 1992-12-17 1994-08-30 Solvay Catalyst system, use of this system catalyst for the (co) polymerization of olefins, method of preparation of this system and method for catalyst (co) polymerization of olefins.
IT1256259B (en) * 1992-12-30 1995-11-29 Montecatini Tecnologie Srl METTALLOCENIC COMPOUNDS HAVING FLUORENYLIC BINDERS
DE59408260D1 (en) * 1993-02-12 1999-06-24 Ticona Gmbh Process for the preparation of cycloolefin polymers
EP0610850A1 (en) * 1993-02-12 1994-08-17 Hoechst Aktiengesellschaft Process for preparing cyclo-olefin polymers
JP3307704B2 (en) * 1993-02-19 2002-07-24 三菱化学株式会社 Production method of .ALPHA.-olefin polymer
JPH06271594A (en) * 1993-03-22 1994-09-27 Mitsui Petrochem Ind Ltd Production of silicon compound containing cyclopentadienyl group or germanium compound containing cyclopentadienyl group
DE4312270A1 (en) * 1993-04-15 1994-10-20 Witco Gmbh Process for the preparation of transition metal complexes with monosubstituted cyclopentadienyl ligands
CA2120852C (en) * 1993-06-03 1998-10-13 Konstantinos Patsidis 9-substituted fluorenyl compounds and the preparation and use of metallocenes thereof
US5372980A (en) * 1993-06-03 1994-12-13 Polysar Bimetallic metallocene alumoxane catalyst system and its use in the preparation of ethylene-alpha olefin and ethylene-alpha olefin-non-conjugated diolefin elastomers
DE69434709T2 (en) * 1993-06-07 2006-10-19 Mitsui Chemicals, Inc. propylene elastomers
US5372682A (en) * 1993-06-24 1994-12-13 The Dow Chemical Company Electrochemical preparation of addition polymerization catalysts
EP0719294A1 (en) * 1993-06-30 1996-07-03 Exxon Chemical Patents Inc. A new catalyst for ring-opening metathesis polymerization
US5486585A (en) * 1993-08-26 1996-01-23 Exxon Chemical Patents Inc. Amidosilyldiyl bridged catalysts and method of polymerization using said catalysts.

Also Published As

Publication number Publication date
CA2124731A1 (en) 1994-12-12
NO942193D0 (en) 1994-06-10
BR9402391A (en) 1995-05-02
DE69432330D1 (en) 2003-04-30
DE69432330T2 (en) 2004-04-08
AU669442B2 (en) 1996-06-06
AU6454794A (en) 1995-02-02
EP0628566A1 (en) 1994-12-14
US5466766A (en) 1995-11-14
EP1304319A3 (en) 2004-01-07
ES2196015T3 (en) 2003-12-16
FI942744A0 (en) 1994-06-10
EP1304319A2 (en) 2003-04-23
EP0628566B1 (en) 2003-03-26
NO942193L (en) 1994-12-12
TW287176B (en) 1996-10-01
US5616752A (en) 1997-04-01
CA2124731C (en) 1997-12-09
FI942744A (en) 1994-12-12
KR950000722A (en) 1995-01-03
SG52550A1 (en) 1998-09-28
US5565592A (en) 1996-10-15
JPH07149781A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
KR100282461B1 (en) Metallocenes and preparation methods thereof
US5399636A (en) Metallocenes and processes therefor and therewith
US5451649A (en) Organometallic fluorenyl compounds, preparation, and use
RU2165428C2 (en) Method of preparing polymer, method of preparing metallocene, and double- bound metallocene
US5492975A (en) Polymer bound metallocenes
JP3382311B2 (en) Catalyst composition and method for producing polyolefins
AU731445B2 (en) Bridge fluorenyl/indenyl metallocenes and the use thereof
JP4689829B2 (en) Crosslinked metallocenes for olefin copolymerization
KR101589315B1 (en) Polymerization catalysts for producing polymers with high comonomer incorporation
JPH10505629A (en) Silylium cationic polymerization activator for metallocene complexes
JP2816766B2 (en) Modified monocyclopentadienyl transition metal / alumoxane catalyst system for olefin polymerization
JP2002514247A (en) Olefin polymerization method
US5610247A (en) Unbridged metallocenes of 9-substituted fluorenyl compounds and use thereof
US6570031B1 (en) Dendrimer compounds, method for the production thereof, use thereof as catalysts
US6194343B1 (en) Bridged “tethered” metallocenes
US6087290A (en) Si-N-Si-bridged metallocenes, their production and use
JP3393985B2 (en) Heterogeneous catalyst component for olefin polymerization and its production and use
EP0627440B1 (en) Metallocenes containing 9-substituted fluorenyl compounds and use of the metallocenes
JP2000219704A (en) Catalyst for olefin polymerization and preparation of polyolefin by using the same
JPH11189617A (en) Novel transition metal compound, catalyst component for polymerization of alpha-olefin, and production of alpha-olefin polymer
JP2001192405A (en) Method of producing ethylene homopolymer
JP3427488B2 (en) Novel organic transition metal compound and method for producing polyolefin using the same
JPH04366106A (en) Preparation of poly(alpha-olefin)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121107

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 14

EXPY Expiration of term