KR100276311B1 - The manufacturing method of 100kg grade super high strength steel plate with continous casting method - Google Patents

The manufacturing method of 100kg grade super high strength steel plate with continous casting method Download PDF

Info

Publication number
KR100276311B1
KR100276311B1 KR1019960064174A KR19960064174A KR100276311B1 KR 100276311 B1 KR100276311 B1 KR 100276311B1 KR 1019960064174 A KR1019960064174 A KR 1019960064174A KR 19960064174 A KR19960064174 A KR 19960064174A KR 100276311 B1 KR100276311 B1 KR 100276311B1
Authority
KR
South Korea
Prior art keywords
plate
less
slab
manufacturing
cooling
Prior art date
Application number
KR1019960064174A
Other languages
Korean (ko)
Other versions
KR19980045927A (en
Inventor
여조현
소문섭
박길수
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019960064174A priority Critical patent/KR100276311B1/en
Publication of KR19980045927A publication Critical patent/KR19980045927A/en
Application granted granted Critical
Publication of KR100276311B1 publication Critical patent/KR100276311B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Abstract

PURPOSE: A method for manufacturing superhigh tensile strength steel plates (tensile strength: 100kg) by continuous casting method for the application to bulletproof materials. CONSTITUTION: The superhigh tensile strength steel plate is manufactured by preparing a hot metal comprising C 0.10-0.19wt.%, Si 0.15-0.35wt.%, Mn 0.10-0.40wt.%, P 0.012wt.% or less, S 0.005wt.% or less, Ni 2.75wt.%-3.50wt.%, Cr 1.30-1.80wt.%, Mo 0.35-0.45wt.%, V 0.010-0.025wt.%, a balance of Fe and inevitable impurities; continuous casting the hot metal in such a manner that the amount of water spray in a cooling table ranges 0.32 to 0.40L/kg, and thereby obtaining slab; air cooling the slab at ambient condition; rolling process of slab; selective cooling processes where either the obtained plate is cooled very slowly at the rate of 5-14deg.C/hr in case the plate is over 50mm in thickness or the obtained plate is air-cooled in case the thickness of the plate is 50mm or less; quenching the cooled plate in the temperature range of 900 to 920deg.C; and then tempering it in the temperature range of 470 to 580deg.C.

Description

연속주조법에 의한 내부품질이 우수한 100kg급 초고장력후판의 제조방법Manufacturing Method of 100kg Ultra High Tenacity Plate with Excellent Internal Quality by Continuous Casting Method

본 발명은 전자의판, 자주포외판 등 방탄성이 요구되는 구조물에 사용되는 초고장력 후판의 제조방법에 관한 것으로써, 보다 상세하게는 연속주조법에 의해 생산하면서도 경도와 저온인성 및 내부품질이 우수한 100kg급 초고장력후판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a super high-strength thick plate used in structures requiring bulletproof properties such as electronic boards, self-propelled outer shell plate, more specifically 100kg excellent in hardness, low temperature toughness and internal quality while producing by the continuous casting method It relates to a method for producing a super high tensile steel plate.

통상, 강의 경도와 인성은 서로 상반되는 물성으로 경도가 높으면 인성이 저하되고 인성이 높으면 경도가 저하되는데, 방탄성이 요구되는 강의 경우 무엇보다도 경도가 높고 저온인성이 만족되어야 함은 물론 내부품질 판단의 척도인 파단시험시 양호한 특성을 지녀야한다. 그러나, 각종 방탄구조물에 사용되는 후판은 그 두께가 두꺼울수록 내부품질 확보하기가 어렵고, 따라서 제조조건도 까다롭다.In general, the hardness and toughness of steel are mutually opposite physical properties. If the hardness is high, the toughness is lowered. If the toughness is high, the hardness is lowered. It should have good characteristics in the breaking test, which is a measure of. However, thicker plates used in various antiballistic structures are more difficult to secure internal quality as the thickness thereof is thicker, and thus manufacturing conditions are more difficult.

종래, 100kg급 고장력 후판은, 제강공정에서 출강 완료된 강을 하주주입에 의한 조괴방법으로 강괴를 제조하고, 이 강괴를 분괴공정에서 압연하여 슬라브를 만들어 압연 한 후 열처리하여 제조하였다. 이러한 제조방법은 내부품질을 확보하기 위하여 분괴(INGOT CASTING)공정중 밀폐된 공간에서 극저 서냉하여 분괴 스라브내에 잔존하는 불순물가스, 특히 수소가스를 외부로 방출하여 내부품질 열화를 방지하여 고내품질을 얻을 수 있었다. 그러나, 상기 방법은 분괴공정에서 슬라브 실수율이 하락하고, 또한 다수의 제조공정 경우로 인하여 생산성 감소와 제조원가를 증가시키는 문제점이 있다. 특히 대량생산이 어려워 경제성측면에서 분괴법을 대체할 수 있는 새로운 제조방법의 개발이 요구되고 있다.Conventionally, the 100kg high-tension thick plate is manufactured by ingot processing by injecting the steel completed in the steelmaking process by injecting the steel, and rolling the steel ingot in the process of forming the slab to make slabs, and then heat-treating them. In order to secure the internal quality, this manufacturing method is extremely low-low cooling in an enclosed space during the ingot casting process to release the impurity gas, especially hydrogen gas, remaining in the slab to the outside to prevent deterioration of internal quality to obtain high internal quality. Could. However, the method has a problem that the slab error rate in the process of the slab decreases, and also due to the case of a number of manufacturing process decreases productivity and increases the manufacturing cost. In particular, due to the difficulty in mass production, it is required to develop a new manufacturing method that can replace the coalescence method in terms of economics.

따라서, 본 발명은 상기와 같은 문제점을 가지고 있는 종래의 조괴-분괴공정대신 연속주조(CONTINIOUS CASTING)법을 적용하기 위하여 연구와 실험을 행하고 그 결과에 입각하여 제안된 것으로서, 본 발명은 연속주조시 생기는 중심편석을 방지하기 위하여 연주 2차냉각시 비수량을 제어하고, 후판 압연후 최대한의 공랭과 함께, 각종성분과 제조조건을 적절히 제어함으로써, 연속주조에 의해 생산하면서도 경도와 저온인성 및 내부품질이 우수한 100kg급 고장력 후판의 제조방법을 제공하고자 하는데, 그 목적이 있다.Therefore, the present invention has been proposed based on the results of the research and experiment to apply the continuous casting (CONTINIOUS CASTING) method instead of the conventional ingot-disintegration process having the above problems, the present invention is a continuous casting In order to prevent the segregation of the core, by controlling the non-quantity during the second cooling of the performance, and by controlling the various components and manufacturing conditions with the maximum air cooling after rolling of the thick plate, it is produced by continuous casting, but the hardness, low temperature toughness and internal quality To provide a method for producing this excellent 100kg high-tension thick plate, the purpose is.

제1도는 본 발명재와 종래재 및 비교재의 파단시험(FRACTURE TEST)결과를 나타내는 사진(압연판의 두께 65mm).FIG. 1 is a photograph (65 mm thickness of a rolled plate) showing the results of a fracture test of the present invention, a conventional material, and a comparative material.

제2도는 본 발명재와 종래재의 파단시험 결과를 나타내는 사진(압연판의 두께 45mm).2 is a photograph showing the fracture test results of the present invention and the conventional material (thickness of the rolled plate 45mm).

상기 목적을 달성하기 위한 본 발명은, 중량 %로, C:0.10-0.19%, Si:0.15-0.35%, Mn:0.10-0.40%, P:0.012%이하, S:0.005%이하, Ni:2.75-3.50%, Cr:1.30-1.80%, Mo:0.35-0.45%, V:0.010-0.025%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 용강을 마련하는 단계; 상기 용강을 2차 냉각대 비수량이 0.32∼0.40ℓ/kg범위로 되는 조건에서 연속주조함으로써 슬라브를 제조하고 이를 다단적치하여 상온까지 공냉시키는 단계; 상기 슬라브에 대한 통상의 압연후, 후판의 두께가 50mm이상인 경우 5∼14℃/hr의 속도로 극서냉하고, 50mm이하인 경우 통상으로 공냉하는 단계; 및 상기와 같이 냉각된 후판재를 900∼920℃의 온도범위에서 소입후 470∼580℃의 온도범위에서 소려하는 단계;를 포함하여 구성되는 경도와 저온인성 및 내부품질이 우수한 연속주조법에 의한 100kg급 초고장력 후판의 제조방법에 관한 것이다.The present invention for achieving the above object, in weight%, C: 0.10-0.19%, Si: 0.15-0.35%, Mn: 0.10-0.40%, P: 0.012% or less, S: 0.005% or less, Ni: 2.75 Preparing a molten steel consisting of -3.50%, Cr: 1.30-1.80%, Mo: 0.35-0.45%, V: 0.010-0.025%, balance Fe and other unavoidable impurities; Manufacturing a slab by continuously casting the molten steel under a condition in which the specific amount of the secondary cooling zone is in the range of 0.32 to 0.40 l / kg, and multi-stagely stacking the air to cool to room temperature; After the usual rolling to the slab, if the thickness of the thick plate is 50mm or more, ultra-cooling at a rate of 5 ~ 14 ℃ / hr, if it is 50mm or less, usually air-cooling; 100kg by the continuous casting method with excellent hardness and low temperature toughness and internal quality comprising the step of quenching the cooled thick plate in the temperature range of 900 ~ 920 ℃ after quenching in the temperature range of 900 ~ 920 ℃ It relates to a method for producing a super high-tension thick plate.

이하, 본 발명의 성분조성과 제조조건에 대하여 상세히 설명한다.Hereinafter, the component composition and the production conditions of the present invention will be described in detail.

상기 탄소(C)는 강의 열처리시 소입성을 증가시켜 경도 및 강도를 증가시키는데, 그 함량이 0.19중량%(이하,'%'라 함)이상의 과량이면 강인성 및 용접성에 유해하며, 0.10%이하로 소량이면 소입성이 낮아 경도를 보증할 수 없으므로 0.10-0.19%의 범위로 첨가하는 것이 바람직하다.The carbon (C) increases the hardness and strength by increasing the hardenability during the heat treatment of the steel, if the content is more than 0.19% by weight (hereinafter referred to as '%') is harmful to toughness and weldability, and less than 0.10% If the amount is small, the quenchability is low, and thus hardness cannot be guaranteed. Therefore, it is preferably added in the range of 0.10-0.19%.

상기 규소(Si)는 탄화물을 형성하며 Fe중에 고용되어 탄성한계 인장력을 높이는 원소로서 그 함량이 0.15% 이하에서는 상기 효과가 미흡하고, 0.35% 이상이면 페라이트조직 저하 및 비금속개재물(silicate)형성으로 인성을 해치므로 0.15-0.35%의 범위로 첨가하는 것이 바람직하다.The silicon (Si) forms a carbide and is an element that is solid-solution in Fe to increase the elastic limit tensile strength, the content is less than 0.15%, the effect is insufficient, 0.35% or more, the ferrite structure is reduced and the formation of non-metallic inclusions (toughness) It is preferable to add in the range of 0.15-0.35% since it deteriorates.

상기 망간(Mn)은 소입성 향상원소로 열처리시 경도를 향상시킬 수 있는 유효한 성분으로서, 그 함량이 0.40%이상의 과다 첨가시 용접성을 해치고, 0.10%이하의 소량 첨가시 소입성 저하로 경도확보가 불안정하므로 0.10-0.40%의 범위로 첨가하는 것이 바람직하다.The manganese (Mn) is an effective element capable of improving hardness when heat-treated as an element for improving hardenability, and its content deteriorates weldability when added in an amount of 0.40% or more and secures hardness due to a decrease in hardenability when a small amount of 0.10% or less is added. Since it is unstable, it is preferable to add in the range of 0.10-0.40%.

상기 인(P)은 강판의 저온 충격인성을 저해시키는 가장 큰 불순물로서 내부품질을 열화시키므로 그 함량은 0.012%이하로 제한하는 것이 바람직하다.The phosphorus (P) is the largest impurity that inhibits the low-temperature impact toughness of the steel sheet, so the internal quality is degraded, and the content thereof is preferably limited to 0.012% or less.

상기 유황(S)은 인(P)성분과 동일한 유해원소로서 후판 제품에 있어서 저온 충격인성 열화의 원인 및 용접성을 해치므로 0.005%이하로 제한하는 것이 바람직하다.The sulfur (S) is the same harmful element as the phosphorus (P) component, so it is preferable to limit the content to 0.005% or less since it causes the deterioration of low-temperature impact toughness and weldability in the thick plate product.

상기 니켈(Ni)은 저온인성을 증가시키고 소입성을 향상시키는 합금원소이지만 고가이기 때문에 경제적인 측면에서 불리하며, 소량 첨가시 그 효과가 적으므로 그 함량은 2.75-3.50%의 범위로 첨가하는 것이 바람직하다.The nickel (Ni) is an alloying element that increases the low temperature toughness and improves the hardenability, but it is disadvantageous in terms of economics because it is expensive, and since the effect is small when a small amount is added, the content is added in the range of 2.75-3.50%. desirable.

상기 크롬(Cr)은 소입성에 유효한 원소로 경도 및 강도 증가에 널리 사용되는 원소로 다량 첨가시 용접성에 유해하며, 소량 첨가시 경도확보에 불리하므로 그 함량은 1.30-1.80%의 범위로 침가하는 것이 바람직하다.The chromium (Cr) is an element effective for quenching and is widely used for increasing hardness and strength. Hence, chromium (Cr) is detrimental to weldability when a large amount is added, and it is disadvantageous to secure hardness when a small amount is added, so that the content is immersed in the range of 1.30-1.80%. It is preferable.

상기 몰리브덴(Mo)은 강 조직상 오스테나이트 상태의 크리프(creep)파단강도의 향상에 기여하며, 소입성을 향상시켜 강도를 향상시키나 다량 첨가시 소려취성을 유발할 수도 있고 용접부 인성열화에 유해하므로 그 함량은 0.35-0.45%의 범위로 첨가하는 것이 바람직하다.The molybdenum (Mo) contributes to the improvement of creep rupture strength of the austenite state in the steel structure, and improves the hardenability to increase the strength, but may lead to brittle brittleness when a large amount is added or harmful to the deterioration of the weld toughness The content is preferably added in the range of 0.35-0.45%.

상기 바나듐(V)은 소입성에 유효하지만 용접성을 해치는 합금원소이므로 그 함량은 0.010-0.025%의 범위로 첨가하는 것이 바람직하다.The vanadium (V) is an alloying element that is effective for hardenability but impairs weldability, and therefore, the content of vanadium (V) is preferably added in the range of 0.010-0.025%.

상기와 같은 조성범위를 갖는 강을 기초로 하는 본 발명의 제조방법은 일반적인 조괴-분괴과정 대신 연속주조를 적용한다. 이때, 일반적인 연주법은 제강정련후 연주조업시 불순물 및 기타 성분이 중심부에 몰리는 경향이 있어 최종 강의 내부품질검사를 위한 판단시험시 판단면의 중심에 균열, 또는 성분, 불순물, 및 편석등에 의한 연속적인 결합디가 발생하여 50mm 이상 되는 후판에는 적용하지 못하였다. 따라서, 본 발명은 연속주조시 주편의 중심부 편석을 해결하기 위해 연속주조시 2차 냉각대에서 비수량을 제어하는데 특징이 있다. 즉, 용강이 턴디쉬로부터 주형에 주입된 후, 상기 주형을 빠져나온 주편은 연주기 말단까지 통과하면서 고속의 수냉분사 장치에 의해 급냉되는 구간인 2차 냉각대에서 중간 냉각되는데, 이때 물분사량인 비수량을 0.32∼0.40ℓ/kg 정도의 범위로 함이 바람직하다. 그 이유는 물분사량이 0.4ℓ/kg 이상인 경우 강중에 소입성에 유효한 합금원소인 Cr, Mo의 다량 함유되어 있으므로 연주조업중 급냉으로 슬라브에 표면 및 내부에 군열이 발생될 우려가 있고, 그미만으로 되면 슬라브내부의 불순물이 중심부에 편석될 우려가 있어 최종제품에서 파단시험시 크랙으로 불량이 발생하기 때문이다.The manufacturing method of the present invention based on the steel having the composition range as described above is applied to the continuous casting instead of the general ingot-disintegration process. In this case, the general playing method tends to collect impurities and other components in the center during refining operation after steelmaking, so that continuous cracks or components, impurities, and segregation in the center of the judgment surface during the judgment test for the internal quality inspection of the final steel. As a result of the combined bonding, it could not be applied to the thick plate over 50mm. Therefore, the present invention is characterized in controlling the specific amount of water in the secondary cooling zone during continuous casting to solve the segregation of the center of the cast during continuous casting. That is, after molten steel is injected into the mold from the tundish, the cast piece exiting the mold is intermediately cooled in the secondary cooling zone, which is a section which is quenched by a high speed water cooling spray device while passing through the end of the player, where the ratio It is preferable to make the amount of water into the range of about 0.32-0.40 l / kg. The reason is that when the water injection amount is 0.4ℓ / kg or more, the steel contains large amounts of Cr and Mo, which are effective alloys for quenching, so there is a fear that quenching may occur on the surface and inside of the slab due to quenching. In this case, impurities inside the slab may be segregated in the center, and defects may occur due to cracks at the fracture test in the final product.

상기와 같은 조건으로 연속주조 후 슬라브를 제조한 다음, 상기 슬라브를 당업계에서 통상적으로 행하는 즉, 다단으로 쌓아 적치하여 공냉함으로서 냉각에 소요되는 기간을 연장하여 내부에 잔존하는 불순 가스인 수소의 확산 기회를 최대한 부여한다. 이후 통상의 후판압연한 직후, 두께가 50mm이상인 후판재는 압연재내에 있는 수소가 충분히 확산되어 외부로 방출될수 있도록 4-14℃/hr의 속도로 서냉하는 것이 바람직하다. 그 이유는 압연판의 두께가 두꺼우므로 압연시 충분한 압하가 안되어 내부에 개재물이 압연방향으로 길게 연신된 상태에서 제품내부에 잔류되는데, 이때 550∼600℃에서 확산이 잘되는 수소가 연신된 개재물 입계를 따라 확산되어 크랙을 유발할 소지가 있다. 그래서 수소가 충분히 확산되어 외부로 방출될 수 있도록 최대한 고온상태에서 냉각을 지연하여 후판재의 수소가 외부로 방출되도록 4∼14℃/hr의 속도로 서냉하는 것이다.After the slab is manufactured after continuous casting under the above conditions, the slabs are commonly used in the art, that is, the stacks are stacked and stacked in multiple stages for air cooling to prolong the period required for cooling to diffuse hydrogen, which is an impure gas remaining inside. Give the greatest possible opportunity. After the normal thick plate rolling, the thick plate material having a thickness of 50 mm or more is preferably slowly cooled at a rate of 4-14 ° C./hr so that hydrogen in the rolled material is sufficiently diffused and released to the outside. The reason for this is that the thickness of the rolled sheet is so thick that it is not sufficiently pressed during rolling, so that the inclusions remain inside the product in a state where the inclusions are elongated in the rolling direction. There is a possibility of spreading and causing cracks. Therefore, the cooling is delayed at the highest temperature so that the hydrogen can be sufficiently diffused and released to the outside, so that the hydrogen of the thick plate is slowly cooled at a rate of 4 to 14 ° C./hr to be released to the outside.

두께가 50mm이상인 경우 상기와 같은 조건으로 냉각처리 하고, 두께가 50mm미만의 경우 충분한 후판압연에 의해 내부 불순물 압착되어 수소에 의한 크랙이 발생하지 않으므로 통상의 공냉하면 된다.If the thickness is 50mm or more, the cooling treatment is performed under the same conditions as above, and if the thickness is less than 50mm, the internal impurities are compressed by sufficient thick plate rolling so that cracks due to hydrogen do not occur.

상기와 같이 냉각된 후판재는 이어 소입, 소려 열처리를 실시하며, 이때의 열처리 조건은 두께와 원하는 물성치, 즉 경도와 저온인성 등을 고려하여 적용온도를 정하게 되는데, 본 발명에서는 약 900-920℃범위에서 소입은 행하고, 바로 470-580℃범위에서 소려를 행함이 바람직하다.The thick plate material cooled as described above is then subjected to quenching and annealing heat treatment, and the heat treatment conditions at this time determine the application temperature in consideration of thickness and desired physical properties, ie hardness and low temperature toughness. Hardening is preferably carried out at, and it is preferable to carry out the light immediately in the range of 470-580 ° C.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1]Example 1

하기 표 1과 같은 5종류의 주괴를 주조하고, 얻어진 주괴들을 각각 압연하여 최종적으로 65mm의 두께의 후판을 제조하였다. 제조된 후판은 10℃/hr의 속도로 서냉설시재와 미실시재로 구분하여 냉각을 실시한 후 상기 후판에서 시편을 채취한 다음, 채취된 시편에 대하여 기계적시험들을 행하고 그 결과를 하기표 2에 나타내었다. 한편 하기표 2에서 종래재는 기존 강종인 E를 조괴-분괴공정하여 제조하였다. 또한 기계적 특성 및 내부품질에 대한 평가는 미해군 규격에 제시된 MIL-A-12560H와 MIL-A-12560D를 기준으로 하였는데, 두께 65mm재의 후판의 경우 인장강도는 90-110kg/㎟, 경도는 269-311HB, 저온인성(-40℃)은 3.9Kg.m이상을 만족하면 바람직한 특성을 갖는 것으로 평가되었다. 또한, 내부품질은 굴곡시험 후 파단면을 관찰하여 크랙의 유무로서 합격, 불합격을 판단하였다.Five kinds of ingots were cast as shown in Table 1 below, and each of the obtained ingots was rolled to prepare a thick plate having a thickness of 65 mm. The prepared plate was cooled to 10 ° C / hr into slow cooling snow and unexecuted, and then cooled to collect the specimen from the plate, and then subjected to mechanical tests on the collected specimen and the results are shown in Table 2 below. It was. Meanwhile, in Table 2, the conventional material was prepared by an ingot-fragmentation process of an existing steel grade E. In addition, the evaluation of mechanical properties and internal quality was based on MIL-A-12560H and MIL-A-12560D presented in the US Navy standard. In the case of 65mm thick plates, the tensile strength is 90-110kg / mm2 and the hardness is 269-. It was evaluated that 311HB and low temperature toughness (-40 DEG C) had desirable properties when 3.9 Kg.m or more was satisfied. In addition, the internal quality was observed by the fracture surface after the bending test to determine the pass or fail as cracks.

[표 1]TABLE 1

[표 2]TABLE 2

상기 표 2에 나타난 바와 같이, 본 발명의 조성범위를 만족하는 A내지 D강을 사용하고 기존방법과 동일한 적절한 열처리를 행한 발명재(1-4)의 경우 상기 규격에 해당하는 만족한 값을 지니고 있었고, 또한 파단시험시 종래재인 조괴-분괴재와 동등의 내부품질을 지니고 있는 것으로 평가되었다. 반면에 본발명의 조성범위를 만족하는 A내지 D강을 사용하였지만 본 발명의 제조조건에 부합되는 비교재(1-4)의 경우 파단시험시 파단면 내부에 크랙이 발생되어 고내부품질이 요구되는 방탄재로서는 적당치 못함을 알 수 있었다.As shown in Table 2, in the case of the invention material (1-4) using A to D steel satisfying the composition range of the present invention and subjected to the appropriate heat treatment as in the existing method, it has a satisfactory value corresponding to the above standard. In addition, it was evaluated to have an internal quality equivalent to that of the conventional ingot-flocculation material in the fracture test. On the other hand, although A to D steels satisfying the composition range of the present invention were used, the comparative material (1-4) meeting the manufacturing conditions of the present invention requires cracking inside the fracture surface during the fracture test, thereby requiring high internal quality. It turned out that it is not suitable as a bulletproof material.

한편, 발명재(1)과 비교재(1) 및 종래재(1)의 파단면 사진을 도1에 나타내었는데, 발명재(1)(도1(a))와 종래재(1)(도1(b)의 파단면은 크랙이 발생없이 내부 품질이 우수한 반면 비교재(1)(도1(c))의 파단면 사진을 크랙이 발생하여 내부품질이 열악함을 알 수 있었다.On the other hand, the fracture surface photographs of the invention material 1, the comparative material 1, and the conventional material 1 are shown in Fig. 1, but the invention material 1 (Fig. 1 (a)) and the prior art material 1 (Fig. While the fracture surface of 1 (b) was excellent in internal quality without cracking, it was found that the crack was generated in the fracture surface photograph of the comparative material 1 (FIG. 1 (c)).

[실시예 2]Example 2

후판두께를 45mm로 하고 열처리 조건을 하기표 3과 같이 한 것을 제외하고는 실시예 1과 동일한 방법으로 실시하고 열처리된 후판에서 시편을 채취하고 채취된 시편에 대하여 기계적시험들을 행하고 그결과를 하기표 3에 나타내었다. 또한 기계적 특성 및 내부품질에 대한 평가는 실시예 1과 동일하게 평가하였다.The thickness of the plate was 45 mm and the heat treatment conditions were carried out in the same manner as in Example 1 except that the heat treatment conditions were as shown in Table 3 below. The specimens were collected from the heat-treated plate and mechanical tests were performed on the collected specimens. 3 is shown. In addition, the evaluation of the mechanical properties and internal quality was evaluated in the same manner as in Example 1.

[표 3]TABLE 3

상기 표 3에 나타난 바와같이, 본 발명의 조성범위를 만족하는 A내지 D강을 사용하고 기존방법과 동일한 적절한 열처리 및 후판서냉로 공정을 실시한 경우(발명재(5-8), 하지않은 경우(9-12)의 모든 시편의 상기 규격에 해당하는 만족한 값을 지니고 있었고, 또한 파단시험시 종래재인 조괴- 분괴재와 동등의 내부품질을 지니고 있는 것으로 평가되었다. 이 시험결과로 미루어 서냉후 미실시재의 45mm의 후판은 제품내부에 잔존하는 확산성 수소가 압연시 층분한 압하로 내부개재물이 압착되어 크랙으로 진전되지 않음을 알 수 있었다. 따라서, 두께가 45mm 이하인 후판은 연주 주조공정에 적용되는 조건만으로도 고내부품질이 요구되는 방탄재에 적당함을 알 수 있었다.As shown in Table 3, when using the A to D steel satisfying the composition range of the present invention and subjected to the same heat treatment and thick plate cooling furnace process as the existing method (invention material (5-8), if not) All specimens of (9-12) had satisfactory values corresponding to the above standards, and also had an internal quality equivalent to that of conventional ingot-disintegrating materials in the fracture test. In the case of the 45 mm thick plate of the non-implemented material, it was found that the diffuser hydrogen remaining in the product was not pressed into the crack due to the crushing of the internal inclusions during rolling, so that the thick plate having a thickness of 45 mm or less was applied to the casting casting process. The condition alone was found to be suitable for bulletproof materials requiring high internal quality.

한편, 발명재(5)와 발명재(4)종래재 (2)의 파단면 사진을 제2도에 나타내었는데, 발명재(5)(제2도(a)), 발명재(9)(제2도(b)), 종래재(2)(제2도(c))전부 내부품질이 우수하였다.On the other hand, the fracture surface photograph of the invention material (5) and the invention material (4) conventional material (2) was shown in FIG. 2, but invention material (5) (FIG. 2 (a)), invention material (9) ( The internal quality of the whole part of FIG. 2 (b) and the prior art material 2 (FIG. 2 (c)) was excellent.

상술한 바와같이, 본발명은 연속주조방법 및 후판에서 냉각을 최대한 지연하는 방법으로 내부품질을 열악하게하는 불순가스인 수소를 외부로 방출되도록 함으로써, 종래재와 비교하여 내부품질이 조괴-분괴재와 동등하거나 그 이상이며, 경도와 저온인성이 우수한 100kg급 고장력 후판을 제공할 수 있고, 또한 실수율과 생산성이 우수하고, 제조원가를 크게 떨어뜨릴 수 있는 제조방법을 제공할 수 있다. 상기 제조된 후판은 방탄특성이 우수하여 방탄용 구조재로서 널리 이용될수 있는 유용한 효과가 있다.As described above, the present invention, by the continuous casting method and the method of delaying the cooling in the thick plate as much as possible to discharge hydrogen, which is impurity gas which worsens the internal quality to the outside, the internal quality is ingot-flocculation material in comparison with the conventional material It is possible to provide a manufacturing method that is equivalent to or more than, and can provide a 100kg high-tension thick plate excellent in hardness and low temperature toughness, and excellent in error rate and productivity, and can greatly reduce manufacturing cost. The manufactured thick plate is excellent in bulletproof properties and has a useful effect that can be widely used as a bulletproof structural material.

Claims (1)

(정정)중량 %로, C:0.10-0.19%, Si:0.15-0.35%, Mn:0.10-0.40%, P:0.012%이하, S:0.005%이하, Ni:2.75-3.50%, Cr:1.30-1.80%, Mo:0.35-0.45%, V:0.010-0.025%, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 용강을 마련하는 단계; 상기 용강을 2차 냉각대 비수량이 0.32∼0.40ℓ/kg범위로 되는 조건에서 연속주조함으로써 슬라브를 제조하고 이를 다단적치하여 상온까지 공냉시키는 단계; 상기 슬라브에 대한 통상의 압연후, 후판의 두께가 50mm이상인 경우 5∼14℃/hr의 속도로 극서냉하고, 50mm이하인 경우 통상으로 공냉하는 단계; 및 상기와 같이 냉각된 후판재를 900∼920℃의 온도범위에서 소입후 470∼580℃의 온도 범위에서 소려하는 단계;를 포함하여 구성되는 경도와 저온인성 및 내부품질이 우수한 연속주조법에 의한 100kg급 초고장력 후판의 제조방법.(Correction) In weight%, C: 0.10-0.19%, Si: 0.15-0.35%, Mn: 0.10-0.40%, P: 0.012% or less, S: 0.005% or less, Ni: 2.75-3.50%, Cr: 1.30 Providing a molten steel consisting of -1.80%, Mo: 0.35-0.45%, V: 0.010-0.025%, balance Fe and other unavoidable impurities; Manufacturing a slab by continuously casting the molten steel under a condition in which the specific amount of the secondary cooling zone is in the range of 0.32 to 0.40 l / kg, and multi-stagely stacking the air to cool to room temperature; After the usual rolling to the slab, if the thickness of the thick plate is 50mm or more, ultra-cooling at a rate of 5 ~ 14 ℃ / hr, if it is 50mm or less, usually air-cooling; 100kg by the continuous casting method with excellent hardness and low temperature toughness and internal quality comprising the step of quenching the cooled plate as described above in the temperature range of 470 ~ 580 ℃ after quenching at a temperature range of 900 ~ 920 ℃ Method for manufacturing high-strength thick plates.
KR1019960064174A 1996-12-11 1996-12-11 The manufacturing method of 100kg grade super high strength steel plate with continous casting method KR100276311B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960064174A KR100276311B1 (en) 1996-12-11 1996-12-11 The manufacturing method of 100kg grade super high strength steel plate with continous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960064174A KR100276311B1 (en) 1996-12-11 1996-12-11 The manufacturing method of 100kg grade super high strength steel plate with continous casting method

Publications (2)

Publication Number Publication Date
KR19980045927A KR19980045927A (en) 1998-09-15
KR100276311B1 true KR100276311B1 (en) 2000-12-15

Family

ID=19487146

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960064174A KR100276311B1 (en) 1996-12-11 1996-12-11 The manufacturing method of 100kg grade super high strength steel plate with continous casting method

Country Status (1)

Country Link
KR (1) KR100276311B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043145A (en) * 1995-12-26 1997-07-26 김종진 Manufacturing method of tensile strength 120kgf / mm² class high tensile strength steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043145A (en) * 1995-12-26 1997-07-26 김종진 Manufacturing method of tensile strength 120kgf / mm² class high tensile strength steel

Also Published As

Publication number Publication date
KR19980045927A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
CN106544590B (en) 1000MPa grade high ductility high-performance uniformity easily welds super-thick steel plate and its manufacturing method
TWI396755B (en) High strength non-heat treated steel for breaking split and steel part made of the same
JPS6267152A (en) Tool steel for hot working
JP2013234349A (en) Steel wire rod/steel bar having excellent cold-workability, and method for producing the same
JP4379620B2 (en) Steel material for welded structure excellent in toughness of weld heat-affected zone and manufacturing method thereof
CN111051553A (en) High Mn steel and method for producing same
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JPH05214484A (en) High strength spring steel and its production
JP5061455B2 (en) Hot die tool steel for aluminum die casting with reduced cracking from water-cooled holes
JP6589503B2 (en) H-section steel and its manufacturing method
KR100276311B1 (en) The manufacturing method of 100kg grade super high strength steel plate with continous casting method
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP6459556B2 (en) Low yield ratio steel sheet for construction and manufacturing method thereof
CN115989327A (en) Thick steel plate and method for producing same
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same
JPH06336648A (en) High strength pc bar wire excellent in delayed fracture resistance and its production
KR100431852B1 (en) A method for manufacturing high strength thick steel sheet and a vessel by deep drawing
KR101867677B1 (en) Steel wire rod having enhanced delayed fracture resistance and method for manufacturing the same
KR100470670B1 (en) Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate
KR100406396B1 (en) Ultra Hard Steel Manufacturing Method
KR100276278B1 (en) The manufacturing method for100kg/mm2 high strength thick steel plate with excellent high hardness and low temperature thoughness
JP3709794B2 (en) Manufacturing method of high strength and high toughness steel sheet
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability
KR100340493B1 (en) Method for manufacturing 60 kg class high strength steel sheet by continuous casting
KR100765114B1 (en) A method for manufacturing TMCP heavy plate using soft reduction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060905

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee