KR100264384B1 - 반도체 각속도 센서 - Google Patents

반도체 각속도 센서 Download PDF

Info

Publication number
KR100264384B1
KR100264384B1 KR1019970048880A KR19970048880A KR100264384B1 KR 100264384 B1 KR100264384 B1 KR 100264384B1 KR 1019970048880 A KR1019970048880 A KR 1019970048880A KR 19970048880 A KR19970048880 A KR 19970048880A KR 100264384 B1 KR100264384 B1 KR 100264384B1
Authority
KR
South Korea
Prior art keywords
vibrator
angular velocity
electrode
magnetic field
semiconductor
Prior art date
Application number
KR1019970048880A
Other languages
English (en)
Other versions
KR19990026667A (ko
Inventor
조중래
Original Assignee
오상수
만도기계주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오상수, 만도기계주식회사 filed Critical 오상수
Priority to KR1019970048880A priority Critical patent/KR100264384B1/ko
Publication of KR19990026667A publication Critical patent/KR19990026667A/ko
Application granted granted Critical
Publication of KR100264384B1 publication Critical patent/KR100264384B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/49Devices characterised by the use of electric or magnetic means for measuring angular speed using eddy currents
    • G01P3/495Devices characterised by the use of electric or magnetic means for measuring angular speed using eddy currents where the indicating means responds to forces produced by the eddy currents and the generating magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0817Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for pivoting movement of the mass, e.g. in-plane pendulum

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

본 발명은 홀소자를 이용하여 외부에서 인가된 물리량을 측정할 수 있도록 한 반도체 각속도 센서에 관한 것이다.
본 발명에 따른 반도체 각속도 센서는 자계발생수단이 마련된 진동자, 진동자를 기준진동시키기 위한 가동전극, 가동전극에 의하여 진동자가 기준진동을 일으킬 때 진동자에 가해진 외력에 의하여 진동자의 진동에 의한 위치변화로 자계발생수단에 의한 자계의 변위를 검지하여 이를 전압신호로 출력하기 위한 홀소자로 이루어진 것을 특징으로 한다.
본 발명에 의하면 외부에서 인가되는 각속도의 크기를 전압성분으로 검출하므로서 신호처리에 효과적이며, 또한 홀소자의 불순물 농도등의 변수를 조절하여 충분한 감도를 얻을 수 있는 효과가 있다.

Description

반도체 각속도 센서
본 발명은 반도체 각속도 센서에 관한 것으로, 더욱 상세하게는 홀소자를 이용하여 외부에서 인가된 물리량을 측정할 수 있도록 한 반도체 각속도 센서에 관한 것이다.
일반적으로 진동, 충격, 가속도 등의 물리량을 감지하는 반도체 각속도센서는 자동차, 비행기, 선박 등 각종 수송수단, 그리고 공장자동화 및 로보트 등의 제어시스템에 있어서, 필수적인 소자이며 그 소자의 응용 및 활용기술은 무한하다.
반도체 각속도 센서는 가속도에 의해 작용되는 힘을 받아들이는 미세 기계구조부, 이 힘을 전기적 신호로 바꾸어주는 변환 소자부, 정격출력을 만들어 주는 신호처리부의 세 부분으로 구성되어 있으며, 이 중 변환 소자부는 미세구조에 가해지는 응력을 전기적 신호로 바꾸어 주는 변환기로서 저항변화, 용량변화, 또는 압전효과 등을 이용하여 제조된다.
도 1은 전술한 용량변화를 이용한 종래의 반도체 각속도 센서의 구조를 보인 단면도로서 이를 참조하여 그 구조 및 동작을 설명하고자 한다.
미세구조물을 형성하고 있는 실리콘기판(Si-Substrate)(1), 이 실리콘기판(1)에 마련되며 기준진동과 검지진동을 일으키는 진동자(2), 그리고 진동자(2)의 양측에는 정전기력을 인가하여 진동자를 기준진동시키는 가동전극(3)이 있다. 또한 진동자(2)의 상/하측에는 가동전극(3)에 의하여 기준진동하는 진동자(2)가 코리올리력에 의하여 힘을 받을 때 그 힘의 크기를 검출하는 검지전극(4)이 마련된다. 상기 진동자(2)는 검지전극(4)과 가동전극(3) 사이의 공간에 각각의 전극과 일정거리 이격된 상태로 공간에 떠 있는 형상이며, 진동자(2)는 길이방향으로 양측단이 탄성빔(미도시)으로 고정되어 있다. 그리고 미설명부호 5는 절연층이다.
전술한 구성에 따른 종래 반도체 각속도센서의 동작은 다음과 같다.
진동자(2)를 기준진동시키기 위하여 진동자(2)의 양측에 있는 가동전극(3)에 전압을 인가하여 진동자(2)에 정전기력을 인가한다. 그러면 진동자(2)는 양측의 가동전극(3)의 방향으로 진동을 한다. 이때 외부에서 각속도가 발생하면 진동자(2)는 힘을 받게 된다. 진동자(2)는 좌우방향의 기준진동을 하는 것과 동시에 상하방향의 검지진동을 하게 된다. 진동자(2)가 검지진동을 하게 되면 진동자(2)와 검지전극(4) 사이의 용량변화가 일어나게 된다. 따라서, 진동자(2)와 검지전극(3) 사이의 용량변화를 검지하여 각속도를 검출할 수 있게 된다.
그러나 종래 반도체 각속도센서는 다음과 같은 문제점이 있었다.
먼저, 표면 마이크로 머시닝을 이용한 반도체 각속도센서의 경우, 검지진동의 변위에 따라 검출되는 용량변화량은 십에 마이너스 14승 패럿(F)이하로 검출용량이 매우 미약하여, 또한 출력신호로 정전용량을 이용하기 때문에 이를 전기적 신호로 변환하는데 많은 어려움이 따랐다. 또한, 검출되는 용량의 변화량을 증대시키기 위하여 가동전극의 면적을 크게한다거나 가동전극과 고정전극사이의 이격거리를 작게하는 것은 공정상 한계가 있었다.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로, 그 목적은 가동전극에 자기코아를 형성하고, 이와 대응되게 기판에 홀소자를 형성시켜 자속에 의한 홀소자의 전압변화를 검출하므로서 외부에서 인가된 물리량을 양호하게 검출할 수 있는 반도체 각속도 센서를 제공하는데 있다.
도 1은 종래의 반도체 각속도 센서의 단면도,
도 2는 본 발명에 따른 반도체 각속도 센서,
도 3은 본 발명에 적용된 홀효과의 원리를 도시한 개략도.
*도면의 주요부분에 대한 부호의 설명*
10:실리콘기판 11:절연층 12:자기코아
13:코일 14:진동자 16:가동전극
18:홀소자
이러한 기술적 과제를 달성하기 위한 본 발명의 구성은, 자계발생수단이 마련된 진동자, 상기 진동자를 기준진동시키기 위한 가동전극, 상기 가동전극에 의하여 상기 진동자가 기준진동을 일으킬 때 상기 진동자에 가해진 외력에 의하여 상기 진동자의 진동에 의한 위치변화로 상기 자계발생수단에 의한 자계의 변위를 검지하여 이를 전압신호로 출력하기 위한 홀소자로 이루어진 것을 특징으로 한다.
이하, 본 발명에 따른 하나의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하고자 한다.
도 2는 본 발명에 따른 반도체 각속도 센서를 도시한 것이며, 도 3은 본 발명에 적용된 홀효과를 설명하기 위한 개략도이다.
먼저, 도 2를 참조하여 본 발명에 따른 반도체 각속도 센서의 구성을 설명하고자 한다.
도 2에 도시된 바와 같이 본 발명에 따른 반도체 각속도센서는, 실리콘기판(10)이 마련되며 이 실리콘기판(10)위에 미세구조물이 형성되는데, 자기코아(12)가 형성된 가변전극(14), 가변전극(14)에 기준 진동을 일으키게 하기 위한 가동전극(16), 그리고 가변전극(14)의 전계의 세기 변화에 따라 인가전압의 변화량을 측정하기 위한 홀소자(18) 등으로 구성된다.
전술한 구성요소중 가변전극(14)은 실리콘기판(10)위에 이격되어 마련되며 탄성빔(미도시)으로 지지된다. 또한, 가변전극(14)의 법선방향으로 일정한 세기의 자계가 형성되도록 자기코아(12)를 두고 있다. 즉, 가변전극(14)은 전극의 중심부에 코아(12)를 형성하여 이 코아(12)의 주위로 코일(13)을 권선하고, 권선된 코일(13)에 전류를 흐리므로서 자계를 발생시킨다.
그리고 가동전극(16)은 가변전극(14)이 기준진동을 일으키게 하기 위하여 마련된 것으로, 가변전극(14)을 사이에 두고 대칭적으로 마련된다. 즉, 실리콘기판(10)과 절연층(11)을 사이에 두고 형성된 가동전극(16)에 전압을 인가하게 되면 가변전극(14)은 정전력에 의하여 좌우 진동하게 되며, 가동전극(16)에 일정크기의 전압을 계속적으로 인가하게 되면 가변전극(14)은 일정한 주파수대의 기준진동을 수행한다. 또한, 가변전극(14)과 가동전극(16)에 빗살전극을 형성시켜 정전력을 높이므로서 기준진동을 효과적으로 수행시킬 수 도 있다.
그리고 홀소자(18)는 가변전극(14)의 하부에 마련되는데, 그 동작특성은 도 3에 도시된 바와 같이 전류(I)와 자계(H)를 서로 직각방향으로 인가하면 전압(V)이 얻어지는데, 이때 전압(V)는 전류(I)*자계(H)에 그 크기가 비례하는 관계가 있다. 따라서, 가변전극(14)이 홀소자(18)에 접근하게 되면 자계의 세기 변화로 변위량을 알 수 있게된다. 그리고 홀소자(18)의 위치는 가변전극(14)의 위치에 따라 그 설치장소가 다양하게 변화될 수 있다.
이하, 전술한 구성부로 이루어진 반도체 각속도 센서의 동작을 설명하면 다음과 같다.
반도체 각속도 센서는 운동하는 질량에 발생하는 코리올리(Coriolis)힘을 측정하여 회전각속도를 검출하는 개념을 이용하는데 이때 기준진동방향과 검지진동방향의 두 공진 모드 이용한다.
즉, 반도체 각속도 센서는 외부에서 가동전극에 전압을 인가하게 되면 가동전극(16)과 가변전극(14)은 상호 정전력에 의하여 정전가진력이 발생하여 진동을 하게 된다. 이때 가동전극(16)에 일정크기의 전압을 계속적으로 인가하게 되면 가변전극(14)은 기준진동을 일으키게 된다. 이 가변전극(14)에 기준진동만이 일어나고 있는 경우에는 홀소자(18)와 일정거리가 계속적으로 유지되고 있으므로 홀소자(18)에서 검출되는 전압의 변위량은 일정하게 된다.
이 후, 외부로부터 반도체 각속도 센서에 각속도가 가해진다면, 기준진동을 일으키던 가변전극(14)에 코리올리력이 발생된다. 즉, 기준진동중이던 가변전극(14)에 코리올리력이 발생되면 기준진동과 직각방향으로 코리올리력에 의한 검지진동이 발생하게 된다. 따라서, 홀소자(18)와 가변전극(16) 사이의 위치변화로 홀소자(18)에서 검출되는 전압의 변위량은 변화하게 된다.
즉, 가변전극(14)에 마련된 자계발생수단, 다시말하면 코일(13)이 권선된 자기코아(12)에 의하여 가변전극(14)의 법선방향으로 일정세기의 자계가 발생하게 되는데, 이 발생된 자계는 코리올리력에 의하여 검진진동하는 가변전극(14)에 의하여 홀소자(18)에서 감지하는 자계의 세기는 변화하게 된다. 이는 가변전극(14)이 코리올리력에 의하여 상하방향으로 진동하기 때문이다. 따라서, 홀소자(18)에서는 가변전극(14)의 진동에 의한 자계변화로 외부에서 인가된 각속도의 크기를 전압성분으로 검출할 수 있어 신호처리에 매우 효과적이다.
또한, 홀소자(18)는 불순물 농도 등의 변수를 조절하면 전압성분으로 출력되는 출력신호의 감도를 신호처리에 적당하게 제어할 수 있게 된다.
그밖에 본 발명은 상기 실시예에 한정되는 것은 아니고 요지를 이탈하지 않는 범위내에서 여러가지로 변경하여 실시할 수 있다.
이상에서 상세히 설명한 바와 같이, 본 발명에 의하면 외부에서 인가되는 각속도의 크기를 전압성분으로 검출하므로서 신호처리에 효과적이며, 또한 홀소자의 불순물 농도등의 변수를 조절하여 충분한 감도를 얻을 수 있는 효과가 있다.

Claims (1)

  1. 실리콘 기판과, 상기 실리콘 상면에 이격되어 마련되며 탄성빔에 의해 지지된 진동자와,상기 진동자가 기준진동을 일으키도록 상기 진동자를 사이에 두고 대칭적으로 마련된 가동전극을 구비한 반도체 각속도 센서에 잇어서,
    상기 진동자는 법선방향으로 일정세기의 자계를 형성할 수 있도록 그 중심부에 코아 및 코일을 포함하고,
    기준진동시 상기 진동자에 가해진 외력에 의해 변화하는 자계의 변위를 전압신호로 검출할 수 있도록 상기 자계의 중심부에 위치하며 상기 진동자의 하부에 설치된 홀 센서를 포함하는 것을 특징으로 하는 반도체 각속도 센서.
KR1019970048880A 1997-09-25 1997-09-25 반도체 각속도 센서 KR100264384B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970048880A KR100264384B1 (ko) 1997-09-25 1997-09-25 반도체 각속도 센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970048880A KR100264384B1 (ko) 1997-09-25 1997-09-25 반도체 각속도 센서

Publications (2)

Publication Number Publication Date
KR19990026667A KR19990026667A (ko) 1999-04-15
KR100264384B1 true KR100264384B1 (ko) 2000-08-16

Family

ID=19521715

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970048880A KR100264384B1 (ko) 1997-09-25 1997-09-25 반도체 각속도 센서

Country Status (1)

Country Link
KR (1) KR100264384B1 (ko)

Also Published As

Publication number Publication date
KR19990026667A (ko) 1999-04-15

Similar Documents

Publication Publication Date Title
US6215318B1 (en) Micromechanical magnetic field sensor
JP4047377B2 (ja) 振動式ジャイロのマイクロマシンの振動子
US8176779B2 (en) Vibrating micro-mechanical sensor of angular velocity
JP4577671B2 (ja) 角速度測定のための構成
US6516651B1 (en) Coriolis effect transducer
JPH0769230B2 (ja) 振動ビーム力トランスデューサ
JPH08145683A (ja) 加速度・角速度検出装置
US7155976B2 (en) Rotation sensing apparatus and method for manufacturing the same
US6584840B2 (en) Angular velocity sensor
US11531042B2 (en) Sensor and electronic device
JPH02248865A (ja) 加速度検出装置
JP2000074673A (ja) 複合運動センサ
EP3234504B1 (en) Gyroscope
US6462566B1 (en) Sensor element
KR100264384B1 (ko) 반도체 각속도 센서
JPH11351878A (ja) 振動型角速度センサ
CN111780736B (zh) 微机械结构驱动幅度校正系统及方法
JP2000105124A (ja) 静電駆動,静電検出式の角速度センサ
KR100264385B1 (ko) 반도체각속도센서
JPH07239339A (ja) 角速度センサ
KR19990026668A (ko) 반도체 각속도 센서
JP2004301575A (ja) 角速度センサ
JP3028999B2 (ja) 振動ジャイロ
JPH07301536A (ja) 角速度センサ
Liu et al. Resonant Accelerometers using Electrostatic Potential between the Comb Electrodes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120130

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee