KR100263063B1 - Method of fabricating cmos transistor - Google Patents

Method of fabricating cmos transistor Download PDF

Info

Publication number
KR100263063B1
KR100263063B1 KR1019970055299A KR19970055299A KR100263063B1 KR 100263063 B1 KR100263063 B1 KR 100263063B1 KR 1019970055299 A KR1019970055299 A KR 1019970055299A KR 19970055299 A KR19970055299 A KR 19970055299A KR 100263063 B1 KR100263063 B1 KR 100263063B1
Authority
KR
South Korea
Prior art keywords
mos transistor
conductive
region
transistor
conductive mos
Prior art date
Application number
KR1019970055299A
Other languages
Korean (ko)
Other versions
KR19990033864A (en
Inventor
이헌규
최정혁
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019970055299A priority Critical patent/KR100263063B1/en
Publication of KR19990033864A publication Critical patent/KR19990033864A/en
Application granted granted Critical
Publication of KR100263063B1 publication Critical patent/KR100263063B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823864Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Abstract

PURPOSE: A method for fabricating a CMOS transistor is provided to simplify a fabrication process, and to obtain a desired threshold voltage of each PMOS transistor by assuring a junction overlap region sufficiently of the PMOS transistor as adopting an LDD(Lightly Doped Drain) junction structure. CONSTITUTION: According to the method of fabricating a PMOS transistor and an NMOS transistor on a P type silicon substrate(10), a gate(50) of the NMOS transistor is formed on the substrate and a gate(51) of the PMOS transistor is formed in an N-well(20). Then, an N-type impurity is lightly implanted to a drain and source region(30,31,32,33) of the transistors to form an LDD(Lightly Doped Drain). The first and the second insulation film(60,65) are deposited on an upper part of the gates and the ion-implanted regions. And, after forming a compound spacer(64) comprising the first and the second insulation film on a side wall of the gate of the NMOS transistor by covering the PMOS transistor and etching back the region of the NMOS transistor, an N-type impurity is heavily implanted to form an LDD of the NMOS transistor. Then, after forming a spacer(64) comprising the first insulation film on a side wall of the gate of the PMOS transistor by covering the region of the NMOS transistor and etching back the first insulation film in the region of the PMOS transistor, a P-type impurity is heavily implanted to form an LDD of the PMOS transistor. Thus, a transistor is completed where the sizes of junction overlap regions are different according to the width of the spacers, by opening the region of the NMOS transistor and performing a thermal annealing.

Description

씨모오스 트랜지스터의 제조 방법Manufacturing Method of SeaMOS Transistor

본 발명은 반도체 장치의 제조 방법에 관한 것으로, 특히 트랜지스터들에 대한 소망하는 문턱전압 값들을 각기 얻을 수 있는 씨모오스 트랜지스터의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of manufacturing a CMOS transistor, each of which can obtain desired threshold voltage values for the transistors.

반도체 메모리 장치를 구동시키기 위한 주변회로는 일반적으로 트랜지스터(transistor)로 구성되는 스위칭소자 및 캐패시터 그리고 저항 등으로 구성되어 있다. 상기 주변회로내에 위치하는 스위치 소자로서는 엔형 모오스 트랜지스터와 피형 모오스 트랜지스터를 동일 기판상에 함께 구성한 씨모오스(CMOS) 트랜지스터가 단일의 엔형 모오스 트랜지스터나 피형 모오스 트랜지스터에 비해 보다 많이 사용 되어진다. 그러한 이유는 출력 논리 레벨, 파워 소모(power dissipation), 천이타임(transition time), 또는 프리아아지 특성 등이 상대적으로 우수하기 때문이다. 그러한 장점을 지닌 씨모오스 트랜지스터는 통상적으로, 피형 벌크(p type bulk)위에 고농도 엔형 소오스/드래인(n+ source/drain)영역과 채널상의 게이트 절연막을 통해 형성된 게이트 전극을 가지는 엔형 모오스 트랜지스터와, 엔형 벌크위에 고농도 피형 소오스/드레인(source/drain)영역과 채널상의 게이트 절연막을 통해 형성된 게이트 전극을 가지는 피형 모오스 트랜지스터로 형성된다.A peripheral circuit for driving a semiconductor memory device is generally composed of a switching element composed of a transistor, a capacitor, and a resistor. As the switch element located in the peripheral circuit, a CMOS transistor having a N-type transistor and an MOS transistor together on the same substrate is used more than a single N-type transistor or a MOS transistor. This is because the output logic level, power dissipation, transition time, or preage characteristics are relatively good. A CMOS transistor having such an advantage is typically an N-type transistor having an N-type source / drain region of high concentration on a p-type bulk and a gate electrode formed through a gate insulating film on a channel, and an N-type transistor. A bulk MOS transistor having a high concentration source / drain region on the bulk and a gate electrode formed through a gate insulating film on the channel is formed.

전기적으로 프로그램 및 소거가 가능한 노아형 플래쉬 메모리 등의 불휘발성 메모리 장치의 주변회로내의 씨모오스(CMOS) 트랜지스터는 프로그램이나 소거동작시의 고전압(약 10볼트)에 충분히 견딜 수 있는 동작특성을 가져야 한다. 따라서, 최근의 서브 미크론 디자인 룰(sub micron design rule)을 사용하여 씨모오스 트랜지스터를 제조하는 경우에, 신뢰성을 개선하기 위해 LDD(Lightly Doped Drain)접합(junction) 구조를 채용하고 있다. 상기한 LDD 접합구조에서 고농도의 N+/P+영역에 비해 저농도의 N-/P-영역을 보다 넓게 함으로서 동작 전압의 마아진을 향상시킬 수 있는데, 이를 위하여 게이트로부터 상기 N+/P+영역까지의 이격 거리는 게이트의 측벽에 형성된 스레이서에 의해 조절할 수 있다.CMOS transistors in peripheral circuits of nonvolatile memory devices, such as electrically programmable and erasable NOR flash memories, must have sufficient operating characteristics to withstand high voltages (about 10 volts) during program or erase operations. . Therefore, in the case of manufacturing CMOS transistors using the recent sub micron design rule, a lightly doped drain (LDD) junction structure is employed to improve reliability. In the LDD junction structure, the margin of the operating voltage can be improved by making the N- / P- region of the low concentration wider than the N + / P + region of the high concentration, and for this purpose, the distance from the gate to the N + / P + region is increased. It can be adjusted by a spacer formed on the side wall of the.

종래의 공정기술로 형성된 상기 스페이서는 엔형 모오스 트랜지스터와 피형 모오스 트랜지스터에 모두 동일한 폭을 가지고 있으므로, 엔형 모오스 트랜지스터의 특성은 개선되나, 피형 모오스 트랜지스터의 경우에 활성영역 내에 존재하는 고농도의 P+영역이 그의 게이트와 오버랩(중첩)되지 못하는 문제가 발생된다. 따라서, LDD 접합(junction) 구조를 채용하면서도 피모오스 트랜지스터의 접합 오버랩 영역을 충분히 보장하여, 각 트랜지스터들에 대한 소망하는 문턱전압 값들을 각기 얻을 수 있는 기술이 강력히 요구된다.Since the spacer formed by the conventional process technology has the same width in both the N-type and the MOS transistors, the characteristics of the N-type transistor are improved, but in the case of the MOS transistor, the high concentration P + region present in the active region is The problem of not overlapping with the gate occurs. Therefore, there is a strong demand for a technique that can sufficiently secure the junction overlap region of the PMOS transistor while adopting the LDD junction structure, so as to obtain desired threshold voltage values for each transistor.

따라서, 본 발명의 목적은 상기한 종래의 문제점을 해소할 수 있는 씨모오스 트랜지스터의 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a CMOS transistor that can solve the above-mentioned conventional problems.

본 발명의 다른 목적은 제조공정을 간단히 할 수 있는 씨모오스 트랜지스터 제조방법을 제공함에 있다.Another object of the present invention is to provide a method for manufacturing a CMOS transistor that can simplify the manufacturing process.

본 발명의 또 다른 목적은 LDD 접합 구조를 채용하면서도 피모오스 트랜지스터의 접합 오버랩 영역을 충분히 보장하여, 각 트랜지스터들에 대한 소망하는 문턱 전압 값들을 각기 얻을 수 있는 방법 및 개선된 씨모오스 트랜지스터의 구조를 제공함에 있다.It is still another object of the present invention to provide an improved method for achieving a junction overlap region of a PMOS transistor, while employing an LDD junction structure to obtain desired threshold voltage values for each transistor, respectively, and to improve the structure of the CMOS transistor. In providing.

본 발명의 또 다른 목적도 노아형 플래쉬 메모리 등의 불휘발성 메모리 장치의 주변회로내에 적합하게 사용될 수 있는 씨모오스 트랜지스터의 구조를 제공함에 있다.Still another object of the present invention is to provide a structure of a CMOS transistor that can be suitably used in a peripheral circuit of a nonvolatile memory device such as a noah type flash memory.

상기의 목적을 달성하기 위해 본 발명에 따른 씨모오스 트랜지스터의 구조는, 제2도전형 MOS 트랜지스터의 게이트의 측벽에 형성되고 제1, 제2절연막으로 이루어진 복합스페이서와; 제1도전형 MOS 트랜지스터의 게이트의 측벽에 형성되고 상기 제1절연막으로 이루어진 스페이서와; 상기 게이트들의 하부에서 상기 게이트들과 각기 중첩되는 접합 오보랩 영역의 사이즈가 서로 다르게 형성된 드레인 영역들을 LDD구조로서 가짐을 특징으로 한다.In order to achieve the above object, the structure of the CMOS transistor according to the present invention includes: a composite spacer formed on sidewalls of a gate of a second conductive MOS transistor and formed of first and second insulating films; A spacer formed on the sidewall of the gate of the first conductive MOS transistor and formed of the first insulating film; The lower regions of the gates may have drain regions having different sizes of junction overlap regions overlapping the gates as LDD structures.

또한, 제1도전형 반도체 기판위에 제1도전형 MOS 트랜지스터와 제2도전형 MOS 트랜지스터를 제조하는 방법은, 상기 기판상에 상기 제2도전형 MOS 트랜지스터의 게이트를 형성하고 상기 기판내의 제2도전형 웰내에 상기 제1도전형 MOS 트랜지스터의 게이트를 형성 한 후, 상기 트랜지스터들의 드레인 및 소오스 영역들이 형성될 영역들에 LDD형성을 위해 제2도전형 불순물을 저농도로 이온주입하는 단계와; 상기 게이트들의 상부 및 상기 이온 주입된 영역들의 상부에 전체적으로 제1 및 제2절연막을 도포하는 단계와; 상기 제1도전형 MOS 트랜지스터의 영역을 커버하고 상기 제2도전형 MOS 트랜지스터의 영역을 에치백하여 상기 제2도전형 MOS 트랜지스터의 게이트 측벽에 상기 제1,2절연막으로 이루어진 복합스페이서를 형성한 후, 상기 제2도전형 MOS 트랜지스터의 LDD형성구조를 만들기 위해 제2도전형 불순물을 고농도로 이온주입하는 단계와; 상기 제2도전형 MOS 트랜지스터의 영역을 커버하고, 상기 제1도전형 MOS 트랜지스터의 영역내의 상기 제1절연막만을 에치백하여 상기 제1도전형 MOS 트랜지스터의 게이트 측벽에 상기 제1절연막으로 이루어진 스페이서를 형성한 후, 상기 제1도전형 MOS 트랜지스터의 LDD형성구조를 만들기 위해 제1도전형 불순물을 고농도로 이온주입하는 단계와; 상기 제2도전형 MOS 트랜지스터의 영역을 오픈하고, 열처리를 행하여 상기 게이트들의 하부에 각기 중첩되는 접합 오버랩 영역의 사이즈가 상기 스페이서들의 폭에 따라 서로 다르게 형성된 상기 트랜지스터를 얻는 단계를 가짐을 특징으로 한다.In addition, a method of manufacturing a first conductive MOS transistor and a second conductive MOS transistor on a first conductive semiconductor substrate includes forming a gate of the second conductive MOS transistor on the substrate and forming a second conductive layer in the substrate. After forming a gate of the first conductive MOS transistor in a type well, implanting a second conductive impurity at low concentration to form an LDD in regions where drain and source regions of the transistors are to be formed; Applying first and second insulating layers on the gates and on the ion implanted regions as a whole; Covering the region of the first conductive MOS transistor and etching back the region of the second conductive MOS transistor to form a composite spacer including the first and second insulating layers on the sidewalls of the gate of the second conductive MOS transistor. Ion-implanting a second conductive impurity at a high concentration to form an LDD formation structure of the second conductive MOS transistor; Covering the region of the second conductive MOS transistor and etching back only the first insulating layer in the region of the first conductive MOS transistor, a spacer including the first insulating layer is formed on the sidewall of the gate of the first conductive MOS transistor. Forming a first conductive impurity at a high concentration to form an LDD formation structure of the first conductive MOS transistor after the formation; And opening the region of the second conductive MOS transistor and performing heat treatment to obtain the transistor having different sizes of junction overlap regions overlapping the lower portions of the gates according to the widths of the spacers. .

제1도 내지 제6도는 본 발명의 일실시예에 따른 CMOS 트랜지스터를 제조하는 순서를 보인 공정 단면도들.1 through 6 are cross-sectional views illustrating a process of manufacturing a CMOS transistor according to an embodiment of the present invention.

이하 본 발명에 따른 바람직한 실시예가 첨부된 도면을 참조하여 상세히 설명되어질 것이다. 첨부된 도면들내에서 서로 동일한 층은 다른 도면내에 있더라도 이해의 편의를 위해서 동일 내지 유사한 참조부호 또는 명칭으로 라벨링된다. 다음의 설명에서는 본 발명의 보다 철저한 이해를 제공하기 위해 특정한 상세들이 예를 들어 한정되고 자세하게 설명된다. 그러나, 당해 기술분야에 통상의 지식을 가진 자들에게 있어서는 본 발명이 이러한 상세한 항목들이 없이도 상기한 설명에 의해서만 실시될 수 있을 것이다. 또한, 본 분야에 너무나 잘 알려진 모오스 트랜지스터의 기본적 제조공정 및 특성은 본 발명의 요지를 흐리지 않게 하기 위해 상세히 설명되지 않는다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the accompanying drawings, the same layers as each other are labeled with the same or similar reference numerals or names for convenience of understanding even if they are in different drawings. In the following description, specific details are set forth in detail, for example, in order to provide a more thorough understanding of the present invention. However, for those skilled in the art, the present invention may be practiced only by the above description without these details. In addition, the basic fabrication process and characteristics of MOS transistors so well known in the art are not described in detail in order to not obscure the subject matter of the present invention.

본 발명의 일실시예에 의한 CMOS 제조공정의 순서가 제1도 내지 제6도네 도시된다. 제1도를 참조하면 p-sub실리콘 기판 10상에 PMOS를 만들기 위해 n-웰 20을 형성한다. NMOS는 p-웰 또는 상기 기판 10상에 직접 형성될 수 있다. 상기 기판 10상에 N웰 20 및 P웰을 만드는 것은 하기의 공정으로 이루어질 수 있다. 먼저, 기판 10상에 산화막과 질화막을 각기 300Å/1500Å 형성한 후, PMOS 트랜지스터가 형성될 영역을 한정하고 그 부분의 질화막을 제거한 다음 n-형 불순물인 인(phosphorous)을 약 1.7E13 ions/㎠, 100KeV로써 주입한다. 이렇게 함으로써 엔형의 불순물이 기판 10의 일부 표면에 주입되어 엔형 웰 20의 형성작업이 일부 완료 된다. 이후에, 상기 질호막이 제거된 부분에 3000Å의 산화막을 형성하고, 나머지 부분의 질화막을 제거하여 엔모오스가 만들어질 피웰을 형성하는 작업에 들어간다. 즉, p-type 불순물인 보론(boron)을 2.0E13 ions/㎠, 100KeV로 주입하여 나머지의 질화막이 제거된 부분 하부에 있는 기판 10의 표면근방에 피형의 불순물이 주입되게 한다. 이후 1100℃에서 8hr정도로 확산공정(drive-in)을 실시하면 깊이 약 5um 내외의 n-well 20과 p-well이 완전히 형성된다.A flowchart of a CMOS manufacturing process according to an embodiment of the present invention is shown in FIGS. 1 to 6. Referring to FIG. 1, an n-well 20 is formed on a p-sub silicon substrate 10 to make a PMOS. NMOS can be formed directly on the p-well or the substrate 10. Making the N well 20 and the P well on the substrate 10 may be performed by the following process. First, an oxide film and a nitride film are formed on the substrate 10 respectively, 300 Å / 1500 Å, the region where the PMOS transistor is to be formed, the region of the nitride film is removed, and the phosphorus, which is an n-type impurity, is about 1.7E13 ions / cm 2. , 100KeV. In this way, an N-type impurity is injected into a part of the surface of the substrate 10 to partially complete the formation of the N-type well 20. Subsequently, an oxide film of 3000 kPa is formed in the portion where the nitride film is removed, and the nitride film of the remaining portion is removed to start the work of forming a pewell in which enmoose is to be made. In other words, boron, which is a p-type impurity, is implanted at 2.0E13 ions / cm 2 and 100 KeV so that an impurity of a type is implanted near the surface of the substrate 10 under the portion where the remaining nitride film is removed. Afterwards, the drive-in process is performed at 1100 ° C. for about 8 hr to form n-well 20 and p-well of about 5 μm in depth.

웰 또는 웰들을 형성한 후, 액티브와 소자분리 영역을 구분하기 위해 LOCOS등의 일반적인 국부산화공정을 통하여 필드 절연막을 형성한다. 상기 필드 절연막은 제1도에 도시되지 않았다. 이에 따라, 웰 20 및 기판 10의 상부에는 액티브 영역이 각기 정하여진다. 상기 액티브 영역들의 각 상부에는 게이트 절연막으로서의 산화막 40.41이 약 100Å정도의 두께로 형성된다. 그리고 그 상부에 게이트 전극으로서 언도프드 폴리실리콘(undoped polysilicon)을 약 4000Å정도로 침적시킨 후 게이트 패터닝을 행하여 엔모오스 트랜지스터의 게이트 50와 피모오스 트랜지스터의 게이트 51을 동시에 얻어낸다. 여기서, 상기 게이트 50, 51을 폴리사이드 게이트 전극으로서 형성하는 경우에는 약 1500Å의 언도프드 폴리실리콘과 약 1500Å의 금속실리사이드가 적층될 수 있다. 제1도의 게이트 들을 완성한 후, NMOS의 LDD형성을 위해 n-불순물로서 인(phosphorus) 또는 비소(arsenic)를 2.0E13 ions/㎠, 40KeV로서 웨이퍼 전면에 주입한다. 결과로서, 상기 트랜지스터들의 드레인 및 소오스 영역들이 형성될 영역들 30, 31, 32, 33에는 제2도전형 예컨대 N형 불순물이 저농도로 이온주입된다.After the wells or wells are formed, a field insulating film is formed through a general local oxidation process such as LOCOS to separate active and device isolation regions. The field insulating film is not shown in FIG. As a result, active regions are defined on the wells 20 and 10, respectively. On each of the active regions, an oxide film 40.41 as a gate insulating film is formed to a thickness of about 100 GPa. Then, an undoped polysilicon is deposited on the upper portion of the gate electrode to about 4000 mV, and gate patterning is performed to simultaneously obtain the gate 50 of the enMOS transistor and the gate 51 of the PMOS transistor. In this case, when the gates 50 and 51 are formed as polyside gate electrodes, undoped polysilicon of about 1500 kV and metal silicide of about 1500 kPa may be stacked. After completing the gates of FIG. 1, phosphorus or arsenic as n-impurities were implanted into the front of the wafer as 2.0E13 ions / cm 2, 40KeV for LDD formation of the NMOS. As a result, a second conductivity type, for example, an N-type impurity, is ion-implanted at low concentrations in the regions 30, 31, 32, and 33 where the drain and source regions of the transistors are to be formed.

그리고 나서, 후술되는 스페이서(spacer)들을 형성하기 위해, 상기 게이트들 50,51의 상부 및 상기 이온 주입된 영역들 30~33의 상부에 전체적으로 제1 및 제2 절연막 60, 65를 제2도와 같이 도포한다. 여기서, 상기 제1절연막 60은 산화막, 제2절연막 65는 질화막, 폴리실리콘 막, 또는 이들의 복합막으로 형성될 수 있다. 상기 산화막 60이 상기 제1절연막으로서 채용되는 경우에 통상의 CVD법으로 약 1500Å의 두께로 침적될 수 있다.Then, in order to form spacers to be described later, the first and second insulating layers 60 and 65 are entirely formed on the upper portions of the gates 50 and 51 and the ion implanted regions 30 to 33 as shown in FIG. Apply. Here, the first insulating film 60 may be formed of an oxide film, the second insulating film 65 may be formed of a nitride film, a polysilicon film, or a composite film thereof. When the oxide film 60 is employed as the first insulating film, it may be deposited to a thickness of about 1500 kPa by a conventional CVD method.

제3도를 참조하면, PMOS영역을 한정하여 포토레지스트막 70등으로 마스킹 하고 나서, 상기 NMOS 트랜지스터의 영역에 있는 상기 절연막들 65,60을 에치백하여 상기 게이트 50의 측벽에 상기 제1,2절연막으로 이루어진 복합스페이서 64를 형성하는 것이 보여진다. 그 후, 상기 NMOS 트랜지스터의 LDD형성구조를 만들기 위해 제2도전형 불순물 예컨대 n+불순물인 아세닉(arsenic)을 5.0E15 ions/㎠, 50KeV로서 고농도 주입한다.Referring to FIG. 3, the PMOS region is limited to the photoresist layer 70 and the like, and then the back insulation layers 65 and 60 in the region of the NMOS transistor are etched back to the sidewalls of the gate 50. Formation of a composite spacer 64 made of an insulating film is shown. Thereafter, a second conductive impurity such as n + impurity arsenic is implanted at a high concentration as 5.0E15 ions / cm 2, 50 KeV to form the LDD formation structure of the NMOS transistor.

제4도 및 제5도를 참조하면, 상기 NMOS 트랜지스터의 영역을 포토레지스트 등의 마스크 71로서 커버하고, 상기 PMOS 트랜지스터의 영역내의 상기 제2절연막 65를 습식식각으로 제거하고 남은 상기 제1절연막 60만을 에치백하여 상기 PMOS 트랜지스터의 게이트 51의 측벽에 상기 제1절연막 60으로 이루어진 스페이서 62를 형성한 후, 상기 PMOS 트랜지스터를 만들기 위해 제1도전형 불순물 예컨대 p+불순물인 BF2를 5.0E15 ions/㎠, 50KeV로 고농도 이온주입하는 것이 보여진다. 따라서, 상기 스페이서 62의 폭은 상기 복합 스페이서 64의 폭에 비해 작은 사이즈를 가진다.4 and 5, the region of the NMOS transistor is covered with a mask 71 of a photoresist or the like, and the first insulating layer 60 remaining by wet etching the second insulating layer 65 in the region of the PMOS transistor is removed by wet etching. Bayer was etched back to form a spacer 62 made of the first insulating layer 60 on the sidewall of the gate 51 of the PMOS transistor, and then, BF2, 5.0 p. High concentration ion implantation at 50 KeV has been shown. Therefore, the width of the spacer 62 has a smaller size than the width of the composite spacer 64.

제6도에는 상기 막 71을 제거하여 상기 NMOS 트랜지스터의 영역을 마저 오픈하고, 열처리를 행하여 상기 게이트들의 하부에 각기 중첩되는 접합 오버랩 영역의 사이즈가 상기 스페이서들의 폭에 따라 서로 다르게 형성된 상기 트랜지스터를 얻은 결과가 나타나 있다. 제6도에서, 상기 NMOS 트랜지스터의 P+접합 오버랩 영역OL1은 NMOS의 그것에 비해 상대적으로 크다.In FIG. 6, the film 71 is removed to even open the region of the NMOS transistor, and heat treatment is performed to obtain the transistor in which the size of the junction overlap region overlapping each of the lower portions of the gates is different depending on the width of the spacers. The results are shown. In FIG. 6, the P + junction overlap region OL1 of the NMOS transistor is relatively large compared to that of the NMOS.

상기한 실시예에서, 2회의 에치백을 1회로 줄이기 위해서는 씨모오스 영역 전체에 대해 마스크 없이 에치백을 한 후, PMOS 트랜지스터의 소오스 및 드레인에 이온을 주입하기 전에 복합 스페이서를 단일의 스페이서로 만드는 단계를 가질 수 있다.In the above embodiment, in order to reduce two etchbacks in one cycle, the etchback is performed without mask for the entire CMOS region, and then the composite spacer is made into a single spacer before implanting ions into the source and drain of the PMOS transistor. It can have

또한, 트랜지스터의 드레쉬홀드 전압 조절을 위한 불순물의 채널 주입공정이나 PMOS LDD 공정이 추가될 수 있음을 알 수 있고, NMOS LDD공정이 제거될 수 있는 변형된 공정 등이 가능하다. 또한, n+,p+ 주입공정순서가 바뀌는 것도 무관하다. 만약, PMOS에, LDD를 적용하기 위해서는 스페이서를 형성하기 전에 마스크를 추가하고 p-불순물로서 보론을 4.0E13 ions/㎠, 30KeV로 주입시키는 공정을 수행하면 된다. 또 다른 변형공정으로서 PMOS만을 LDD로 하고 NMOS는 전형적인 접합으로 형성시킬 경우에 n-이온주입 공정을 없애면 된다. 주입되는 불순물의 주입길이를 보다 길게 하기 위해서는 인이나 보론 보다 비소나 BF2를 주입하는 것이 좋다.In addition, it can be seen that an impurity channel implantation process or a PMOS LDD process can be added to control the threshold voltage of the transistor, and a modified process in which the NMOS LDD process can be removed is possible. In addition, the order of n + and p + injection processes is irrelevant. In order to apply LDD to a PMOS, a mask may be added before forming a spacer, and boron may be injected as p-impurity at 4.0E13 ions / cm 2 and 30 KeV. As another modification process, the n-ion implantation process can be eliminated when only the PMOS is made of LDD and the NMOS is formed by a typical junction. In order to increase the injection length of the impurities to be injected, it is better to inject arsenic or BF2 than phosphorus or boron.

본 발명에 따른 예시적 제조공정을 상기한 설명 및 도면에 따라 도시하였지만, 이는 예를 들어 설명한 것에 불과하며 다양한 변화 및 변경이 가능함은 물론이다Exemplary manufacturing processes according to the present invention have been shown in accordance with the above descriptions and drawings, but this is merely for example and various changes and modifications are possible.

상기한 본 발명에 따르면, 공정이 간단하므로 제조원가가 저렴하면서도 우수한 특성을 가진 CMOS 트랜지스터를 제공하는 이점과, LDD 접합 구조를 채용하면서도 피모오스 트랜지스터의 접합 오버랩 영역을 충분히 보장하여, 각 트랜지스터들에 대한 소망하는 문턱전압 값들을 각기 얻을 수 있는 효과가 있다.According to the present invention described above, the advantages of providing a CMOS transistor having a low cost and excellent characteristics due to the simple process and excellent characteristics, and sufficiently ensuring the junction overlap region of the PMOS transistor while adopting the LDD junction structure, There is an effect that each of the desired threshold voltage values can be obtained.

Claims (4)

제1도전형 반도체 기판위에 제1도전형 MOS 트랜지스터와 제2도전형 MOS 트랜지스터를 제조하는 방법에 있어서 ;A method for manufacturing a first conductive MOS transistor and a second conductive MOS transistor on a first conductive semiconductor substrate; 상기 기판상에 상기 제2도전형 MOS 트랜지스터의 게이트를 형성하고 상기 기판내의 제2도전형 웰내에 상기 제1도전형 MOS 트랜지스터의 게이트를 형성 한 후, 상기 트랜지스터들의 드레인 및 소오스영역들이 형성될 영역들에 LDD형성을 위해 제2도전형 불순물을 저농도로 이온주입하는 단계와 ;After forming the gate of the second conductive MOS transistor on the substrate and the gate of the first conductive MOS transistor in the second conductive well in the substrate, the region where the drain and source regions of the transistors are to be formed. Ion implanting a second conductive impurity at low concentration to form LDD in the field; 상기 게이트들의 상수 및 상기 이온 주입된 영역들의 상부에 전체적으로 제1 및 제2절연막을 도포하는 단계와 ;Applying first and second insulating films over the constants of the gates and the ion implanted regions as a whole; 상기 제1도전형 MOS 트랜지스터의 영역을 커버하고 상기 제2도전형 MOS 트랜지스터의 영역을 에치백하여 상기 제2도전형 MOS 트랜지스터의 게이트 측벽에 상기 제1, 제2절연막으로 이루어진 복합스페이서를 형성한 후, 상기 제2도전형 MOS 트랜지스터의 LDD형성구조를 만들기 위해 제2도전형 불순물을 고농도로 이온주입하는 단계와 ;Covering the region of the first conductive MOS transistor and etching back the region of the second conductive MOS transistor to form a composite spacer including the first and second insulating layers on the gate sidewall of the second conductive MOS transistor. Thereafter, ion implanting a second conductive impurity at a high concentration to form an LDD formation structure of the second conductive MOS transistor; 상기 제2도전형 MOS 트랜지스터의 영역을 커버하고, 상기 제1도전형 MOS트랜지스터의 영역내의 상기 제1절연막만을 에치백하여 상기 제1도전형 MOS 트랜지스터의 게이트 측벽에 상기 제1절연막으로 이루어진 스페이서를 형성한 후, 상기 제1도전형 MOS 트랜지스터의 LDD형성구조를 만들기 위해 제1도전형 불순물을 고농도로 이온주입하는 단계와 ;Covering the region of the second conductive MOS transistor and etching back only the first insulating layer in the region of the first conductive MOS transistor, a spacer made of the first insulating layer is formed on the gate sidewall of the first conductive MOS transistor. Forming a first conductive impurity at a high concentration to form an LDD formation structure of the first conductive MOS transistor after the formation; 상기 제2도전형 MOS 트랜지스터의 영역을 오픈하고, 열처리를 행하여 상기 게이트들의 하부에 각기 중첩되는 접합 오버랩 영역의 사이즈가 상기 스페이서들의 폭에 따라 서로 다르게 형성된 상기 트랜지스터를 얻는 단계를 가짐을 특징으로 하는 방법.Opening the region of the second conductive MOS transistor and performing a heat treatment to obtain the transistor having different sizes of junction overlap regions overlapping the lower portions of the gates according to the widths of the spacers. Way. 제1항에 있어서, 상기 복합스페이서의 폭은 상기 스페이서의 폭보다 큼을 특징으로 하는 방법.The method of claim 1, wherein the width of the composite spacer is greater than the width of the spacer. 제2항에 있어서, 상기 제2도전형이 n형인 경우에, 상기 제1도전형은 p형임을 특징으로 하는 방법.The method of claim 2, wherein when the second conductivity type is n-type, the first conductivity type is p-type. 제1도전형 반도체 기판위에 제1도전형 MOS 트랜지스터와 제2도전형 MOS 트랜지스터를 제조하는 방법에 있어서 ;A method for manufacturing a first conductive MOS transistor and a second conductive MOS transistor on a first conductive semiconductor substrate; 상기 기판내에 제1도전형 웰내에 상기 제2도전형 MOS 트랜지스터의 게이트를 형성하고 상기 기판내의 제2도전형 웰내에 상기 제1도전형 MOS 트랜지스터의 게이트를 형성 한 후, 상기 트랜지스터들의 드레인 및 소오스영역들이 형성될 영역들에 제2도 전형 불순물을 저농도로 이온주입하는 단계와 ;After forming the gate of the second conductive MOS transistor in the first conductive well in the substrate and the gate of the first conductive MOS transistor in the second conductive well in the substrate, drain and source of the transistors Low ion implantation of second conductivity type impurities into the regions where the regions are to be formed; 상기 게이트들의 상부 및 상기 이온 주입된 영역들의 상부에 전체적으로 제1 및 제2절연막을 도포하는 단계와 ;Applying first and second insulating films on the gates and on the ion implanted regions as a whole; 상기 절연막들을 에치백하여 상기 제1,2도전형 MOS 트랜지스터의 게이트 측벽에 상기 제1,2절연막으로 이루어진 복합스페이서를 형성한 후, 상기 제1도전형 MOS 트랜지스터의 영역을 커버하고 상기 제2도전형 MOS 트랜지스터의 LDD형성구조를 만들기 위해 제2도전형 불순물을 고농도로 이온주입하는 단계와 ;The insulating layers are etched back to form a composite spacer including the first and second insulating layers on the gate sidewalls of the first and second conductive MOS transistors, and then cover an area of the first conductive MOS transistor and cover the second conductive layer. Ion implanting a second conductive impurity at a high concentration to form an LDD forming structure of the type MOS transistor; 상기 제2도전형 MOS 트랜지스터의 영역을 커버하고, 상기 제1도전형 MOS 트랜지스터의 영역내의 상기 복합스페이서의 제2절연막을 제거하고 제1절연막만을 에치배가여 상기 제1도전형 MOS 트랜지스터의 게이트 측벽에 상기 제1절연막으로 이루어진 스페이서를 형성한 후, 상기 제1도전형 MOS 트랜지스터의 구조를 만들기 위해 제1도전형 불순물을 고농도로 이온주입하는 단계와 ;A gate sidewall of the first conductive MOS transistor is formed by covering the region of the second conductive MOS transistor, removing the second insulating layer of the composite spacer in the region of the first conductive MOS transistor, and etching only the first insulating layer. Forming a spacer made of the first insulating film in the substrate, and ion implanting the first conductive impurities at a high concentration to form a structure of the first conductive MOS transistor; 상기 제2도전형 MOS 트랜지스터의 영역을 오픈하고, 열처리를 행하여 상기 게이트들의 하부에 각기 중첩되는 고농도 접합 오버랩 영역의 사이즈가 상기 스페이서들의 폭에 따라 서로 다르게 형성된 상기 트랜지시터를 얻는 단계를 가짐을 특징으로 하는 방법.Opening the region of the second conductive MOS transistor and performing a heat treatment to obtain the transistor having different sizes of the heavily-concentrated junction overlap regions overlapping the lower portions of the gates according to the widths of the spacers. How to feature. 상기 제2도전형 MOS 트랜지스터의 영역을 오픈하고, 열처리를 행하여 상기 게이트들의 하부에 각기 중첩되는 고농도 접합 오버랩 영역의 사이즈가 상기 스페이서들의 폭에 따라 서로 다르게 형성된 상기 트랜지스터를 얻는 단계를 가짐을 특징으로 하는 방법.Opening the region of the second conductive MOS transistor and performing a heat treatment to obtain the transistor in which the size of the highly-concentrated junction overlap region overlapping each of the lower portions of the gates is different depending on the width of the spacers. How to.
KR1019970055299A 1997-10-27 1997-10-27 Method of fabricating cmos transistor KR100263063B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970055299A KR100263063B1 (en) 1997-10-27 1997-10-27 Method of fabricating cmos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970055299A KR100263063B1 (en) 1997-10-27 1997-10-27 Method of fabricating cmos transistor

Publications (2)

Publication Number Publication Date
KR19990033864A KR19990033864A (en) 1999-05-15
KR100263063B1 true KR100263063B1 (en) 2000-08-01

Family

ID=19523494

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970055299A KR100263063B1 (en) 1997-10-27 1997-10-27 Method of fabricating cmos transistor

Country Status (1)

Country Link
KR (1) KR100263063B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949666B1 (en) * 2003-04-29 2010-03-29 매그나칩 반도체 유한회사 Method for fabricating semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110003A (en) * 1991-10-16 1993-04-30 Nec Corp Semiconductor integrated circuit device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110003A (en) * 1991-10-16 1993-04-30 Nec Corp Semiconductor integrated circuit device and manufacture thereof

Also Published As

Publication number Publication date
KR19990033864A (en) 1999-05-15

Similar Documents

Publication Publication Date Title
US7118963B2 (en) Semiconductor memory integrated circuit and its manufacturing method
KR100221120B1 (en) Manufacturing method of a semiconductor device
US6759717B2 (en) CMOS integrated circuit device with LDD n-channel transistor and non-LDD p-channel transistor
US6287907B1 (en) Method of manufacturing a flash memory having a select transistor
JPWO2006126245A1 (en) Semiconductor device and manufacturing method thereof
US8421144B2 (en) Electrically erasable programmable read-only memory and manufacturing method thereof
US6586296B1 (en) Method of doping wells, channels, and gates of dual gate CMOS technology with reduced number of masks
JP2001156290A (en) Semiconductor device
KR100466194B1 (en) Method for manufacturing flash memory
KR100263063B1 (en) Method of fabricating cmos transistor
US6362034B1 (en) Method of forming MOSFET gate electrodes having reduced depletion region growth sensitivity to applied electric field
KR100655069B1 (en) Method for fabricating dual gate type MOS transistor
US7588987B2 (en) Semiconductor device and method for fabricating the same
JP2845186B2 (en) Semiconductor device and manufacturing method thereof
KR100624922B1 (en) Method of manufacturing a flash memory device
US20060148185A1 (en) Method for manufacturing high voltage transistor
KR100431324B1 (en) Manufacturing Method of Semiconductor Device
JP3970689B2 (en) Semiconductor device and manufacturing method thereof
KR970011161B1 (en) Method for manufacturing electrically erasable & programmable read only memory
KR0161393B1 (en) Method of manufacturing non-volatile memory device
KR100271801B1 (en) Manufacturing Method of Semiconductor Device
KR100254045B1 (en) Method for manufacturing semiconductor device
KR100943133B1 (en) Transistor of semiconductor device and forming method thereof
KR930008525B1 (en) Method for fabricating of a capacitor cell using a disposable sidewall
JP2915036B2 (en) Method for manufacturing semiconductor integrated circuit device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100429

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee