KR100256368B1 - Hypereutectoid high chrome carbide type alloy for built-up welding - Google Patents

Hypereutectoid high chrome carbide type alloy for built-up welding Download PDF

Info

Publication number
KR100256368B1
KR100256368B1 KR1019950061770A KR19950061770A KR100256368B1 KR 100256368 B1 KR100256368 B1 KR 100256368B1 KR 1019950061770 A KR1019950061770 A KR 1019950061770A KR 19950061770 A KR19950061770 A KR 19950061770A KR 100256368 B1 KR100256368 B1 KR 100256368B1
Authority
KR
South Korea
Prior art keywords
carbide
chromium
alloy
welding
amount
Prior art date
Application number
KR1019950061770A
Other languages
Korean (ko)
Other versions
KR970043232A (en
Inventor
백응률
김낙준
안상호
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019950061770A priority Critical patent/KR100256368B1/en
Publication of KR970043232A publication Critical patent/KR970043232A/en
Application granted granted Critical
Publication of KR100256368B1 publication Critical patent/KR100256368B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Abstract

PURPOSE: Provided is a hyper-eutectic Cr-rich alloy of carbide-based having superior scratch resistance for overlay welding for the application to anti-abrasive structural member such as a dredging machine and a crush roll. CONSTITUTION: The hyper-eutectic Cr-rich alloy of carbide-based is characterized by comprising C 3.5-5.5wt.%, Cr 20-35wt.%, Mn 0.1-2wt.%, Si 0.1-1wt.%, 15wt.% or less of at least one element selected from Nb, Mo, W, Ni, a balance of Fe, and other inevitable impurities. In the alloy composition, Cr/C ratio is between 4.8 and 7.0, carbides in the matrix metal is surrounded by austenitic phase.

Description

저응력 긁힘 내마모성 향상을 위한 육성용접용 과공석고크롬계 탄화물형 합금Low stress scratch-resistant gypsum chromium carbide alloy

제1도는 발명재 및 비교재의 탄화물함량에 따른 저응력 긁힘 마모량의 거동을 나타낸 그래프.1 is a graph showing the behavior of low stress scratch wear according to the carbide content of the invention and the comparative material.

본 발명은 준설기기, 파쇄홀등 내마모성을 필요로하는 분야에 사용되는 육성용접용 크롬 탄화물형 합금에 관한 것으로 보다 상세하게는, 저응력 긁힘 내마모성을 향상시키기위한 육성 용접용 과공석고크롬계 탄화물형 합금에 관한 것이다.The present invention relates to a chromium carbide type alloy for welding for use in fields requiring abrasion resistance, such as dredging equipment, crushing holes, and more specifically, to blast-based gypsum carbide type for growth welding for improving low stress scratch abrasion resistance Relates to an alloy.

고크롬 철계 합금은 합금이 함유하고 있는 탄소와 크롬원소가 응고 도중에 상호 결합하여 경도값이 Hv1, 100-1, 700으로 매우 높은 고경질의 크롬탄화물[(Cr, Fe) 7C3]을 석출시킴으로서 내마모성이 특히 우수한 합금이다. 이 고크롬 철계합금들은 주조품 및 육성용접품등 여러 제품 형태로 산업기기 전반에 사용되고 있다. 특히 토사 및 광물과의 마찰로 인한 극심한 마모 발생부위, 즉 준설기기, 시멘트 공장의 파쇄 롤, 제철소의 원료 및 소결광의 스크린, 호파(Hopper), 화력발전소의 원료탄장입부, 레미콘기 내부등의 수명연장을 위해 사용된다.High chromium iron alloys have high wear resistance by depositing very high chromium carbides ((Cr, Fe) 7C3) with hardness values of Hv1, 100-1, and 700, when carbon and chromium elements in the alloy are bonded to each other during solidification. This is a particularly excellent alloy. These high chromium iron alloys are used throughout the industrial machine in various product forms such as cast and raised welded parts. Particularly, wear and tear areas caused by friction with soil and minerals, such as dredging equipment, crushing rolls in cement plants, raw materials of steel mills and screens of sintered ore, hoppers, raw material loading parts of thermal power plants, and inside of ready-mixed concrete machines Used for extension.

크롬 탄화물을 가지는 고크롬 철계 합금은 내마모성을 필요로하는 분야에서 매우 중요하게 사용되는 재료이다. 이들 고크롬 철계 합금들은 주물이나 육성용접에 의해서 제조되어 무엇보다도 타 재료들에 비해서 값이 싸면서도 내마모성이 우수하다는 장점을 지니고 있다.High chromium iron-based alloys with chromium carbides are very important materials in applications requiring wear resistance. These high chromium iron-based alloys are manufactured by casting or wet welding, and above all, they are inexpensive and excellent in wear resistance compared to other materials.

고크롬 철계합금은 크롬 탄화물을 둘러싸고 있는 기지조직 혹은 크롬 탄화물의 종류에 따라 분류된다. 즉 크롬탄화물을 둘러싸고 있는 기자조직이 오스테나이트, 마르텐사이트, 퍼얼라이트상 아냐에 따라서 오스테나이트형, 마르텐사이트형, 퍼얼라이트형 고크롬 내마모합금으로 분류되며, 그리고 기지조직이 무엇인가는 상관없이 기지 조직에 의해 둘러싸여 있는 탄화물 중에 일차탄화물이 존재하면 과공정 고크롬 내마모합금, 일차탄화물이 없이 공정탄화물만 존재하면 이공정 고크롬 내마모합금으로 분류된다.High chromium iron alloys are classified according to the type of matrix or chromium carbide surrounding the chromium carbide. In other words, the reporter structure surrounding chromium carbide is classified into austenite, martensite, and perlite high chromium abrasion alloys according to austenite, martensite, and perlite phase, and regardless of the matrix structure. The presence of primary carbides in carbides surrounded by matrix structures is classified into hypereutectic high chromium abrasion alloys, and those containing only primary carbides without primary carbides are categorized as hypereutectic high chromium abrasion alloys.

오스테나이트 고크롬 철계합금은 최초로 1928년 미국특허 1, 671, 384에서 2%C+8%Mn+29.5%Cr+Fe(나머지)합금이 발표된 이후 현재까지 탄소함량을 5%까지 증가시켜 크롬탄화물량을 증대시키고, 경도값을 조금더 증가시켜 내마모성을 개선시켜왔다. 그리고 마르텐사이트계 고크롬 철계합금은 최초의 1917년 미국특허 1, 245, 552에서부터 HC250인 2.25-2.85%C+0.5-1.25%Mn+0.25-1.0%Si+24-30%Cr+Fe(나머지)합금을 열처리함으로서 낮은 응력하에서의 긁힘내마모성이 우수한 재료로 알려져 왔다. 그후 현재까지 탄소 5%, 크롬 35%까지 함유하면서 기지조직은 오스테나이트 혹은 마르텐사이트이면서 이들 기지조직이 일차 크롬계 탄화물을 둘러싸고 있는 합금까지 사용되고 있다.Austenitic high chromium iron alloys have increased chromium by 5% to the present after the first 2928C + 8% Mn + 29.5% Cr + Fe (rest) alloys were published in US Patents 1,671 and 384 in 1928. Wear resistance has been improved by increasing the amount of carbide and slightly increasing the hardness value. Martensitic high chromium iron alloys were first developed in US Pat. No. 1, 245, 552 in 1917, 2.25-2.85% C + 0.5-1.25% Mn + 0.25-1.0% Si + 24-30% Cr + Fe (rest of HC250). It has been known that the material is excellent in scratch resistance under low stress by heat treating the alloy. Since then, up to 5% of carbon and 35% of chromium are known, and the matrix is austenite or martensite, and the matrix is also used in an alloy surrounding the primary chromium carbide.

이들 고크롬계 내마모합금은 사용조건 및 제조방법에 따라서 각기 다른 합금계를 사용하여 왔다. 즉 그간 많은 연구가 수행되어온 주조품의 경우 이공정 고크롬 내마모합금만을 주로 제조하여 사용한다. 이는 탄화물의 양이 30% 근처일때가 제일 우수한 긁힘 내마모성을 나타내고 그 이상의 탄화물 양을 가지게되는 과공석 고크롬계 탄화물의 경우 탄화물의 양이 증가될수록 내마모성은 오히려 떨어진다는 연구결과(K. H. Zum Gahr and D. V. Doane, Mettallurgical Transactions A Volume 11A, April 1980 P613-620)와 과공석 고크롬계 합금의 경우 주조시 크랙이 발생하는 단점 때문이다. 주조품으로 제조되는 이공정 고크롬 내마모합금의 경우 충격이 극심한 곳에서는 오스테나이트형 기지조직을 가지는 합금을 사용하고, 충격이 적고 보다 높은 내마모성을 요구하는 곳에는 열처리를 한 마르텐사이트형 기지조직을 가지는 합금이 사용된다.These high chromium wear resistant alloys have been used in different alloy systems depending on the conditions of use and production method. That is, in the case of castings that have been studied for many years, only two-process high chromium wear alloys are manufactured and used. This is the result of research showing that the wear resistance of the super masonry high chromium-based carbides having the best scratch resistance and the higher carbide content when the amount of carbide is around 30% decreases as the amount of carbide increases (KH Zum Gahr and DV). Doane, Mettallurgical Transactions A Volume 11A, April 1980 P613-620) and over-vacuum high chromium-based alloys cause cracks during casting. In the case of two-step high chromium abrasion alloys made from castings, alloys with austenitic matrix structures are used where the impact is severe, and martensitic matrix structures with heat treatment are used where the impact is low and higher wear resistance is required. Eggplant alloy is used.

한편 조대한 일차탄화물을 가지면서 탄화물의 양이 30%이상을 함유하는 과공석 고크롬계 합금의 경우는 육성용접방법에 의해서만이 제조되어 사용되고 있다.On the other hand, in the case of over-vacuum high chromium-based alloys having coarse primary carbides and containing 30% or more of carbides, they are manufactured and used only by the growth welding method.

그러나 육성용접한 고크롬계합금의 긁힘 내마모성에 미치는 기지조직 및 탄화물의 양 등의 영향에 대해서는 알려진 바가 없다.However, the effects of matrix structure and the amount of carbide on the scratch resistance of the grown chromium-based high chromium alloy are not known.

이에, 본 발명자는 육성용접한 고크롬계 합금의 긁힘 내마모성에 미치는 기지조직 및 탄화물의 양등의 영향에 대하여 연구와 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게된 것으로, 본 발명은 육성용접용 크롬계 합금의 성분계를 적절히 제어하여 조대한 일차탄화물을 가지면서 탄화물의 양이 30% 이상을 함유하고 이러한 탄화물을 둘러싸고 있는 기지조직 전체가 오스테나이트 상이 되도록 하므로서, 육성용접후 긁힘 내마모성을 향상시킬 수 있는 고크롬계탄화물형 합금을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments on the effects of the matrix structure and the amount of carbides on the scratch wear resistance of the high chromium-based alloys that were grown and welded, and proposed the present invention based on the results. By appropriately controlling the component system of the chromium-based alloy, it has a coarse primary carbide and contains 30% or more of carbide, and the entire matrix structure surrounding the carbide becomes an austenite phase, thereby improving scratch resistance after fusing welding. To provide a high chromium-based carbide alloy that can be, the purpose is.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로, C:3.5-5.5%, Cr:20-35%, Mn:0.1-2%, Si:0.1-1%, 나머지: Fe 및 기타 불가피한 불순물로 조성되고, 상기 Cr/C의 함량비가 4.8-7.0범위이고, 탄화물을 둘러싸고 있는 기지조직이 오스테나이트상인 4.8-7.0범위이고, 탄화물을 둘러싸고 있는 기지조직이 오스테나이트상인 저응력 긁힘 내마모성 향상을 위한 육성용접용 크롬탄화물형 합금에 관한 것이다.The present invention is composed of weight%, C: 3.5-5.5%, Cr: 20-35%, Mn: 0.1-2%, Si: 0.1-1%, remainder: Fe and other unavoidable impurities, and the Cr / C In the chromium carbide type alloy for weld welding to improve the wear resistance of low-stress scratches where the ratio of the content is in the range of 4.8-7.0 and the matrix structure surrounding the carbides is in the range of 4.8-7.0 in the austenitic phase. It is about.

또한, 본 발명은 중량%로, C:3.5-5.5%, Cr:20-35%, Mn:0.1-2%, Si:0.1-1%, 단독 또는 복합의 Nb, Mo, W 및 Ni:15% 이하, 나머지: Fe 및 기타불가피한 불순물로 조성되고, 상기 Cr/C의 함량비가 4.8-7.0범위이고, 탄화물을 둘러싸고 있는 기지조직이 오스테나이트상인 저응력 긁힘 내마모성 향상을 위한 육성용접용 크롬 탄화물형 합금에 관한 것이다.In addition, the present invention is in weight%, C: 3.5-5.5%, Cr: 20-35%, Mn: 0.1-2%, Si: 0.1-1%, Nb, Mo, W and Ni: 15 alone or in combination. %, Remaining: Fe and other unavoidable impurities, the Cr / C content ratio is in the range of 4.8-7.0 and the matrix structure surrounding the carbide is austenitic low stress scratch wear resistance chromium carbide type for improved wear resistance Relates to an alloy.

이하, 본 발명에 대하여 보다 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기한 바와 같은 목적을 달성하기 위하여 본 발명에서는 육성동정용 크롬 탄화물형 합금이 상기와 같이 조성되도록 함이 바람직한데, 그 이유는 다음과 같다.In order to achieve the above object, in the present invention, it is preferable that the growth identification chromium carbide type alloy is formed as described above, and the reason thereof is as follows.

C는 철을 강화시켜주는 원소로서 재료의 경도를 증가시킨다. 본 발명재에서는 크롬과 결합하여 고경질의 일차크롬계 탄화물을 형성하고, 나머지는 오스테나이트 조직중에 고용된다. 따라서 본 발명재에 있어서의 탄소첨가 함량은 내마모성에 절대적으로 기여하는 일차 크롬계 탄화물을 형성할 수 있는 3.5%이상이어야 하며, 5.5%이상 첨가되었을 경우에는 본 발명재의 취성이 열악해지면서 오히려 내마모성을 저해하게 되므로 첨가량의 하한치는 3.5%, 상한치는 5.5%로 한정함이 바람직하다.C is an iron strengthening element that increases the hardness of the material. In the present invention, it combines with chromium to form a hard primary chromium carbide, and the rest is solid solution in the austenite structure. Therefore, the carbon content in the present invention should be at least 3.5% that can form primary chromium carbides which contributes to the wear resistance, and when added at more than 5.5%, the brittleness of the present invention becomes poor and rather wear-resistant. Since it will inhibit, the lower limit of addition amount is preferably 3.5% and the upper limit is 5.5%.

Cr은 본 발명재에 있어서 필수적인 원소이다. 탄소 및 철과의 결합으로 값이 싸면서도 내마모성이 우수한 경질의 탄화물을 형성하고, 내산화성을 향상시킨다. 일차크롬계 탄화물을 형성하기 위해서는 20% 이상 첨가되어야 하며, 35% 이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이 없으므로 첨가량의 하한치는 20%, 상한치는 35%로 한정함이 바람직하다.Cr is an essential element in the present invention. Coupling with carbon and iron forms hard carbides having low cost and excellent wear resistance, and improving oxidation resistance. In order to form primary chromium carbide, 20% or more must be added, and 35% or more is not obviously improved in abrasion resistance and economical. Therefore, the lower limit of the added amount is preferably limited to 20% and the upper limit to 35%.

Mn은 실리콘과의 첨가 비율에 따라서 공정반응에 큰영향을 미친다. 그리고 응고시용강중의 용존 산소를 제거해주는 역할을 하므로 0.1% 이하 첨가시는 그 기능이 미약하며, 2%이상 첨가시는 오스테나이트상의 경도를 저하시켜 결국 내마모성을 저해하는 단점을 야기하므로 첨가량의 하한치는 0.1%, 상한치는 2%로 한정함이 바람직하다.Mn greatly affects the process reaction depending on the addition ratio with silicon. And since it plays a role of removing dissolved oxygen in the steel for solidification, its function is weak when it is added below 0.1%, and when it is added above 2%, it lowers the hardness of the austenite phase and eventually causes the disadvantage of inhibiting abrasion resistance. Is preferably at least 0.1% and limited to 2%.

Si는 용강중의 산소를 탈산시키는 기능을 가지고 있다. 0.1%이하 첨가시는 그 기능이 미약하며, 1%이상 첨가시는 본 발명재의 취성 및 내마모성을 저해하는 퍼얼라이트상을 유발시키므로 첨가량의 하한치는 0.1%, 상한치는 1%로 한정함이 바람직하다.Si has a function of deoxidizing oxygen in molten steel. When 0.1% or less is added, its function is weak, and when 1% or more is added, it causes a pearlite phase which impairs brittleness and abrasion resistance of the present invention. Therefore, the lower limit of the added amount is preferably limited to 0.1% and the upper limit to 1%. .

Nb, Mo, 및 W은 탄소와 결합하여 탄화물을 형성하고, 니켈은 인성과 내열성을 부여한다. 그러나 이들원소는 고가이어서 첨가량에 따른 가격인상 정도에 비해서 그 첨가효과가 뚜렷하지 않다. 따라서 반드시 첨가해야만 하는 것은 아니며 첨가하면 그 효과는 다소 있으므로 첨가량의 하한치는 0%이며, 상한치는 첨가량에 따른 가격인상 정도에 비해서 그첨가효과가 뚜렷하지 않게되는 15%로 한정함이 바람직하다.Nb, Mo, and W combine with carbon to form carbides, and nickel imparts toughness and heat resistance. However, since these elements are expensive, the effect of addition is not clear compared to the degree of price increase depending on the amount added. Therefore, it is not necessary to add it, and since it has the effect, it is preferable that the lower limit of the addition amount is 0%, and the upper limit is limited to 15% in which the additive effect becomes insignificant compared to the degree of price increase according to the addition amount.

상기와 같은 조건으로 함유되는 성분들중 Cr/C의 함량비가 4.8-7.0의 범위가 유지되도록 해야만 함이 바람직한데, 그 이유는 Cr/C가 4.8이하일 경우에는 기지조직이 내마모성이 나쁜 퍼얼라이트상이 쉽게 생성되는 문제점이 있고, 7.0이상일 경우에는 Cr 함량이 상대적으로 높아지면서 가격인상정도에 비해 내마모성 개선효과가 뚜렷하지 않으면서 오히려 기지조직인 오스테나이트상의 경도가 낮아지면서 내마모성에 나쁜 영향을 주는 문제점이 있기 때문이다.Among the components contained under the above conditions, the Cr / C content ratio should be maintained in the range of 4.8-7.0. The reason is that if the Cr / C is less than 4.8, the matrix structure has poor abrasion resistance. In case of more than 7.0, the Cr content is relatively high, and the effect of improving the wear resistance is insignificant compared to the price increase, but the hardness of the austenite phase, which is a matrix structure, is lowered, which adversely affects the wear resistance. Because.

이상과 같은 조건을 만족하도록 육성용접용 크롬 탄화물형 합금을 조성한 후에는, 이를 모재의 외면에 통상의 방법으로 육성용접하여, 기지조직이 오스테나이트상이 되도록함이 바람직하며, 그 이유는 다음과 같다.After forming the growth welding chromium carbide alloy to satisfy the above conditions, it is preferable to grow and weld it on the outer surface of the base material in a conventional manner so that the matrix structure becomes an austenite phase, for the following reason. .

육성용접후 탄화물을 둘러싸고 있는 기지조직이 오스테나이트가 아닌 퍼얼라이트상인 경우에는 충격인성이 열악하여 고응력 긁힘 내마모성이 저하된다. 그리고 육성용접한후 이를 열처리할 경우에는 열처리효과가 적게 나타나는 문제점이 있기 때문이다.In the case where the matrix structure surrounding the carbide after the welding is in the form of a pearlite rather than austenite, the impact toughness is poor and high stress scratch wear resistance is degraded. And when the heat treatment after welding welding because there is a problem that less heat treatment effect.

이하, 실시예를 통하여 본 발명에 대하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기표 1과 같은 조성을 갖도록 육성용접용 크롬 탄화물형 합금을 제조하였다. 이를 두께 9mm 인 연강(SS41종)의 모재위에 사용전압 30볼트, 사용전류 400 암페어로 용저비드폭은 50mm, 한 육성층 두께는 5mm 로 이층 육성용접한후, 육성용접부의 미세조직중 탄화물을 둘러싸고 있는 기지조직의 종류, 탄화물의 양, 그리고 육성용접부의 마모량을 측정하여 그 결과를 하기 표 2에 나타내었다.A chromium carbide alloy for growth welding was prepared to have a composition as shown in Table 1 below. This is a 9mm-thick mild steel (SS41 type) on a base metal with a working voltage of 30 volts and a current of 400 amperes, which has a bead width of 50mm and a growth layer thickness of 5mm. The type of matrix, the amount of carbide, and the amount of wear of the welded joint were measured and the results are shown in Table 2 below.

이때, 기지조직은 광학현미경으로 관찰했고, 탄화물의 양은 영상분석기를 이용하여 분석했다. 그리고 마모량 측정은 저응력 건식 긁힘마모 시험기(D교 Sand Rubber Wheel Abrasive Test:ASTM Standard G65-85)에서 하중:20kg, 마모거리:4300m, 회전속도:200RPM, 사용모래직경:0.15-30mm인 동일 조건에서 시험했을때의 마모량을 나타낸 것이다.At this time, the base tissue was observed with an optical microscope, and the amount of carbide was analyzed using an image analyzer. In addition, wear measurement was performed under the same conditions of load: 20kg, wear distance: 4300m, rotational speed: 200RPM, working sand diameter: 0.15-30mm in low stress dry scratch abrasion tester (D bridge Sand Rubber Wheel Abrasive Test: ASTM Standard G65-85). It shows the amount of wear when tested at.

[표 1]TABLE 1

[표 2]TABLE 2

상기표 2에서 알 수 있는 바와 같이, 본 발명의 범위를 만족하는 발명재(1-3)의 경우, 본 발명의 범위를 벗어나는 비교재(4-7)의 경우에 비하여 기지조직, 탄화물양 및 마모량에서 동등이상의 특성을 나타냄을 알 수 있다.As can be seen in Table 2, in the case of the invention material (1-3) satisfying the scope of the present invention, compared to the case of the comparative material (4-7) outside the scope of the present invention, the matrix structure, the amount of carbide and It can be seen that the characteristics of equivalent to or more in the amount of wear.

또한 상기 표 2에 나타난 결과를 탄화물양에 따른 마모거동을 크롬/탄소비가 상호 비슷한 합금번호간에 연결지어 제1도에 나타내었다.In addition, the results shown in Table 2 are shown in FIG.

제1도에서 알 수 있는 바와 같이, 동일 탄화물의 양을 기준으로 했을 때 크롬/탄소비가 4.8-7.0인 본 발명재의 (1-3)의 경우 마모량이 크롬/탄소비가 4.8-7.0 보다 적거나 큰 경우인 비교재(크롬/탄소=3-4.7 혹은 8-9)(4-7)의 마모량보다 적게 나타났다. 이는 크롬/탄소비가 4.8-7.0인 본 발명재의 내마모성이 비교재 보다 우수함을 의미한다. 그리고 크롬/탄소비가 서로 비슷한 범위를 가지는 과공석 고크롬계합금의 경우 탄화물의 양은 많을수록 저응력 긁힘 내마모성은 개선됨을 알 수 있다.As can be seen from FIG. 1, in the case of (1-3) of the present invention having a chromium / carbon ratio of 4.8-7.0 based on the amount of the same carbide, the wear amount is less than or greater than 4.8-7.0. The amount of wear of the comparative material (chromium / carbon = 3-4.7 or 8-9) (4-7) was less. This means that the wear resistance of the present invention having a chromium / carbon ratio of 4.8-7.0 is superior to that of the comparative material. And in the case of the high chromium-based alloy having a chromium / carbon ratio similar to each other, the higher the amount of carbide, the lower the stress scratch resistance is improved.

이상에서 언급한 바와 같은, 본 발명의 합금은 동일한 탄화물 양에서 보다 저응력 긁힘 내마모성이 우수한 과공석 고크롬계합금을 제조하기 위한 크롬/ 탄소 함유비가 4.8-7.0의 범위를 가지는 합금이고 크롬/탄소 비가 4.8/7.0의 범위를 가지는 과공석 고크롬계 합금의 경우 탄화물의 양은 많은 수록 저응력 긁힘 내마모성은 개선되는 합금이다. 따라서 본 발명은 과공석 고크롬계합금에서 가장 중요원소인 크롬 침 탄소의 첨가 비율을 한정함으로서, 내마모성이 우수한 육성용접제품을 제조할 수 있는 효과가 있다.As mentioned above, the alloy of the present invention is an alloy having a chromium / carbon content in the range of 4.8-7.0 and having a chromium / carbon ratio in order to produce a high-vacuum high chromium based alloy having lower stress scratch resistance than the same carbide amount. In the case of a high-vacuum high chromium-based alloy having a ratio of 4.8 / 7.0, the higher the amount of carbide, the lower the stress scratch resistance is improved. Therefore, the present invention is limited by the addition ratio of the chromium saliva carbon, which is the most important element in the eutectic high chromium-based alloy, there is an effect that can be produced a weldable welding product excellent in wear resistance.

Claims (2)

중량%로 C:3.5-5.5%, Cr:20-35%, Mn:0.1-2%, Si:0.1-1%, 나머지:Fe 및 기타 불가피한 불순물로 조성되고, 상기 Cr/C의 함량비가 4.8-7.0범위이고, 탄화물을 둘러싸고 있는 기지조직이 오스테나이트 상인 것을 특징으로 하는 저응력 긁힘 내마모성 향상을 위한 육성용접용 과공석고크롬계 탄화물형 합금.C: 3.5-5.5% by weight, Cr: 20-35%, Mn: 0.1-2%, Si: 0.1-1%, remainder: Fe and other unavoidable impurities, and the content ratio of Cr / C is 4.8 The superstructure gypsum-based carbide type alloy for growth welding for low stress scratch abrasion resistance, characterized in that the base structure surrounding the carbide in the range of -7.0 is in the austenite phase. 중량%로, C:3.5-5.5%, Cr:20-35%, Mn:0.1-2%, Si:0.1-1%, 단독 또는 복합의 Nb, Mo, W 및 Ni:15%이하, 나머지:Fe 및 기타 불가피한 불순물로 조성되고, 상기 Cr/C의 함량비가 4.8-7.0범위이고, 탄화물을 둘러싸고 있는 기지조직이 오스테나이트 상인 것을 특징으로 하는 저응력 긁힘 내마모성 향상을 위한 육성용접용 과공석고크롬계 탄화물형합금.By weight%, C: 3.5-5.5%, Cr: 20-35%, Mn: 0.1-2%, Si: 0.1-1%, single or combined Nb, Mo, W, and Ni: 15% or less, remainder: It is composed of Fe and other unavoidable impurities, the content ratio of Cr / C is in the range of 4.8-7.0, and the matrix structure surrounding the carbide is austenite phase. Carbide type alloy.
KR1019950061770A 1995-12-28 1995-12-28 Hypereutectoid high chrome carbide type alloy for built-up welding KR100256368B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950061770A KR100256368B1 (en) 1995-12-28 1995-12-28 Hypereutectoid high chrome carbide type alloy for built-up welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950061770A KR100256368B1 (en) 1995-12-28 1995-12-28 Hypereutectoid high chrome carbide type alloy for built-up welding

Publications (2)

Publication Number Publication Date
KR970043232A KR970043232A (en) 1997-07-26
KR100256368B1 true KR100256368B1 (en) 2000-05-15

Family

ID=19446008

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950061770A KR100256368B1 (en) 1995-12-28 1995-12-28 Hypereutectoid high chrome carbide type alloy for built-up welding

Country Status (1)

Country Link
KR (1) KR100256368B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100569897B1 (en) * 1998-12-31 2006-09-18 두산인프라코어 주식회사 A consume resisting pipe and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179947A (en) * 1992-12-15 1994-06-28 Kawasaki Steel Corp Composite roll made by centrifugal casting
KR950018588A (en) * 1993-12-28 1995-07-22 조말수 Chromium carbide alloy with excellent wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179947A (en) * 1992-12-15 1994-06-28 Kawasaki Steel Corp Composite roll made by centrifugal casting
KR950018588A (en) * 1993-12-28 1995-07-22 조말수 Chromium carbide alloy with excellent wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100569897B1 (en) * 1998-12-31 2006-09-18 두산인프라코어 주식회사 A consume resisting pipe and manufacturing method thereof

Also Published As

Publication number Publication date
KR970043232A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
JP6251291B2 (en) High toughness low alloy wear resistant steel sheet and method for producing the same
JP6211099B2 (en) High performance low alloy wear resistant steel sheet and method for producing the same
KR102128026B1 (en) Ultrahigh-strength, high toughness, wear-resistant steel plate and manufacturing method thereof
KR102218050B1 (en) High-strength, high-toughness, wear resistant steel plate and manufacturing method thereof
Subramanyam et al. Austenitic manganese steels
KR102218051B1 (en) High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof
JPS6343462B2 (en)
Srikarun et al. The effects of dilution and choice of added powder on hardfacing deposited by submerged arc welding
Choo et al. Correlation of microstructure with the wear resistance and fracture toughness of hardfacing alloys reinforced with complex carbides
JP7135464B2 (en) Wear-resistant thick steel plate
GB2153846A (en) Cast iron alloy for grinding media
Bedolla-Jacuinde Niobium in cast irons
KR100256368B1 (en) Hypereutectoid high chrome carbide type alloy for built-up welding
KR100256367B1 (en) The manufacturing method for high chrome carbide line alloy and same product
JPH06256896A (en) Wear-resistant steel excellent in surface property and its production
KR960006038B1 (en) Chrom-carbide type alloy
KR100256366B1 (en) The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness
RU2378096C1 (en) Material for overlaying welding of rollers for continuous-casting plant by open or close arc
US4130418A (en) Austenitic wear-resistant steel
KR100198972B1 (en) Complex carbide
SU1725757A3 (en) Wear-resistant cast iron
WO1995020686A1 (en) Wear-resisting high-manganese cast steel
EP0138811A1 (en) Abrasion wear resistant steel
JP4367992B2 (en) Agglomerated mineral wear material
KR100302141B1 (en) Rollers for use in high press roller crusher

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee