KR100198972B1 - Complex carbide - Google Patents

Complex carbide Download PDF

Info

Publication number
KR100198972B1
KR100198972B1 KR1019960071546A KR19960071546A KR100198972B1 KR 100198972 B1 KR100198972 B1 KR 100198972B1 KR 1019960071546 A KR1019960071546 A KR 1019960071546A KR 19960071546 A KR19960071546 A KR 19960071546A KR 100198972 B1 KR100198972 B1 KR 100198972B1
Authority
KR
South Korea
Prior art keywords
carbide
present
alloy
wear resistance
composite
Prior art date
Application number
KR1019960071546A
Other languages
Korean (ko)
Other versions
KR19980052539A (en
Inventor
백응률
마봉열
정재영
박성윤
Original Assignee
홍상복
포스코신기술연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍상복, 포스코신기술연구조합 filed Critical 홍상복
Priority to KR1019960071546A priority Critical patent/KR100198972B1/en
Publication of KR19980052539A publication Critical patent/KR19980052539A/en
Application granted granted Critical
Publication of KR100198972B1 publication Critical patent/KR100198972B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 티타늄탄화물(TiC), 니오비움탄화물(NbC), 크롬탄화물(Cr7C2)이 복합적으로 존재하도록 합금의 성분을 제어함으로써, 내마모성이 우수한 복합탄화물형 합금을 제공하고자 하는데 그 목적이 있다.The present invention is to provide a composite carbide type alloy having excellent wear resistance by controlling the components of the alloy such that titanium carbide (TiC), niobium carbide (NbC), chromium carbide (Cr 7 C 2 ) is present in combination. have.

상기 목적을 달성하기 위한 본 발명은 중량비로, C:2.0∼6.5%, Cr:4∼35%, Mn:0.1∼4%, Si:0.1∼4%, Ti:0.5∼29.5%, Nb:0.5∼29.5%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, (Ti+NB):5∼30%를 만족하는 내마모성이 우수한 복합탄화물형 합금에 관한 것을 그 요지로 하며, 또한 본 발명은 상기 내마모성이 우수한 복합탄화물형 합금에 Mo, W, Ni, V로 이루어진 그룹으로부터 선택되는 1종 또는 2종 이상의 성분이 15% 이하로 포함되어 구동되는 내마모성이 우수한 복합탄화물형 합금에 관한 것을 그 요지로 한다.The present invention for achieving the above object by weight ratio, C: 2.0 to 6.5%, Cr: 4 to 35%, Mn: 0.1 to 4%, Si: 0.1 to 4%, Ti: 0.5 to 29.5%, Nb: 0.5 The present invention relates to a composite carbide-type alloy composed of ˜29.5%, remaining Fe and other unavoidable impurities, and having excellent wear resistance of satisfying (Ti + NB): 5 to 30%. The present invention also provides excellent wear resistance. The present invention relates to a composite carbide alloy having excellent abrasion resistance that is driven by containing 15% or less of one or two or more components selected from the group consisting of Mo, W, Ni, and V in the composite carbide alloy.

Description

내마모성이 우수한 복합탄화물형 합금Composite carbide type alloy with excellent wear resistance

본 발명은 복합탄화물형 합금에 관한 것으로, 보다 상세하게는 티타늄탄화물, 니오비움탄화물, 크롬탄화물이 복합적으로 존재하는 내마모성이 우수한 복합탄화물형 합금에 관한 것이다.The present invention relates to a composite carbide type alloy, and more particularly, to a composite carbide type alloy having excellent wear resistance in which titanium carbide, niobium carbide, and chromium carbide are present in combination.

일반적으로 토사 및 광물 등의 준설시기, 광산 및 시멘트 공장의 파쇄기 및 원료 이송 설비의 마모부, 제철소의 원료 및 소결광의 스크린, 호파(Hopper), 화력 발전소의 원료탄 파쇄 및 장입설비, 레미콘기 내부 등과 같은 부분에 사용되는 재료는 높은 내마모성이 요구된다.Generally, dredging time of soil and minerals, wear part of crusher and raw material transfer facility of mine and cement factory, screen of raw material and sintered ore of ironworks, hopper, raw coal crushing and charging facility of thermal power plant, inside of ready-mixed concrete machine, etc. Materials used in the same areas require high wear resistance.

기존에 내마모재로 사용되고 있는 크롬 탄화물을 가지고 고크롬 철계 합금은 내마모성을 필요로 하는 분야에서 매우 중요하게 사용되는 재료이다. 이들 고크롬 철계 합금들은 주물이나 육성용접에 으해서 제조되며 무엇보다도 타 재료들에 비해서 값이 싸면서도 내마모성이 우수하다는 장점을 지니고 있다(1928년 미국특허 1,671,384, 1917년 미국특허 1,245,552, K.H.Zum Gahr and D.V.Doane, Metallurgical Transactions A Volume 11A, April 1980 P613-620)High chromium iron alloys with chromium carbides, which are conventionally used as wear resistant materials, are very important materials used in fields requiring wear resistance. These high chromium iron-based alloys are manufactured by casting or over-welding, and above all, they are inexpensive and have excellent abrasion resistance compared to other materials. and DVDoane, Metallurgical Transactions A Volume 11A, April 1980 P613-620)

그러나, 복잡한 미세조직을 가지는 고크롬 철계 합금에 관한 다양한 개발에도 불구하고 인건비의 상승에 따른 마모설비에 대한 보수비용의 증가 등으로 인해 고크롬 철계 합금 보다도 더욱 우수한 내마모성을 갖는 재료로서 재료의 개발이 요구되고 있다.However, despite various developments on high chromium iron alloys with complex microstructures, the development of materials as materials having higher wear resistance than the high chromium iron alloys has been made possible due to the increase in repair costs for wear facilities due to the increase in labor costs. It is required.

본 발명자들은 상기와 같은 요구에 부응하기 위해 연구와 실험을 거듭하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 티타늄탄화물(TiC), 니오비움탄화물(NbC), 크롬탄화물(Cr7C2)이 복합적으로 존재하도록 합금의 성분을 제어함으로써, 내마모성이 우수한 복합탄화물형 합금을 제공하고자 하는데 그 목적이 있다.The present inventors have repeatedly conducted research and experiments to meet the above requirements, and based on the results, the present invention proposes a titanium carbide (TiC), niobium carbide (NbC), chromium carbide ( The purpose of the present invention is to provide a composite carbide type alloy having excellent abrasion resistance by controlling the components of the alloy such that Cr 7 C 2 ) is present in a complex manner.

본 발명은 중량비로, C:2.0∼6.5%, Cr:4∼35%, Mn:0.1∼4%, Si:0.1∼4%, Ti:2.5∼29.5%, Nb:0.5∼29.5%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, (Ti+Nb):5∼30%를 만족하는 내마모성이 우수한 복합탄화물형 합금에 관한 것이다. 또한, 본 발명은 중량비로, C:2.0∼6.5%, Cr:4∼35%, Mn:0.1∼4%, Si:0.1∼4%, Ti:2.5∼29.5%, Nb:0.5∼29.5%, 그리고 Mo, W, Ni, V로 이루어진 그룹으로부터 선택되는 1종 또는 2종 이상의 성분이 15% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, (Ti+nB):5∼30%를 만족하는 내마모성이 우수한 복합탄화물형 합금에 관한 것이다.In the present invention, by weight ratio, C: 2.0 to 6.5%, Cr: 4 to 35%, Mn: 0.1 to 4%, Si: 0.1 to 4%, Ti: 2.5 to 29.5%, Nb: 0.5 to 29.5%, and the remaining Fe And a composite carbide type alloy composed of other unavoidable impurities and excellent in wear resistance satisfying (Ti + Nb): 5 to 30%. In the present invention, C: 2.0 to 6.5%, Cr: 4 to 35%, Mn: 0.1 to 4%, Si: 0.1 to 4%, Ti: 2.5 to 29.5%, Nb: 0.5 to 29.5%, And one or two or more components selected from the group consisting of Mo, W, Ni, and V are made up of 15% or less, the remaining Fe and other unavoidable impurities, and (Ti + nB): wear resistance satisfies 5 to 30%. It is related with this excellent composite carbide type alloy.

이하, 본 발명의 합금을 구성하는 합금성분들의 작용 및 함량한정이유에 대해 설명한다.Hereinafter, the operation of the alloy components constituting the alloy of the present invention and the reason for content limitation will be described.

상기 탄소(C)는 철을 강화시켜주는 원소로서 경도를 증가시킨다. 본 발명에서는 크롬, 티타니움, 몰리브덴, 텅스템, 바나디움과 결합하여 고경질의 탄화물을 형성하고, 나머지는 탄화물 주위를 둘러싸고 있는 기자조직 중에 고용된다. 따라서 본발명재에 있어서이 탄소첨가 함량은 탄호물 형성에 효과를 나타내는 2.0 % 이상이어야하며, 6.5%이상 첨가되었을 경우에는 미용해 탄소로 기지조직 중에 존재하게 되어 취성 및 내마모성이 열악해진다. 따라서, 본 발명에서는 탄소의 함량을 0.2∼0.6%로 한정한다.The carbon (C) increases the hardness as an element to strengthen the iron. In the present invention, it combines with chromium, titanium, molybdenum, tungsten, and vanadium to form hard carbide, and the remainder is dissolved in the press structure surrounding the carbide. Therefore, in the present invention, the carbon content should be 2.0% or more, which is effective for forming carbonaceous materials, and when it is added more than 6.5%, it will be present in the matrix as undissolved carbon, resulting in poor brittleness and wear resistance. Therefore, in the present invention, the content of carbon is limited to 0.2 to 0.6%.

상기 크롬(Cr)은 본 발명에 있어서 필수적인 원소로서, 탄소 및 철과의 결합으로 내마모성이 우수한 결질의 탄화물을 형성하고, 내산화성을 향상시키며 값이 저렴한 원소이다. 탄화물을 형성하기 위해서는 4%이상 첨가되어야 하며, 35% 이상에서는 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이 없다. 따라서, 본 발명에서는 Cr의 함량을 4∼35%로 한정한다.The chromium (Cr) is an essential element in the present invention and forms a carbide having excellent abrasion resistance by bonding with carbon and iron, improves oxidation resistance, and is an inexpensive element. To form carbide, it should be added more than 4%, and more than 35% is not obvious improvement of wear resistance and economical at the same time. Therefore, in the present invention, the content of Cr is limited to 4 to 35%.

상기 망간(Mn)은 실리콘과의 첨가 비율에 따라서 공정반응에 큰 영향을 미친다. 그리고 응고시 용강 중의 용존 산소를 제거해주는 역할을 하므로 0.1%미만 첨가시키는 그 기능이 미약하며, 4% 이상 첨가시는 오스테나이트상의 경도를 저하시켜 결국 내마모성을 저해하는 단점을 야기한다. 따라서, 본 발명에서는 Mn의 함량을 0.1∼4%로 한정한다.The manganese (Mn) has a great influence on the process reaction depending on the addition ratio with silicon. In addition, since it plays a role of removing dissolved oxygen in molten steel during solidification, its function of adding less than 0.1% is insignificant, and when added more than 4%, it lowers the hardness of the austenite phase and eventually causes a disadvantage of inhibiting wear resistance. Therefore, in the present invention, the content of Mn is limited to 0.1 to 4%.

상기 실리콘(Si)은 용강 중의 산소를 탈산시키는 기능을 가지고 있다. 0.1%이하 첨가시는 그 기능이 미약하며, 4% 이상 첨가시는 취성 및 내마모성을 저해하는 퍼얼라이트상을 유발시킨다. 따라서, 본 발명에서는 Si의 함량을 0.1∼4%로 한정한다.The silicon (Si) has a function of deoxidizing oxygen in molten steel. When added below 0.1%, its function is weak, and when added above 4%, it causes a pearlite phase which inhibits brittleness and wear resistance. Therefore, in the present invention, the content of Si is limited to 0.1 to 4%.

상기 티타니움(Ti)과 니오비움(Nb)은 탄소와 결합하여 크롬계탄화물 보다 경도가 높은 티타니움 탄화물 및 니오비움탄호물을 형성시켜 내마모성을 향상시키는데 결정적인 기여를 한다. 탄화물을 형성하기 위해서는 티타니움은 2.5% 이상, 니오비움은 0.5% 이상 첨가되어야하고, 내마모성 확보를 위해서 티타니움과 니오비움의 첨가량 합이 5%이상이어야 하며, 첨가량의 합이 30% 이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이 없다. 따라서, 본 발명에서는 Ti을 2.5∼29.5%, Nb을 0.5∼29.5%로 첨가하면서, (Ti+Nb)의 값이 5∼30%를 만족하도록 한정한다.Titanium (Ti) and niobium (Nb) are combined with carbon to form titanium titanium and niobium carbons having higher hardness than chromium carbides, thereby making a decisive contribution to improving wear resistance. To form carbide, more than 2.5% of titanium and more than 0.5% of niobium must be added.To ensure wear resistance, the total amount of added titanium and niobium must be 5% or more, and the sum of the added amounts of 30% or more improves wear resistance. Is not obvious and economical at the same time. Therefore, in the present invention, while adding 2.5 to 29.5% of Ti and 0.5 to 29.5% of Nb, the value of (Ti + Nb) is limited so as to satisfy 5 to 30%.

상기 비나디움(V), 몰리브덴(Mo) 및 텅스템(W)은 탄소(C)와 결합하여 탄화물을 형성하고, 상기 니켈(Ni)은 인성과 내열성을 부여한다. 하지만 이들 원소는 고가이어서 첨가량에 따른 가격인상 정도에 비해서 그 첨가효과가 뚜렷하지 않다. 따라서 반드시 첨가해야만 하는 것은 아니며 첨가하면 그 효과는 다소 있으며 첨가량의 상한치는 첨가량에 따른 가격인상 정도에 비해서 그 첨가효과가 뚜렷하지 않게 되는 15%로 한정하는 것이다.The vinadium (V), molybdenum (Mo) and tungstem (W) is combined with carbon (C) to form a carbide, the nickel (Ni) gives toughness and heat resistance. However, since these elements are expensive, the effect of addition is not clear compared to the degree of price increase depending on the amount added. Therefore, it is not necessary to add it, and the effect is somewhat added, and the upper limit of the added amount is limited to 15%, in which the added effect becomes insignificant compared to the degree of price increase depending on the added amount.

따라서 본 발명에서는 V, Mo, W 및 Ni로 이루어진 그룹으로부터 선택적으로 1종 또는 2종 이상의 성분을 선택하여 15% 이하로 첨가할 수도 있는 것이다.Therefore, in the present invention, one or two or more components may be selectively selected from the group consisting of V, Mo, W, and Ni, and may be added at 15% or less.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같은 성분을 갖는 합금을 육성용접에 의해 제조했다. 육성용접에 의한 합금화는 먼저 용접시 희석률을 고려해서 용착금속이 합금성분으로 되는 고합금의 용접을 이용하여 용접봉과 모재간에 아크를 발생시키고 아크열에 의해 용접봉이 녹아 표면이 용착하게 하여 제조하였다.An alloy having the components shown in Table 1 below was prepared by wet welding. Alloying by wet welding was first made by considering the dilution rate during welding, using arc welding between the weld metal and the base metal using high alloy welding of the weld metal as an alloy component, and melting the electrode by arc heat to make the surface weld.

상기와 같이 제조된 합금의 내마모성 시험을 실시하였다.The abrasion resistance test of the alloy prepared as above was carried out.

저응력 건식 긁힘 마모 시험기(Dry Sand Rubber Wheel Abrasive Test:ASTM Stanard G65-85)로 하중 : 20kg, 마모거리 : 4300m, 회전속도 : 200RPM, 사용모래직경(0.15-0.3mm인 동일 조건에서 본 발명재, 비교재 그리고 종래재를 시험하고 이때의 마모량을 측정하고 그 결과치를 하기표 2에 나타내었다.Low stress dry scratch wear tester (Dry Sand Rubber Wheel Abrasive Test: ASTM Stanard G65-85) Load: 20kg, Wear Distance: 4300m, Rotation Speed: 200RPM, Sand Diameter (0.15-0.3mm) , The comparative material and the conventional material were tested and the amount of wear was measured and the results are shown in Table 2 below.

상기 표 2에서 알 수 있는 바와 같이 발명재(1∼10)의 마모량은 0.1g 이하로서 비교재(1∼7)및 종래재(1∼4)의 마모량보다 적으며 이는 본 발명재의 내마모성이 비교재 및 종래재 보다 우수함을 의미한다. 현재 사용되고 있는 철계 내마모 육성용접재 중에서 내마모성이 우수한 것으로 알려져 있는 종래재(4)의 경우 마모량인 0.11g인 것에 반해 발명재(1∼10)인 마모량은 0.05∼0.09g 이다. 따라서, 본 발명재의 내마모성은 기존 종래재 보다 내마모성이 2배까지 개선됨을 알 수 있다. 이는 본 발명재의 경우 경도값이 매우 높은 고경질의 티타늄탄화물(TiC)과 니오비움탄화물(NbC)이 기본적으로 존재하여 내마모성을 우선적으로 개선시키고, 더불어 크롬탄화물(Cr7C3)이 다량 존재함으로써 우수한 내마모성을 확보할 수 있었다. 그리고 이들 탄화물 이외에도 부가적으로 V, Mo, W등의 복합탄화물들이 존재하면 본 발명재는 보다 더 내마모성의 개선효과를 나타내는 복합탄화물형 합금이다.As can be seen in Table 2, the wear amount of the invention materials (1 to 10) is 0.1g or less, which is less than that of the comparative materials (1 to 7) and the conventional materials (1 to 4), which compares the wear resistance of the invention materials. It means superior to ash and conventional materials. In the conventional material (4) known to be excellent in wear resistance among the iron-based wear-resistant growth welding materials currently used, the wear amount of the invention materials (1 to 10) is 0.05 to 0.09 g, while the wear amount is 0.11 g. Therefore, the wear resistance of the present invention can be seen that the wear resistance is improved up to two times than the conventional conventional material. In the case of the present invention, since the high hardness titanium carbide (TiC) and niobium carbide (NbC) have a high hardness, the abrasion resistance is primarily improved, and a large amount of chromium carbide (Cr 7 C 3 ) is present. Excellent wear resistance could be secured. In addition to these carbides, if additional carbides such as V, Mo, and W are present, the present invention is a composite carbide-type alloy exhibiting more improved wear resistance.

상술한 바와 같이 본 발명의 합금은 내마모재로 널리 사용되고 있는 고크롬 철계 합금재료 보다 내마모성이 2배 까지의 우수하여, 상용되고 있는 고크롬 철계 합금재료를 대체하는 내마모재로 사용될 수 있음으로 해서 기존의 내마모설비의 수명을 연장시킬 수 있는복합탄화물형 내마모 철계합금이다.As described above, the alloy of the present invention has excellent abrasion resistance up to 2 times higher than that of the high chromium iron-based alloy material, which is widely used as the wear-resistant material, and thus can be used as a wear-resistant material to replace the high-chromium iron-based alloy material. It is a complex carbide type wear-resistant iron alloy that can extend the life of existing wear-resistant equipment.

즉, 복합탄화물형 내마모 철계합금에 관한 본 발명은 티타늄탄화물(TiC), 니오비움탄화물(NbC), 크롬탄화물(Cr7C3)이 복합적으로 존재하도록 함으로서 기존의 고크롬 철계 합금재료가 크롬탄화물(Cr7C3)만을 가지면서 나타낸 내마모성의 한계를 넘어선 우수한 내마모합금을 제공하여 그간 산업설비들의 마모로 인한 설비수명의 한계를 연장시킬 수 있는 것이다. 따라서, 에너지 절감 및 설비 보수비용의 절감이 가능할 뿐만아니라 보다 내마모성이 우수한 육성용접제품을 제조할 수 있어 보다 많은 응용범위로의 적용이 기대된다.In other words, the present invention relates to a composite carbide type wear-resistant iron alloy is titanium chromium (TiC), niobium carbide (NbC), chromium carbide (Cr 7 C 3 ) to be present in a combination of the existing high chromium iron alloy material chromium With only carbides (Cr 7 C 3 ), it can provide an excellent wear alloy that exceeds the limits of abrasion resistance shown, thereby extending the service life limit due to the abrasion of industrial facilities. Therefore, not only energy saving and facility repair cost can be reduced, but also a more wear resistant welding product can be manufactured, so that application to more application ranges is expected.

Claims (4)

중량비로, C:2.0∼635%, Cr:4∼35%, Mn:0.1∼4%, Si:0.1∼4%, Ti:2.5∼29.5%, Nb:0.5∼29.5%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, (Ti+Nb):5∼30%를 만족하는 것을 특징으로 하는 내마모성이 우수한 복합탄화물형 합금.By weight ratio, C: 2.0 to 635%, Cr: 4 to 35%, Mn: 0.1 to 4%, Si: 0.1 to 4%, Ti: 2.5 to 29.5%, Nb: 0.5 to 29.5%, remaining Fe and other unavoidable A composite carbide type alloy having excellent wear resistance, which is composed of impurities and satisfies (Ti + Nb): 5 to 30%. 제1항에 있어서, 상기 복합탄화물형 합금은 티타늄탄화물(TiC), 니오비움탄화물(NbC), 크롬탄화물(Cr7C3)을 복합적으로 함유하는 것을 특징으로 하는 내마모성이 우수한 복합탄화물형 합금.The composite carbide alloy according to claim 1, wherein the composite carbide alloy contains titanium carbide (TiC), niobium carbide (NbC), and chromium carbide (Cr 7 C 3 ) in combination. 중량비로, C:2.0∼6.5%, Cr:4∼35%, Mn:0.1∼4%, Si:0.1∼4%, Ti:2.5∼29.5%, Nb:0.5∼29.5%, 그리고 Mo, W, Ni, V로 이루어진 그룹으로부터 선택되는 1종 또는 2종 이상의 성분이 15% 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, (Ti+nB):5∼30%를 만족하는 것을 특징으로 하는 내마모성이 우수한 복합탄화물형 합금.By weight ratio, C: 2.0 to 6.5%, Cr: 4 to 35%, Mn: 0.1 to 4%, Si: 0.1 to 4%, Ti: 2.5 to 29.5%, Nb: 0.5 to 29.5%, and Mo, W, One or two or more components selected from the group consisting of Ni and V are made up of 15% or less, the remaining Fe and other unavoidable impurities, and (Ti + nB): satisfying 5 to 30% Excellent composite carbide type alloy. 제3항에 있어서, 상기 복합탄화물형 합금은, 티타늄탄화물(TiC), 니오비움탄화물(NbC), 크롬탄화물(Cr7C3)을 복합적으로 함유하는 것을 특징으로 하는 내마모성이 우수한 복합탄화물형 합금.The composite carbide alloy according to claim 3, wherein the composite carbide alloy contains titanium carbide (TiC), niobium carbide (NbC), and chromium carbide (Cr 7 C 3 ) in combination. .
KR1019960071546A 1996-12-24 1996-12-24 Complex carbide KR100198972B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960071546A KR100198972B1 (en) 1996-12-24 1996-12-24 Complex carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960071546A KR100198972B1 (en) 1996-12-24 1996-12-24 Complex carbide

Publications (2)

Publication Number Publication Date
KR19980052539A KR19980052539A (en) 1998-09-25
KR100198972B1 true KR100198972B1 (en) 1999-06-15

Family

ID=19490728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960071546A KR100198972B1 (en) 1996-12-24 1996-12-24 Complex carbide

Country Status (1)

Country Link
KR (1) KR100198972B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600036B1 (en) * 2004-12-21 2006-07-13 재단법인 포항산업과학연구원 A Jaw Plate with Imporved Wear Resisitance
KR101037820B1 (en) * 2010-10-28 2011-05-30 주식회사 대화알로이테크 Wear resistant composite material, piston pin for engine and method of the same

Also Published As

Publication number Publication date
KR19980052539A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
KR102128026B1 (en) Ultrahigh-strength, high toughness, wear-resistant steel plate and manufacturing method thereof
JP6211099B2 (en) High performance low alloy wear resistant steel sheet and method for producing the same
KR102218051B1 (en) High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof
JP6251291B2 (en) High toughness low alloy wear resistant steel sheet and method for producing the same
AU2002211409B2 (en) Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
KR102218050B1 (en) High-strength, high-toughness, wear resistant steel plate and manufacturing method thereof
CN100453677C (en) Modified high manganese steel
AU2002211409A1 (en) Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
KR20180058749A (en) METHOD FOR MANUFACTURING POLYMER ALLOYED HIGH STRENGTH Abrasion Resistant Steels and Hot Rolled Plates
CN102242317B (en) Multielement alloyed impact-fatigue-resistant wear-resistant steel
CN102230142A (en) High manganese steel with ultra-high strength, high impact resistance and high abrasion resistance
CN102534356A (en) Wear-resistant white cast iron material and preparation method thereof
CN105177436A (en) High-strength, high-tenacity and high-wear-resistance alloy liner plate
KR100198972B1 (en) Complex carbide
KR960006038B1 (en) Chrom-carbide type alloy
KR100256367B1 (en) The manufacturing method for high chrome carbide line alloy and same product
KR100256366B1 (en) The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness
KR100256368B1 (en) Hypereutectoid high chrome carbide type alloy for built-up welding
WO1995020686A1 (en) Wear-resisting high-manganese cast steel
US4929416A (en) Cast steel
Nikitin et al. Improving the wear resistance of structural steels through the use of metallurgical production factors
CN105525219A (en) Molybdenum base alloy steel
Ambroza et al. Submerged arc welding with mixed into the flux materials aiming to obtain hardened after tempering layer
JPH05214483A (en) Material having wear resistance to lump ore
PL204037B1 (en) Wear resistant cast steel, particularly for operation in low temperatures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040304

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee