KR100256367B1 - The manufacturing method for high chrome carbide line alloy and same product - Google Patents

The manufacturing method for high chrome carbide line alloy and same product Download PDF

Info

Publication number
KR100256367B1
KR100256367B1 KR1019950048671A KR19950048671A KR100256367B1 KR 100256367 B1 KR100256367 B1 KR 100256367B1 KR 1019950048671 A KR1019950048671 A KR 1019950048671A KR 19950048671 A KR19950048671 A KR 19950048671A KR 100256367 B1 KR100256367 B1 KR 100256367B1
Authority
KR
South Korea
Prior art keywords
alloy
high chromium
carbide
welding
chromium
Prior art date
Application number
KR1019950048671A
Other languages
Korean (ko)
Other versions
KR970043229A (en
Inventor
백응률
김낙준
안상호
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019950048671A priority Critical patent/KR100256367B1/en
Publication of KR970043229A publication Critical patent/KR970043229A/en
Application granted granted Critical
Publication of KR100256367B1 publication Critical patent/KR100256367B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Abstract

PURPOSE: Provided is a method for manufacturing Cr-rich overlay welding alloy of carbide-based having superior scratch resistance by controlling heat treatment condition and metal constituents. CONSTITUTION: The Cr-rich overlay welding alloy of carbide-based is manufactured by overlay-welding an overlay welding alloy comprising C 2.0-6.5wt.%, Cr 15-35wt.%, Mn 0.1-6wt.%, Si 0.1-2wt.%, 15wt.% or less at least one element selected from Nb, Mo, W, Ni, a balance of Fe and other inevitable impurities on the surface of a base metal; heat treating in the temperature range of 900 to 1100deg.C for 1-10hrs.

Description

긁힘 내마모성을 향상시키기 위한 고크롬탄화물계 육성용접합금의 제조방법Manufacturing method of high chromium carbide based growth weld alloy to improve scratch wear resistance

본 발명은 준설기기, 파쇄롤등 내마모성을 필요로하는 분야에 사용되는 고크롬탄화물계 육성용접합금의 제조방법에 관한 것으로, 보다 상세하게는 긁힘 내마모성을 향상시키기 위한 고크롬탄화물계 육성용접합금의 제조방법에 관한 것이다.The present invention relates to a method for producing a high chromium carbide-based growth weld alloy used in fields requiring abrasion resistance, such as dredging equipment, crushing rolls, and more particularly, to a high chromium carbide-based growth weld alloy for improving scratch resistance It relates to a manufacturing method.

고크롬 철계 합금은 합금이 함유하고 있는 탄소와 크롬원소가 응고 도중에 상호 결합하여 경도값이 Hv 1,100-1,700으로 매우 높은 고경질의 크롬탄화물[(Cr, Fe)7C3]을 석출시킴으로서 내마모성이 특히 우수한 합금이다. 이 고크롬 철계 합금들은 주조품 및 육성용접품 등 여러 제품 형태로 산업기기 전반에 사용되고 있다. 특히 토사 및 광물과의 마찰로 인한 극심한 마모 발생부위, 즉 준설기기, 시멘트 공장의 파쇄물, 제철소의 원료 및 소결광의 스크린, 호파(Hopper), 화력 발전소의 원료탄장입부, 레미콘기 내부 등의 수명 연장을 위해 사용된다.High chromium iron alloys have high wear resistance by depositing very high chromium carbides [(Cr, Fe) 7 C 3 ] with the hardness value of Hv 1,100-1,700 by the carbon and chromium elements contained in the alloy. It is a particularly good alloy. These high chromium iron-based alloys are used throughout industrial equipment in various product forms, such as cast and raised welded parts. In particular, the area of extreme wear caused by friction with soil and minerals, namely dredging equipment, crushed products of cement factory, raw materials of steel mills and screens of sintered ore, hopper, raw material loading part of thermal power plant, inside of ready-mixed concrete machine, etc. Used for

크롬 탄화물을 가지는 고크롬 철계 합금은 내마모성을 필요로하는 분야에서 매우 중요하게 사용되는 재료이다. 이들 고크롬 철계 합금들은 주물이나 육성용접에 의해서 제조되어 무엇보다도 타 재료들에 비해서 값이 싸면서도 내마모성이 우수하다는 장점을 지니고 있다.High chromium iron-based alloys with chromium carbides are very important materials in applications requiring wear resistance. These high chromium iron-based alloys are manufactured by casting or wet welding, and above all, they are inexpensive and excellent in wear resistance compared to other materials.

고크롬 철계합금은 크롬 탄화물을 둘러싸고 있는 기지조직 혹은 크롬 탄화물의 종류에 따라 분류된다. 즉 크롬탄화물을 둘러싸고 있는 기지조직이 오스테나이트, 마르텐사이트, 퍼얼라이트상 이냐에 따라 오스테나이트형, 마르텐사이트형, 퍼얼라이트형 고크롬 내마모합금으로 분류되며, 그리고 기지조직이 무엇인가는 상관없이 기지조직에 의해 둘러싸여 있는 탄화물 중에 일차탄화물이 존재하면 과공정 고크롬 내마모합금, 일차탄화물이 없이 공정탄화물만 존재하면 아공정 고크롬 내마모합금으로 분류된다.High chromium iron alloys are classified according to the type of matrix or chromium carbide surrounding the chromium carbide. In other words, the matrix structure surrounding the chromium carbide is classified into austenite, martensite, and pearlite high chromium abrasion alloys depending on whether it is austenite, martensite, or pearlite phase, and regardless of the matrix structure. The presence of primary carbides in carbides surrounded by matrix structures is classified into hypereutectic high chromium abrasion alloys and, if primary carbides are present without primary carbides, they are classified as secondary eutectic high chromium abrasion alloys.

오스테나이트 고크롬 철계합금은 최초로 1928년 미국특허 1, 671, 384에서 2%C+8%Mn+29.5Cr+Fe(나머지)합금이 발표된 이후 현재까지 탄소함량을 5%까지 증가시켜 크롬탄화물량을 증대시키고, 경도값을 조금더 증가시켜 내마모성을 개선시켜왔다. 그리고 마르텐사이트계 고크롬 철계합금은 최초의 1917년 미국특허 1, 245, 552에서부터 HC250인 2.25-2.85%C+0.5-1.25%Mn+0.25-1.0%Si+24-30%Cr+Fe(나머지)합금을 열처리함으로서 낮은 응력하에서의 긁힘 내마모성이 우수한 재료로 알려져 왔다. 그후 현재까지 탄소 5%, 크롬 35%까지 함유하면서 기지 조직은 오스테나이트 혹인 마르텐사이트이면서 이들 기지조직이 일차 크롬계 탄화물을 둘러싸고 있는 합금까지 상용되고 있다.Austenitic high chromium iron alloys have been chromium-carbonized by increasing the carbon content to 5% to date after the first 2% C + 8% Mn + 29.5Cr + Fe (rest) alloys were published in US Patents 1,671 and 384 in 1928. Abrasion resistance has been improved by increasing the quantity and increasing the hardness value slightly. Martensitic high chromium iron alloys were first developed in US Pat. No. 1, 245, 552 in 1917, 2.25-2.85% C + 0.5-1.25% Mn + 0.25-1.0% Si + 24-30% Cr + Fe (rest of HC250). By heat-treating the alloy, it has been known as a material having excellent scratch resistance under low stress. Since then, up to 5% of carbon and 35% of chromium, the matrix is austenite or martensite, and the matrix is commonly used in alloys surrounding primary chromium carbides.

이들 고크롬계 내마모합금은 사용조건 및 제조방법에 따라서 각기 다른 합금계를 사용하여 왔다. 즉 그간 많은 연구가 수행되어온 주조품의 경우 아정공 고크롬 내마모합금만을 주로 제조하여 사용한다. 이는 탄화물의 양이 30% 근처일 때가 제일 우수한 긁힘 내마모성을 나타내고 그 이상의 탄화물 양을 가지게 되는 과공석 고크롬계 탄화물의 경우 탄화물의 양이 증가될수록 내마모성은 오히려 떨어진다는 연구결과(K. H. Zum Gahr and D. V. Doane, Mettallurgical Transactions A Volume 11A, April 1980 p613-620)와 과공석 고크롬계 합금의 경우 주조시 크랙이 발생하는 단점 때문이다. 주조품으로 제조되는 아공정 고크롬 내마모합금의 경우 충격이 극심한 곳에서는 오스테나이트형 기지조직을 가지는 합금을 사용하고, 충격이 적고 보다 높은 내마모성을 요구하는 곳에는 열처리를 한 마르텐사이트형 기지조직을 가지는 합금이 사용된다.These high chromium wear resistant alloys have been used in different alloy systems depending on the conditions of use and production method. That is, in the case of castings that have been studied for many years, only a hole-hole high chromium wear alloy is manufactured and used. This is the result of research showing that the wear resistance of the super masonry high chromium-based carbide which shows the best scratch resistance and the higher carbide amount when the amount of carbide is around 30% decreases as the amount of carbide increases (KH Zum Gahr and DV). Doane, Mettallurgical Transactions A Volume 11A, April 1980 p613-620) and over-vacuum high chromium-based alloys cause cracks during casting. In the case of sub-process high chromium abrasion alloys made from castings, alloys with austenitic matrix structures are used where the impact is severe and heat treated martensite matrix structures are used where the impact is low and heat resistance is required. Eggplant alloy is used.

한편 조대한 일차탄화물을 가지면서 탄화물의 양이 30% 이상을 함유하는 과공석 고크롬탄화물계 하금의 경우는 육성용접방법에 의해서만이 제조되어 사용되고 있다. 과공석 고크롬계 합금은 주조시 쉽게 크랙이 발생하거나 충격인성이 열악하여 사용시 파손될 위험으로 인해 주조품으로 제조하기가 적합하지 않기 때문이다. 육성용접방법에 의해서만이 제조되어 사용되고 있는 과공석 고크롬계 합금은 현재까지 충격인성이 우수한 연강의 모재위에 용접에 의해 두께 수mm에서 수cm까지 코팅층으로 형성시켜 사용한다. 이때 과공석 고크롬탄화물계 합금의 코팅층이 연강의 모재와 결합되어 있으므로 파손될 위험은 없다.On the other hand, in the case of over-vacuum high chromium carbide-based haze having a coarse primary carbide and containing 30% or more of carbide, it is manufactured and used only by the growth welding method. This is because the eutectic high chromium-based alloy is not suitable to be manufactured as a cast due to the risk of cracking during casting or poor impact toughness. The high masonry high chromium-based alloy, which is manufactured and used only by the growth welding method, is used to form a coating layer from several mm in thickness to several cm by welding on a base material of mild steel having excellent impact toughness. At this time, since the coating layer of the eutectic high chromium carbide-based alloy is combined with the base material of the mild steel, there is no risk of damage.

그러나 육성용접한 고크롬탄화물계 합금의 경우 이제까지는 연강 혹은 합금의 모재위에 육성용접만을 한 상태 그대로 사용되오고 있기 때문에 긁힘 내마모성에 있어서 어느정도 한계가 있다.However, in the case of high chromium carbide-based alloys welded and welded up to now, they have been used as they are only welded on the base material of mild steel or alloy, and thus there is a limit in scratch wear resistance.

이에, 본 발명자는 상기한 바와 같은 종래 육성용접을 실시한 고크롬탄화물계 합금의 긁힘 내마모성을 개선하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게된 것으로, 본 발명은 고크롬탄화물계 육성용접합금의 조성 및 이의 열처리조건을 적절히 제어함에 의해 미세조직을 제어하므로서 긁힘 내마모성을 향상시키기 위한 고크롬탄화물계 육성용접합금을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.Thus, the present inventors conducted research and experiments to improve the scratch wear resistance of the high chromium carbide alloys subjected to conventional overgrowth welding as described above, and the present invention was proposed based on the results. An object of the present invention is to provide a method for producing a high chromium carbide-based growth weld alloy for improving scratch resistance by controlling the microstructure by appropriately controlling the composition of the carbide-based growth weld alloy and heat treatment conditions thereof.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 긁힘 내마모성이 우수한 고크롬탄화물계 육성용접합금을 제조하는 방법에 있어서, 중량%로 C:2.0-6.5%, Cr:15-35%, Mn:0.1-5%, Si:0.1-2%, 단독 또는 복합의 Nb, Mo, W 및 Ni:0-15%, 나머지:Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 육성용접재를 모재에 육성용접한 후 900-1100℃의 온도범위에서 1-10시간 동안 열처리하는 것을 포함하여 이루어지는 긁힘 내마모성이 우수한 고크롬탄화물계 육성용접합금의 제조방법에 관한 것이다.The present invention provides a method for producing a high chromium carbide based weld weld alloy having excellent scratch resistance, and is C: 2.0-6.5%, Cr: 15-35%, Mn: 0.1-5%, and Si: 0.1-2 by weight. %, Single or composite Nb, Mo, W and Ni: 0-15%, the rest: Fe and other inevitable growth in the temperature range of 900-1100 ℃ after the growth welding material to the base material It relates to a method for producing a high chromium carbide-based growth weld alloy excellent in scratch resistance and wear resistance comprising a heat treatment for 1-10 hours.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기한 목적을 달성하기 위하여 본 발명에서는 우선 육성용접재를 상기와 같은 합금성분계로 조성되도록 함이 바람직한데, 그 이유는 다음과 같다.In order to achieve the above object, in the present invention, it is preferable to first make the growth welding material to be composed of the alloy component system as described above.

C는 철을 강화시켜주는 원소로서 재료의 경도를 증가시킨다. 본 발명재에서는 크롬과 결하하여 고경질의 일차크롬계 탄화물을 형성하고, 나머지는 오스테나이트 조직중에 고용된다. 따라서 본 발명재에 있어서의 탄소첨가 함량은 내마모성에 절대적으로 기여하는 크롬계탄화물을 형성할 수 있는 2.0% 이상이어야하며, 6.5% 이상 첨가되었을 경우에는 본 발명재의 취성이 열악해지면서 오히려 내마모성을 저해하게 되므로 첨가량의 하한치는 2.0%, 상한치는 6.5%로 한정함이 바람직하다.C is an iron strengthening element that increases the hardness of the material. In the present invention, it binds with chromium to form a hard primary chromium carbide, and the remainder is dissolved in the austenite structure. Therefore, the carbon content in the present invention should be at least 2.0% capable of forming chromium carbides which contributes to the wear resistance, and when added at 6.5% or more, the brittleness of the present invention becomes poor and rather inhibits wear resistance. Since the lower limit of the addition amount is 2.0%, the upper limit is preferably limited to 6.5%.

Cr은 본 발명재에 있어서 필수적인 원소이다. 탄소 및 철과의 결합으로 값이 싸면서도 내마모성이 우수한 경질의 탄화물을 형성하고, 내산화성을 향상시킨다. 열처리 도중 다수의 크롬계 탄화물을 형성하기 위해서는 15%이상 첨가되어야하며, 35%이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이 없으므로 첨가량의 하한치는 15%, 상한치는 35%로 한정함이 바람직하다.Cr is an essential element in the present invention. Coupling with carbon and iron forms hard carbides having low cost and excellent wear resistance, and improving oxidation resistance. In order to form a large number of chromium-based carbides during the heat treatment, more than 15% of the chromium carbide should be added. Since the effect of improving the wear resistance is not obvious and economical at the same time, the lower limit of the added amount is preferably 15% and the upper limit of 35%. .

Mn은 본 발명재에서 실리콘과의 첨가 비율에 따라서 공정반응에 큰 영향을 미친다. 그리고 응고시 용강 중의 용존 산소를 제거해주는 역할을 하므로서 0.1% 이하 첨가시는 그 기능이 미약하며, 6% 이상 첨가시는 오스테나이트상의 경도를 저하시켜 결국 내마모성을 저해하는 단점을 야기하므로 첨가량의 하한치는 0.1%, 상한치는 6%로 한정함이 바람직하다.Mn greatly affects the process reaction depending on the addition ratio with silicon in the present invention. And when it is dissolved, the function of removing dissolved oxygen in molten steel is less than 0.1%, its function is weak, and when it is added more than 6%, it lowers the hardness of austenite phase and eventually causes the disadvantage of inhibiting abrasion resistance. Is preferably 0.1% and the upper limit thereof is limited to 6%.

Si는 본 발명재에 있어서 용강 중의 산소를 탈산시키는 기능을 가지고 있다. 0.1% 이하 첨가시는 그 기능이 미약하며, 2% 이상 첨가시는 본 발명재는 취성 및 내마모성을 저해하는 퍼얼라이트상을 유발시키므로 첨가량의 하한치는 0.1%, 상한치는 2%로 한정함이 바람직하다.Si has a function of deoxidizing oxygen in molten steel in the present invention. When 0.1% or less is added, its function is weak, and when 2% or more is added, the present invention causes a perlite phase that impairs brittleness and abrasion resistance, so the lower limit of the added amount is preferably limited to 0.1% and the upper limit to 2%. .

Nb, Mo, 및 W은 탄소와 결합하여 탄화물을 형성하고, Ni은 인성과 내열성을 부여한다. 그러나 이들원소는 고가이어서 첨가량에 따른 가격인상 정도에 비해서 그 첨가효과가 뚜렷하지 않다. 따라서 반드시 첨가해야만 하는 것은 아니며 첨가하면 그 효과가 다소 있으므로 첨가량의 하한치는 0% 이며 상한치는 첨가량에 따른 가격인상 정도에 비해서 그 첨가효과가 뚜렷하지 않게 되는 15%로 한정함이 바람직하다.Nb, Mo, and W combine with carbon to form carbides, and Ni imparts toughness and heat resistance. However, since these elements are expensive, the effect of addition is not clear compared to the degree of price increase depending on the amount added. Therefore, it is not necessary to add it, and since it has some effects, it is preferable to limit the lower limit of the added amount to 0% and the upper limit to 15%, in which the added effect becomes insignificant compared to the degree of price increase according to the added amount.

한편, 본 발명에서는 상기와 같은 범위로 강을 조성한 후에는 이를 모재에 육성한 후 900-1100℃의 온도범위에서 1-10시간 동안 열처리하여 탄화물 주위를 둘러싸고 있는 기지조직 내부에 고용되어 있는 크롬 및 탄소를 서로 결합시켜 이차 탄화물을 석출시키고, 공냉하여 기지조직의 전부 또는 일부를 마르텐사이트상으로 변태시켜 긁힘 내마모성을 향상시킴이 바람직한데, 그 이유는 다음과 같다.On the other hand, in the present invention, after the steel is formed in the above range, it is grown in a base material and then heat treated at a temperature range of 900-1100 ° C. for 1-10 hours to form chromium that is dissolved in the matrix structure surrounding the carbide. The carbon is bonded to each other to precipitate secondary carbides, and air-cooled to transform all or part of the matrix into martensite to improve scratch wear resistance. The reason is as follows.

육성용접공정은 아크열에 의해서 모재일부를 녹임과 동시에 고크롬탄화물계 합금성분으로된 용접 전극재가 녹아 모재위에 융착된다. 이때 융착된 용융 금속은 모재 및 주위 대기 공기 중으로 열이 방출되면서 매우 빨리 급냉(103℃/초의 냉각속도)되므로, 일부 크롬 및 탄소합금이 충분히 석출되지 못하고 기지(오스테나이트 혹은 퍼얼라이트상) 중에 과포화 고용된다. 용접 직후의 기지조직에 과포화된 크롬 및 탄소원소는 육성용접재를 고온에서 장시간 유지시키면 상호 결합하여 안정상인 크롬계 탄화물로 석출된다. 그리고 과포화된 크롬 및 탄소 성분이 크롬계 탄화물로 석출되고 난 기지조직은 마르텐사이트 변태 시작점 온도가 상온 이상으로 상승되고 그 결과 냉각 도중에 기지조직 일부 혹은 전부가 마르텐사이트상으로 변태 된다.In the growth welding process, a part of the base material is melted by arc heat, and a welding electrode material made of a high chromium carbide-based alloy component is melted and fused onto the base material. At this time, the fused molten metal is quenched very quickly (heating rate of 10 3 ° C / sec) as heat is released into the base metal and the surrounding air, so that some chromium and carbon alloys cannot be sufficiently precipitated, and the base (austenite or pearlite phase) Supersaturated is employed. The chromium and carbon elements supersaturated in the base structure immediately after welding are bonded to each other when the growth welding material is kept at a high temperature for a long time to precipitate as a stable chromium carbide. And the matrix structure in which the supersaturated chromium and carbon components are precipitated as chromium carbides has a martensite transformation point temperature higher than room temperature, and as a result, part or all of the matrix structure is transformed into martensite phase during cooling.

따라서 육성용접 직후 탄화물을 둘러싸고 있는 기지조직이 열처리 공정을 거침으로서 내마모성 향상에 기여할 수 있는 미세한 이차탄화물이 석출된 고경도 마르텐사이트상으로 변태된다. 이때 열처리 도중에 이차 탄화물이 석출될려면 900-1,100℃의 온도범위에서 1-10시간 유지시켜 충분한 열적조건이 제공되어져야 한다. 900℃ 이하의 온도에서는 이차 탄화물이 석출하는데에 너무 장시간 소요되고, 10시간 이상의 유지시간은 더 이상의 이차 탄화물 석출효과가 뚜렷하지 않으며 동시에 비경제적이다. 그리고 1100℃ 이상의 온도는 육성층의 표면에서 탈탄반응이 심하여 표면 경도가 저하되어 오히려 내마모성을 저하시킬 위험이 있고 이를 방지하기 위해서는 불활성 분위기에서 열처리를 해야하므로 비경제적이다. 따라서 열처리 공정은 900-1,100℃의 온도범위에서 1-10시간동안 유지시켜 고경도 크롬탄화물형 이차탄화물을 충분히 석출시킨 후 상온 까지 공냉시키면서 기지조직을 고경도 마르텐사이트상으로 변태시키는 것이 바람직하다.Therefore, the matrix structure surrounding the carbide immediately after the growth welding undergoes a heat treatment process to transform into a high hardness martensite phase in which fine secondary carbides, which may contribute to improved wear resistance, are deposited. At this time, in order to precipitate the secondary carbide during the heat treatment, sufficient thermal conditions should be provided by maintaining the temperature in the temperature range of 900-1,100 ° C for 1-10 hours. At temperatures below 900 ° C., secondary carbides take too long to precipitate, and a holding time of 10 hours or more is no more pronounced secondary carbide precipitation effect and at the same time uneconomical. And the temperature of 1100 ℃ or more is uneconomical because the decarburization reaction is severe on the surface of the growth layer, the surface hardness is lowered and the risk of lowering the wear resistance and heat treatment in an inert atmosphere to prevent this. Therefore, the heat treatment process is preferably maintained for 1-10 hours in the temperature range of 900-1,100 ℃ to sufficiently precipitate the high hardness chromium carbide-type secondary carbide and then transform the matrix structure to high hardness martensite phase while air-cooled to room temperature.

이하, 실시예를 통하여 본 발명에 대하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

두께 9mm인 연강(SS41강종)의 모재위에 하기 표 1과 같이 조성되는 비교재(1, 2) 및 발명재(1-7)의 육성용접재(외경 3.2mm인 플럭스코어드와이어)를 30볼트, 400암페어 용접 조건으로 용접비드폭이 50mm, 하나의 육성층 두께는 5mm가 되도록 이층으로 육성용접하였다.30 volts of the growth welding material (flux cored wire having an outer diameter of 3.2 mm) of the comparative material (1, 2) and the invention material (1-7) formed on the base material of mild steel (SS41 steel) having a thickness of 9 mm as shown in Table 1 below. The welding bead was welded in two layers so that the weld bead width was 50 mm and the thickness of one growth layer was 5 mm under 400 amp welding conditions.

이와 같이 육성용접한 비교재(1, 2) 및 발명재(1-6)을 1000℃에서 4시간 동안 유지한 후 공냉하였으며, 비교재(3)은 발명재(6)을 890℃에서 1시간 동안 유지한 후 공냉하는 조건으로 열처리 한후, 열처리전후의 경도 및 마모량 변화를 측정하고 그 결과를 하기 표 2에 나타내었다.The comparative materials (1, 2) and the inventive material (1-6) welded and raised as described above were maintained at 1000 ° C. for 4 hours, and then air-cooled. The comparative material (3) made the invention material (6) at 890 ° C. for 1 hour. After maintaining for a while and then heat-treating under conditions of air cooling, the hardness and the amount of wear before and after the heat treatment were measured and the results are shown in Table 2 below.

이때, 각 시료의 경도값은 비커스 경도기를 이용하여 측정했다. 그리고 마모량 측정은 저응력 건식 긁힘마모 시험기(Dry Sand Rubber Abrasive Test:ASTM Standard G65-85)에서 하중:20kg, 마모거리:4300m, 회전속도:200RPM, 사용모래직경:0.15-0.3mm인 동일 조건에서 시험했을 때의 마모량으로 나타내었다.At this time, the hardness value of each sample was measured using the Vickers hardness tester. In addition, wear measurement was performed under the same conditions of load: 20kg, wear distance: 4300m, rotation speed: 200RPM, sand diameter: 0.15-0.3mm in a low stress dry sand abrasive test (ASTM Standard G65-85). The amount of wear at the time of the test is shown.

[표 1]TABLE 1

[표 2]TABLE 2

상기 표 2에서 알 수 있는 바와 같이, 합금조성이 본 발명의 범위를 만족하지 못하는 비교재(1-3)의 경우 열처리를 함으로서 경도값은 오히려 저하했고 마모량도 증가하여 열처리가 내마모성을 저해하는 결과를 가져왔다. 그러나 본 발명의 범위를 만족하는 발명재(1-6)은 모두 열처리를 함으로서 경도값이 급격히 증가했으며 동시에 마모량도 줄어드는 결과를 보였다. 그리고, Nb을 첨가한 발명재(7)의 경우 또한 우수한 경도값 및 마모특성을 나타내었다. 따라서 열처리 공정이 고크롬탄화물계 육성용접재의 경도 상승 및 내마모 개선효과가 뛰어남을 알 수 있다.As can be seen in Table 2, in the case of the comparative material (1-3) in which the alloy composition does not satisfy the scope of the present invention, the hardness value was rather lowered and the amount of wear was also increased, resulting in the heat treatment inhibiting wear resistance. Brought it. However, all of the invention materials (1-6) satisfying the scope of the present invention by the heat treatment showed a sharp increase in hardness value and at the same time a reduction in wear. In addition, the invention material (7) to which Nb was added also showed excellent hardness value and wear characteristics. Therefore, it can be seen that the heat treatment process has an excellent effect of increasing the hardness and wear resistance of the high chromium carbide based welding material.

상술한 바와 같이, 본 발명은 합금성분을 제어하여 육성용접합금을 제조하고 이를 적정조건으로 고온 열처리를 해 줌으로서 긁힘 내마모성이 우수한 육성용접제품을 제조할 수 있는 효과 있다.As described above, the present invention has the effect of producing a growth welding alloy by controlling the alloying components and by producing a high temperature heat treatment under the appropriate conditions it can produce a growth welding product excellent scratch resistance.

Claims (2)

긁힘 내마모성이 우수한 고크롬탄화물계 육성용접합금을 제조하는 방법에 있어서, 중량%로, C:2.0-6.5%, Cr:15-35%, Mn:0.1-6%, Si:0.1-2%, 나머지:Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 육성용접재를 모재에 육성용접한 후, 900-1100℃의 온도범위에서 1-10시간 동안 열처리하는 것을 포함하여 이루어지는 긁힘 내마모성이 우수한 고크롬탄화물계 육성용접합금의 제조방법.In the method for producing a high chromium carbide based weld weld alloy having excellent scratch resistance, C: 2.0-6.5%, Cr: 15-35%, Mn: 0.1-6%, Si: 0.1-2%, Residual: High chromium carbide with excellent scratch wear resistance, which includes heating and welding a growth welding material composed of Fe and other inevitable impurities to a base material, and then heat-treating for 1-10 hours at a temperature range of 900-1100 ° C. Method for Producing Cultivated Welding Alloy. 긁힘 내마모성이 우수한 고크롬탄화물계 육성용접합금을 제조하는 방법에 있어서, 중량%로, C:2.0-6.5%, Cr:15-35%, Mn:0.1-6%, Si:0.1-2%, 단독 또는 복합의 Nb, Mo, W 및 Ni:15% 이하, 나머지:Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 육성용접재를 모재에 육성용접한 후, 900-1100℃의 온도에서 1-10시간 동안 열처리 하는 것을 포함하여 이루어지는 긁힘 내마모성이 우수한 고크롬탄화물계 육성용접합금의 제조방법.In the method for producing a high chromium carbide based weld weld alloy having excellent scratch resistance, C: 2.0-6.5%, Cr: 15-35%, Mn: 0.1-6%, Si: 0.1-2%, Nb, Mo, W, and Ni: 15% or less, remaining: Fe, and a growth welding material composed of other unavoidably contained impurities were grown and welded to the base material, and then 1-10 at a temperature of 900-1100 ° C. A method for producing a high chromium carbide based growth weld alloy having excellent scratch wear resistance, including heat treatment for a time.
KR1019950048671A 1995-12-12 1995-12-12 The manufacturing method for high chrome carbide line alloy and same product KR100256367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048671A KR100256367B1 (en) 1995-12-12 1995-12-12 The manufacturing method for high chrome carbide line alloy and same product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048671A KR100256367B1 (en) 1995-12-12 1995-12-12 The manufacturing method for high chrome carbide line alloy and same product

Publications (2)

Publication Number Publication Date
KR970043229A KR970043229A (en) 1997-07-26
KR100256367B1 true KR100256367B1 (en) 2000-05-15

Family

ID=19439235

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048671A KR100256367B1 (en) 1995-12-12 1995-12-12 The manufacturing method for high chrome carbide line alloy and same product

Country Status (1)

Country Link
KR (1) KR100256367B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820702A (en) * 2013-11-04 2014-05-28 熊科学 Wear-resistant iron alloy material
CN103820720A (en) * 2013-11-04 2014-05-28 熊科学 Production method of wear-resistant surfacing iron alloy material
CN103820719A (en) * 2013-11-04 2014-05-28 熊科学 Wear-resistant surfacing iron alloy material and production method thereof
CN110512152A (en) * 2019-08-23 2019-11-29 徐州东坤耐磨材料有限公司 A kind of high-chromium wear-resistant steel ball and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020074936A (en) * 2001-03-22 2002-10-04 코리아지에이취(주) Abrasion alloy for against slurry

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179947A (en) * 1992-12-15 1994-06-28 Kawasaki Steel Corp Composite roll made by centrifugal casting
KR950018588A (en) * 1993-12-28 1995-07-22 조말수 Chromium carbide alloy with excellent wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179947A (en) * 1992-12-15 1994-06-28 Kawasaki Steel Corp Composite roll made by centrifugal casting
KR950018588A (en) * 1993-12-28 1995-07-22 조말수 Chromium carbide alloy with excellent wear resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820702A (en) * 2013-11-04 2014-05-28 熊科学 Wear-resistant iron alloy material
CN103820720A (en) * 2013-11-04 2014-05-28 熊科学 Production method of wear-resistant surfacing iron alloy material
CN103820719A (en) * 2013-11-04 2014-05-28 熊科学 Wear-resistant surfacing iron alloy material and production method thereof
CN110512152A (en) * 2019-08-23 2019-11-29 徐州东坤耐磨材料有限公司 A kind of high-chromium wear-resistant steel ball and preparation method thereof

Also Published As

Publication number Publication date
KR970043229A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
KR102076053B1 (en) High-Performance Low-Alloy Wear-Resistant Steel Sheet and Method of Manufacturing the Same
KR102040680B1 (en) High-Toughness Low-Alloy Wear-Resistant Steel Sheet and Method of Manufacturing the Same
KR102128026B1 (en) Ultrahigh-strength, high toughness, wear-resistant steel plate and manufacturing method thereof
Davis Alloying: understanding the basics
EP2881486B1 (en) Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
AU2013222054B2 (en) Abrasion resistant steel plate with high strength and high toughness, and processing for preparing the same
CA2033267C (en) Abrasion resistant steel
JPH08246100A (en) Pearlitic rail excellent in wear resistance and its production
CN111748728B (en) Easily-welded high-strength high-toughness wear-resistant steel plate and manufacturing method thereof
US5393358A (en) Method for producing abrasion-resistant steel having excellent surface property
KR100256367B1 (en) The manufacturing method for high chrome carbide line alloy and same product
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
US6110301A (en) Low alloy build up material
Inthidech et al. Effect of sub-critical heat treat parameters on hardness and retained austenite in Mo-containing high chromium cast irons
JP2019127633A (en) Clad steel plate and method for producing the same
JPH03236420A (en) Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
KR960000413B1 (en) Flux cored wire
KR100256368B1 (en) Hypereutectoid high chrome carbide type alloy for built-up welding
JP3250416B2 (en) High carbon ERW steel pipe with excellent wear resistance
CA3226779A1 (en) Hot-rolled steel plate and steel tube having excellent abrasion resistance, and manufacturing method thereof
JP3429164B2 (en) Spring steel with excellent toughness and fatigue properties
JP2023549201A (en) High yield ratio high strength steel plate with excellent thermal stability and its manufacturing method
WO2023073406A1 (en) Hot rolled and steel sheet and a method of manufacturing thereof
JPH1036940A (en) High strength bolt steel excellent in delayed fracture resistance, and bolt
JPH01180918A (en) Production of seamless steel pipe having excellent wear resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee