KR100255038B1 - Preparation of Poly(lactic acid-co-caprolactone) - Google Patents

Preparation of Poly(lactic acid-co-caprolactone) Download PDF

Info

Publication number
KR100255038B1
KR100255038B1 KR1019980003166A KR19980003166A KR100255038B1 KR 100255038 B1 KR100255038 B1 KR 100255038B1 KR 1019980003166 A KR1019980003166 A KR 1019980003166A KR 19980003166 A KR19980003166 A KR 19980003166A KR 100255038 B1 KR100255038 B1 KR 100255038B1
Authority
KR
South Korea
Prior art keywords
lactic acid
oligomer
caprolactone
molecular weight
lactate
Prior art date
Application number
KR1019980003166A
Other languages
Korean (ko)
Other versions
KR19990069124A (en
Inventor
위상백
오상균
신경무
Original Assignee
김윤
주식회사삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김윤, 주식회사삼양사 filed Critical 김윤
Priority to KR1019980003166A priority Critical patent/KR100255038B1/en
Publication of KR19990069124A publication Critical patent/KR19990069124A/en
Application granted granted Critical
Publication of KR100255038B1 publication Critical patent/KR100255038B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE: Provided is a production process of polylactate-polycaprolactone copolymer which is processed through polycondensation reaction of lactate and ring opening reaction of ε-caprolactone so that it produces the wanted product easily. CONSTITUTION: The production process of polylactate-polycaprolactone copolymer comprises the steps of: (i) pre-polycondensing lactate solution to prepare lactate oligomer; (ii) purifying lactate oligomer to be less than 0.5wt.% in unreacted lactate content wherein oligomer is dissolved in chloroform or methylene chloride, precipitated in methanol to be crystallized or oligomer powder is washed in isopropylene ether to eliminate unreacted lactate; and (iii) mixing the purified lactate oligomer and ε -caprolactone to polycondensate and polymerize with ring opened.

Description

폴리락트산-폴리카프로락톤 공중합체의 제조방법 {Preparation of Poly(lactic acid-co-caprolactone)}Preparation method of polylactic acid-polycaprolactone copolymer {Preparation of Poly (lactic acid-co-caprolactone)}

본 발명은 폴리락트산-폴리카프로락톤 공중합체의 제조방법에 관한 것으로서, 더욱 상세하게는 락트산 수용액으로부터 락트산 올리고머를 만들고, 그 락트산 올리고머를 정제한 뒤 ε-카프로락톤과 중합반응을 행하여 의료용 재료나 범용 수지의 대체물로 유용한 생분해성 고분자인 폴리락트산-폴리카프로락톤 공중합체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a polylactic acid-polycaprolactone copolymer, and more particularly, to make a lactic acid oligomer from an aqueous lactic acid solution, purify the lactic acid oligomer, and then polymerize with ε-caprolactone to conduct a medical material or general purpose. A method for producing a polylactic acid-polycaprolactone copolymer, which is a biodegradable polymer useful as a substitute for a resin.

폴리히드록시산의 일종인 폴리락트산과 폴리카프로락톤은 일반적으로 락트산의 환상이량체인 락티드와 ε-카프로락톤을 개환 중합하여 제조하고 있다.Polylactic acid and polycaprolactone, which are a kind of polyhydroxy acid, are generally produced by ring-opening polymerization of lactide and ε-caprolactone, which are cyclic dimers of lactic acid.

폴리락트산의 종래 제조방법으로는 D,L-락트산을 일단 올리고머화한 후 감압하에 200 ∼ 500℃의 조건에서 열분해시켜 락트산의 환상이량체인 락티드를 만들고, 에틸아세테이트로 수회 재결정하여 융점 120℃ 이상의 라세믹락티드를 개환 중합하여 고유점도(inherent viscosity) 0.45 ㎗/g 이상의 폴리 D,L-락트산을 만들어 강력한 필름과 섬유를 만들 수 있는 방법을 개시하고 있다[미국특허 제 2,703,316 호]. 그러나, 이러한 폴리락트산은 유사 계열의 폴리에스테르계 생분해성 고분자들보다 우수한 물성을 갖지만 가공시 취약한 내열성, 내습성 및 깨지기 쉬운 단점을 지니고 있다.In the conventional production method of polylactic acid, the oligomerized D, L-lactic acid is once oligomerized and thermally decomposed under the reduced pressure at 200-500 ° C. to form lactic acid, a cyclic dimer of lactic acid, and recrystallized several times with ethyl acetate to give a melting point of 120 ° C. The method of ring-opening polymerization of the above racemic lactide to produce poly D, L-lactic acid having an inherent viscosity of 0.45 dl / g or more, thereby making a strong film and a fiber (US Pat. No. 2,703,316). However, such polylactic acid has superior physical properties than polyester-based biodegradable polymers of similar series, but has disadvantages of poor heat resistance, moisture resistance, and fragility in processing.

한편, 폴리카프로락톤은 미국 유니온카바이드사(UCC) 제품(TONE™)과 일본의 다이셀 화학공업 제품(Puracel H™)이 있으며, 이들은 주로 의용품, 접착제, 이형제 등으로 사용되고 있다.Meanwhile, polycaprolactones include Union Carbide (UCC) products (TONE ™) and Daicel Chemical Industries (Puracel H ™) products in Japan, which are mainly used as medical supplies, adhesives, and release agents.

폴리락티드와 폴리카프로락톤 공중합체의 제조방법으로는 L-락티드와 ε-카프로락톤을 약 3 : 1의 중량비로 혼합하여 개환중합하는 방법[미국특허 제 4,057,537 호]이 알려져 있으나, 환상이량체인 락티드를 고분자원료로 사용하기 위해서는 증류, 재결정 등 제조방법상 많은 노력과 비용이 필요한 문제점이 있다.As a method of preparing polylactide and polycaprolactone copolymers, a method of ring-opening polymerization by mixing L-lactide and ε-caprolactone in a weight ratio of about 3: 1 is known [US Pat. No. 4,057,537], but the annularity In order to use the dimer, lactide, as a polymer raw material, there is a problem that requires a lot of effort and cost in the manufacturing method such as distillation, recrystallization.

본 발명에서는 직접 탈수축중합반응 및 개환중합에 의해 고분자 중합체를 합성함으로써, 종래의 제조방법에 따른 증류, 재결정 등 많은 노력과 비용을 줄일 수 있을 뿐만 아니라 ε-카프로락톤을 정제된 락트산 올리고머와 공중합함으로써 분해성에 미치는 영향을 최소로 줄이며 락트산 주쇄에 보다 긴 지방족 연쇄를 갖도록 하여 유연성을 높일 수 있는 폴리락트산-폴리카프로락톤 공중합체의 제조방법을 제공하는데 그 목적이 있다.In the present invention, by synthesizing the polymer by direct de-shrinkment polymerization and ring-opening polymerization, not only can much effort and cost be reduced, such as distillation and recrystallization according to the conventional manufacturing method, but also ε-caprolactone is copolymerized with the purified lactic acid oligomer. The purpose of the present invention is to provide a method for producing a polylactic acid-polycaprolactone copolymer which can reduce the effect on degradability to a minimum and have a longer aliphatic chain in the lactic acid main chain and thus increase the flexibility.

본 발명은 폴리락트산-폴리카프로락톤 공중합체의 제조방법에 있어서, 락트산을 예비 축중합하여 락트산 올리고머를 제조하는 과정, 상기 올리고머중의 미반응 락트산을 제거하여 정제하는 공정, 상기 정제된 락트산 올리고머와 ε-카프로락톤을 혼합하여 축중합 및 개환중합하는 과정으로 구성되는 것을 그 특징으로 한다.The present invention provides a method for producing a polylactic acid-polycaprolactone copolymer, comprising the steps of precondensing lactic acid to prepare lactic acid oligomers, removing and purifying unreacted lactic acid in the oligomer, the purified lactic acid oligomer and ε It is characterized by consisting of a process of condensation polymerization and ring-opening polymerization by mixing caprolactone.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 락트산을 축중합하여 락트산 올리고머를 만든 후, 그 올리고머로부터 미반응 락트산을 충분히 제거시키기 위해 락트산 올리고머를 클로로포름 또는 메틸렌클로라이드에 녹인 후 메탄올에 침전시키거나 또는 직접 이소프로필에테르로 정제하매, 정제된 락트산 올리고머를 ε-카프로락톤과 혼합하여 축중합 및 개환중합하여 폴리락트산-폴리카프로락톤 공중합체를 제조하는 방법에 관한 것이다.The present invention condenses lactic acid to form lactic acid oligomers, and then, in order to sufficiently remove unreacted lactic acid from the oligomers, the lactic acid oligomers are dissolved in chloroform or methylene chloride and precipitated in methanol or purified directly with isopropyl ether. A polylactic acid-polycaprolactone copolymer is prepared by condensation polymerization and ring-opening polymerization by mixing lactic acid oligomer with ε-caprolactone.

본 발명에 따른 공중합체의 제조방법에 있어서, 1단계 공정은 락트산 올리고머의 합성과정이다.In the method of preparing a copolymer according to the present invention, the one-step process is a synthesis process of lactic acid oligomer.

90% L-락트산 수용액을 촉매와 함께 반응기에 넣고 교반하면서 90℃이상, 50 ㎜Hg이하의 감압하에서 수시간동안 탈수 및 축중합반응을 수행한다.The aqueous solution of 90% L-lactic acid is added to the reactor together with the catalyst and dehydrated and condensation polymerization is carried out for several hours under a reduced pressure of not less than 90 ° C and not more than 50 mmHg while stirring.

본 발명에 사용한 락트산은 이성질체로 존재하며 L-락트산, D-락트산 또는 이들의 혼합체이다. 그리고 촉매로는 산화아연, 산화안티몬, 염화안티몬, 산화납, 산화칼슘, 산화알루미늄, 산화철, 염화칼슘, 초산아연, p-톨루엔술폰산, 염화제1주석, 황산제1주석, 산화제1주석, 산화제2주석, 옥탄산제1주석, 테트라페닐주석, 주석분말, 사염화티탄 등이며, 이들 촉매는 락트산 사용량에 대하여 0.0005 ∼ 5 중량%, 바람직하기로는 0.003 ∼ 1 중량%를 사용한다. 만약 촉매의 사용량이 0.0005 중량% 미만이면 올리고머의 분자량이 3,000 미만이거나 올리고머 생성시간이 매우 늘어나고, 5 중량%를 초과하면 해중합반응이 심하게 일어나 분자량 3,000 이상의 올리고머를 얻을 수 없는 문제점이 있다. 이와 같은 반응조건하에서의 락트산의 에스테르화 축중합반응을 수행한 경우, 반응시간에 비례하여 올리고머의 분자량이 증가한다.Lactic acid used in the present invention exists as isomers and is L-lactic acid, D-lactic acid or mixtures thereof. The catalysts include zinc oxide, antimony oxide, antimony chloride, lead oxide, calcium oxide, aluminum oxide, iron oxide, calcium chloride, zinc acetate, p-toluenesulfonic acid, stannous chloride, stannous sulfate, stannous oxide, and oxidant2. Tin, stannous octanoate, tetraphenyltin, tin powder, titanium tetrachloride, and the like, and these catalysts are used in an amount of 0.0005 to 5% by weight, preferably 0.003 to 1% by weight, based on the amount of lactic acid used. If the amount of the catalyst used is less than 0.0005% by weight, the molecular weight of the oligomer is less than 3,000 or the oligomer generation time is very long, and if it exceeds 5% by weight, the depolymerization reaction is severe and there is a problem that an oligomer having a molecular weight of 3,000 or more cannot be obtained. When the esterification condensation polymerization of lactic acid is carried out under such reaction conditions, the molecular weight of the oligomer increases in proportion to the reaction time.

본 발명에서 락트산 올리고머의 분자량은 3,000 이상이 되도록 하는 바, 올리고머 분자량이 3,000 미만이면 분자량 50,000 이상의 공중합체를 제조할 수 없다.In the present invention, the molecular weight of the lactic acid oligomer is to be 3,000 or more, if the oligomer molecular weight is less than 3,000, a copolymer having a molecular weight of 50,000 or more cannot be produced.

다음 2단계 공정은 락트산 올리고머로부터 미반응 락트산을 제거하는 정제과정이다. 상기 중합과정에서 발생되는 축중합수는 가수분해작용에 의해 중합체의 분자량을 저하시키는 작용을 하게 되므로 생성되는 물을 계외로 제거하여야 하며, 또한 상기에서 합성된 락트산 올리고머에 함유된 미반응 락트산의 함량이 많을수록 중합반응속도가 매우 느려지고 해중합 및 열분해를 촉진시키므로 이들의 함량을 0.5 중량% 이하로 조절할 필요가 있다. 만일 충분히 정제되지 않은 락트산 올리고머를 사용할 경우, 얻어지는 폴리락트산-폴리카프로락톤 공중합체의 평균분자량은 40,000 이하로 감소하게 된다. 따라서, 상기와 같은 문제점을 해결하기 위하여 정제과정을 거쳐야 한다. 본 발명은 상기 락트산 올리고머를 클로로포름 또는 메틸렌클로라이드에 녹인 후 메탄올에 침전시키거나 직접 이소프로필에테르로 정제하는 방법을 이용한다.The next two step process is the purification to remove unreacted lactic acid from the lactic acid oligomer. Since the polycondensation water generated in the polymerization process acts to lower the molecular weight of the polymer by hydrolysis, the water produced must be removed out of the system, and the content of unreacted lactic acid contained in the lactic acid oligomer synthesized above The more, the slower the polymerization reaction rate and promotes the depolymerization and pyrolysis, so it is necessary to control their content to 0.5% by weight or less. If the lactic acid oligomer is not sufficiently purified, the average molecular weight of the polylactic acid-polycaprolactone copolymer obtained is reduced to 40,000 or less. Therefore, in order to solve the above problems, a purification process must be performed. The present invention utilizes a method in which the lactic acid oligomer is dissolved in chloroform or methylene chloride and then precipitated in methanol or directly purified with isopropyl ether.

그리고, 3단계 공정은 상기 2단계 공정에서 미반응 락트산이 충분히 제거된 정제된 락트산 올리고머를 ε-카프로락톤과 혼합하여 촉매 및 열안정제와 함께 다시 축중합 및 개환중합시켜 폴리락트산-폴리카프로락톤 공중합체를 얻는 과정이다. 이러한 공중합반응은 락트산 올리고머 사이의 탈수축합반응과 ε-카프로락톤의 개환반응이 동시에 이루어지며 이때, 반응온도는 130 ∼ 190℃, 바람직하기로는 160 ∼ 180℃로 조절한다. 만일, 축중합 및 개환중합시 반응온도가 130℃ 미만이면 공중합체의 분자량이 50,000 미만이거나 중합시간이 지나치게 길어지는 문제가 있으며, 190℃를 초과하면 공중합체의 열분해가 수반되어 고분자량의 공중합체를 만들 수 없는 등의 문제가 있어 바람직하지 않다.In the three-step process, the purified lactic acid oligomer from which the unreacted lactic acid is sufficiently removed in the two-step process is mixed with ε-caprolactone, polycondensation and ring-opening polymerization together with a catalyst and a heat stabilizer, thereby performing polylactic acid-polycaprolactone air. It is the process of obtaining coalescence. This copolymerization reaction is carried out at the same time the dehydration condensation reaction between the lactic acid oligomer and the ring-opening reaction of ε-caprolactone, the reaction temperature is adjusted to 130 ~ 190 ℃, preferably 160 ~ 180 ℃. If the reaction temperature is less than 130 ℃ during condensation polymerization and ring-opening polymerization, there is a problem that the molecular weight of the copolymer is less than 50,000 or the polymerization time is too long, if it exceeds 190 ℃ is accompanied by the thermal decomposition of the copolymer to a high molecular weight copolymer It is not preferable because there is a problem such as not being able to make.

상기 축중합 및 개환중합에 사용하는 ε-카프로락톤은 정제된 락트산 올리고머와 ε-카프로락톤의 총량에 대하여 5 ∼ 30 중량% 함유되는데, 만일 함량이 5 중량% 미만이거나 30 중량%를 초과하면 제조된 폴리락트산-폴리카프로락톤 공중합체의 평균분자량이 50,000 이상이라 할지라도 충분한 기계적 물성을 갖지 못한다.Ε-caprolactone used in the condensation polymerization and ring-opening polymerization is contained 5 to 30% by weight based on the total amount of the purified lactic acid oligomer and ε-caprolactone, if the content is less than 5% or more than 30% by weight Even if the average molecular weight of the polylactic acid-polycaprolactone copolymer is 50,000 or more, it does not have sufficient mechanical properties.

또한, 본 발명의 축중합 및 개환중합에 사용하는 촉매는 상기 올리고머 제조시에 사용될 수 있는 촉매중에서 선택되며, 이는 정제된 락트산 올리고머와 ε-카프로락톤의 총량에 대하여 0.0005 ∼ 5 중량%, 바람직하기로는 0.003 ∼ 1 중량%만큼 사용한다.In addition, the catalyst used for the condensation polymerization and the ring-opening polymerization of the present invention is selected from the catalysts that can be used in the production of the oligomer, which is 0.0005 to 5% by weight, preferably with respect to the total amount of the purified lactic acid oligomer and ε-caprolactone Is used by 0.003 to 1% by weight.

그리고, 열분해방지를 위해서 열안정제를 사용하며, 이는 정제된 락트산 올리고머 및 ε-카프로락톤의 총량에 대하여 0.0001 ∼ 5 중량%, 바람직하게는 0.001 ∼ 2 중량%를 사용한다.In addition, a thermal stabilizer is used to prevent thermal decomposition, which uses 0.0001 to 5% by weight, preferably 0.001 to 2% by weight, based on the total amount of the purified lactic acid oligomer and ε-caprolactone.

그 결과 본 발명의 방법에 의해 얻어진 폴리락트산-폴리카프로락톤의 평균분자량은 약 50,000 ∼ 200,000이며, 이러한 분자량은 락트산 올리고머의 분자량, 락트산 올리고머내의 미반응 락트산의 함량, 촉매의 종류 및 사용량, 반응온도, 반응시간에 따라 달라지고, 따라서 이를 조절함으로써 용도에 맞는 분자량을 용이하게 얻을 수 있는 장점이 있다.As a result, the average molecular weight of the polylactic acid-polycaprolactone obtained by the method of the present invention is about 50,000 to 200,000, and the molecular weight is the molecular weight of the lactic acid oligomer, the content of the unreacted lactic acid in the lactic acid oligomer, the type and amount of the catalyst used, the reaction temperature. It depends on the reaction time, and thus, by controlling this, there is an advantage of easily obtaining a molecular weight suitable for a use.

특히 필름성형을 위한 중합체의 평균분자량이 50,000보다 적으면 인장강도 및 신도가 충분하지 않아 필름으로써 사용하기가 어려운 단점이 있어 일반적으로 공중합체의 평균분자량은 50,000 이상, 더욱 바람직하게는 100,000 이상이 요구되는 바, 본 발명의 제조방법에 의해 제조한 폴리락트산-폴리카프로락톤 공중합체는 필름성형용으로 용이하게 사용할 수 있다. 또한, 고분자량의 폴리락트산-폴리카프로락톤 공중합체는 연신, 브로잉, 진공성형 등의 2차가공이 가능하다. 따라서 본 발명의 방법에 의해 얻어진 고분자량의 폴리락트산-폴리카프로락톤 공중합체는 의료용재료, 발포체, 망상체 등의 종래 범용수지의 대체물로써 사용이 가능하다.In particular, if the average molecular weight of the polymer for film forming is less than 50,000, the tensile strength and elongation are insufficient, so that it is difficult to use as a film. Generally, the average molecular weight of the copolymer is required to be 50,000 or more, more preferably 100,000 or more. As a result, the polylactic acid-polycaprolactone copolymer prepared by the production method of the present invention can be easily used for film molding. In addition, the high molecular weight polylactic acid-polycaprolactone copolymer can be subjected to secondary processing such as stretching, blowing, and vacuum molding. Therefore, the high molecular weight polylactic acid-polycaprolactone copolymer obtained by the method of the present invention can be used as a substitute for conventional general purpose resins such as medical materials, foams, and reticular bodies.

이와 같은 본 발명을 실시예에 의거하여 상세하게 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Although this invention is demonstrated in detail based on an Example, this invention is not limited by an Example.

실시예 1Example 1

90% L-락트산 수용액 33.0g과 삼산화안티몬 0.06g을 함께 반응기에 넣고 교반하면서 150℃, 40 ㎜Hg의 감압하에서 3시간동안 탈수 및 축중합반응을 행하였다. 그런다음 반응물을 메틸렌클로라이드 200㎖에 충분히 녹여서 메탄올 200㎖에 부어 결정을 얻었다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 12,500이었으며, 함유된 미반응 락트산의 함량을 측정하였더니 0.05 중량%였다.33.0 g of an aqueous 90% L-lactic acid solution and 0.06 g of antimony trioxide were put together in a reactor, followed by dehydration and condensation polymerization for 3 hours under a reduced pressure of 150 ° C and 40 mmHg. The reaction was then sufficiently dissolved in 200 mL of methylene chloride and poured into 200 mL of methanol to obtain crystals. The crystals were filtered, washed three times or more with methanol, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 12,500 and the content of unreacted lactic acid contained was 0.05% by weight.

27g의 락트산 올리고머와 3g의 ε-카프로락톤을 혼합하여 반응기에 넣고 촉매로 삼산화안티몬 0.06g과 열안정제로 이르가녹스 1010(IRGANOX 1010, 시바가이기사 제품) 0.0091g을 투입하여 교반하면서 170℃로 가열하며 2 ㎜Hg의 감압상태에서 7시간동안 중합반응을 행하였다. 중합반응이 끝난 후 반응기에서 폴리락트산-폴리카프로락톤 공중합체를 꺼내어 분쇄한 후 50℃의 진공오븐에 넣고 0.3 ㎜Hg의 감압상태에서 24시간이상 건조하였다. 건조된 공중합체의 분자량은 200,000 이었다. 그 폴리락트산-폴리카프로락톤 공중합체를 클로로포름 용액에 용해시킨다음 그 용액을 캐스팅방법으로 두께 40 ㎛의 필름을 만들어 기계적 물성을 측정한 결과 인장강도 550 kg/㎠, 신도 22%로 우수하였다.27 g of lactic acid oligomer and 3 g of ε-caprolactone were mixed in a reactor, and 0.06 g of antimony trioxide as a catalyst and 0.0091 g of Irganox 1010 (IRGANOX 1010, manufactured by Ciba-Gaikai Co., Ltd.) as a thermal stabilizer were added thereto and stirred at 170 ° C. The polymerization was carried out while heating under reduced pressure of 2 mmHg for 7 hours. After completion of the polymerization reaction, the polylactic acid-polycaprolactone copolymer was taken out from the reactor, pulverized and placed in a vacuum oven at 50 ° C., and dried for 24 hours at a reduced pressure of 0.3 mmHg. The molecular weight of the dried copolymer was 200,000. The polylactic acid-polycaprolactone copolymer was dissolved in a chloroform solution, and the solution was cast into a film having a thickness of 40 μm, and the mechanical properties thereof were measured. The tensile strength was 550 kg / cm 2 and the elongation was 22%.

실시예 2Example 2

90% L-락트산 수용액 33.0g과 삼산화안티몬 0.06g을 함께 반응기에 넣고 교반하면서 150℃, 40 ㎜Hg의 감압하에서 2시간동안 탈수 및 축중합반응을 행하였다. 그런다음 반응물을 메틸렌클로라이드 200㎖에 충분히 녹여서 메탄올 200㎖에 부어 결정을 얻는다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 3,000이었으며 함유된 미반응 락트산의 함량은 0.4 중량%이었다.33.0 g of an aqueous 90% L-lactic acid solution and 0.06 g of antimony trioxide were put together in a reactor, followed by dehydration and condensation polymerization for 2 hours under reduced pressure at 150 ° C and 40 mmHg. The reaction is then sufficiently dissolved in 200 ml of methylene chloride and poured into 200 ml of methanol to obtain crystals. The crystals were filtered, washed three times or more with methanol, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 3,000 and the content of unreacted lactic acid contained was 0.4% by weight.

그런다음 상기 실시예 1과 동일한 방법으로 폴리락트산-폴리카프로락톤 공중합체를 제조한 결과, 폴리락트산-폴리카프로락톤 공중합체의 분자량은 54,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 390 kg/㎠, 15%로 우수하였다.Then, as a result of preparing the polylactic acid-polycaprolactone copolymer in the same manner as in Example 1, the molecular weight of the polylactic acid-polycaprolactone copolymer was 54,000, the tensile strength and elongation as a result of the film production using this Excellent at 390 kg / cm 2 and 15%, respectively.

실시예 3Example 3

90% L-락트산 수용액 33.0g과 삼산화안티몬 0.06g을 함께 반응기에 넣고 교반하면서 150℃, 50 ㎜Hg에서 2시간동안 탈수 및 축중합반응을 행하였다. 그런다음 반응물을 분쇄하여 분말상태의 락트산 올리고머를 만든 후, 이소프로필에테르로 3차례이상 세정하였다. 그 분말을 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 락트산 올리고머의 분자량은 3,800이었으며 미반응 락트산의 함량은 0.5 중량%이었다. 그런다음 상기 실시예 1과 동일한 방법으로 폴리락트산-폴리카프로락톤 공중합체를 제조한 결과, 분자량은 51,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 350 kg/㎠, 17%로 우수하였다.33.0 g of an aqueous 90% L-lactic acid solution and 0.06 g of antimony trioxide were put together in a reactor, followed by dehydration and polycondensation at 150 ° C. and 50 mmHg for 2 hours while stirring. The reaction was then ground to form lactic acid oligomers in powder form, and then washed three more times with isopropyl ether. The powder was fully dried to obtain a white lactic acid oligomer. The molecular weight of the lactic acid oligomer was 3,800 and the content of unreacted lactic acid was 0.5% by weight. Then, a polylactic acid-polycaprolactone copolymer was prepared in the same manner as in Example 1, and the molecular weight was 51,000. As a result, a film was manufactured using the same, the tensile strength and the elongation were 350 kg / cm 2 and 17%, respectively. Excellent.

실시예 4Example 4

상기 실시예 1과 동일한 방법으로 얻은 락트산 올리고머(분자량 12,500, 미반응 락트산 함량 0.05 중량%) 28.5g과 ε-카프로락톤 1.5g을 혼합하여 반응기에 넣고 촉매 및 열안정제를 실시예 1과 동량 투입한 다음, 실시예 1과 동일한 방법으로 중합반응, 정제 및 건조과정을 거쳐 제조한 폴리락트산-폴리카프로락톤 공중합체의 분자량은 155,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 490 kg/㎠, 11%로 우수하였다.28.5 g of lactic acid oligomer (molecular weight 12,500, unreacted lactic acid content 0.05% by weight) and 1.5 g of ε-caprolactone obtained in the same manner as in Example 1 were mixed into a reactor, and the same amount of catalyst and thermal stabilizer as in Example 1 Next, the molecular weight of the polylactic acid-polycaprolactone copolymer prepared by the polymerization, purification and drying in the same manner as in Example 1 was 155,000, and the tensile strength and elongation of the film were 490 kg, respectively. / Cm 2, which was excellent at 11%.

실시예 5Example 5

상기 실시예 1과 동일한 방법으로 얻은 락트산 올리고머(분자량 12,500, 미반응 락트산 함량 0.05 중량%) 21g과 ε-카프로락톤 9g을 혼합하여, 혼합비만 다르게 하고 실시예 4와 동일한 방법으로 폴리락트산-폴리카프로락톤 공중합체를 제조하였다. 그 결과 분자량은 119,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 270 kg/㎠, 17%로 우수하였다.21 g of lactic acid oligomer (molecular weight 12,500, unreacted lactic acid content 0.05% by weight) obtained by the same method as in Example 1 was mixed with 9 g of ε-caprolactone, except that the mixing ratio was different, and the polylactic acid-polycapro was prepared in the same manner as in Example 4. Lactone copolymers were prepared. As a result, the molecular weight was 119,000, and the tensile strength and elongation of the film were 270 kg / cm 2 and 17%, respectively.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 얻어진 락트산 올리고머(분자량 12,500, 미반응 락트산 함량 0.05중량%) 27g과 0.5 중량%의 락트산 및 ε-카프로락톤 3g을 첨가하여 실시예 1과 동일한 방법으로 폴리락트산-폴리카프로락톤 공중합체를 제조하였다.Polylactic acid-poly was prepared in the same manner as in Example 1 by adding 27 g of lactic acid oligomer (molecular weight 12,500, unreacted lactic acid content 0.05% by weight) and 0.5% by weight of lactic acid and 3 g of ε-caprolactone obtained in the same manner as in Example 1. Caprolactone copolymers were prepared.

그 결과 분자량은 24,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 110 kg/㎠, 3%로 기계적 물성이 좋지 못하였다.As a result, the molecular weight was 24,000, the tensile strength and elongation were 110 kg / ㎠, 3%, respectively, as a result of the film production using this, the mechanical properties were not good.

비교예 2Comparative Example 2

90% L-락트산 수용액 33.0g과 삼산화안티몬 0.06g을 함께 반응기에 넣고 교반하면서 100℃, 40 mmHg의 감압조건하에서 1시간 30분동안 탈수 및 축중합반응을 행하였다. 그런다음 반응물을 메틸렌클로라이드 200㎖에 충분히 녹인 후 메탄올 200㎖에 부어 결정을 얻는다. 그 결정을 여과하여 메탄올로 3차례 이상 세정하고, 충분히 건조하여 백색의 락트산 올리고머를 얻었다. 얻어진 락트산 올리고머의 분자량은 2,700 이었으며 함유된 미반응 락트산의 함량은 0.4 중량%이었다.33.0 g of an aqueous 90% L-lactic acid solution and 0.06 g of antimony trioxide were put together in a reactor, followed by dehydration and polycondensation reaction under a reduced pressure of 100 ° C. and 40 mmHg for 1 hour and 30 minutes. The reaction is then sufficiently dissolved in 200 ml of methylene chloride and then poured into 200 ml of methanol to obtain crystals. The crystals were filtered off, washed three times or more with methanol, and sufficiently dried to obtain a white lactic acid oligomer. The molecular weight of the resulting lactic acid oligomer was 2,700 and the content of unreacted lactic acid contained was 0.4% by weight.

그런다음 상기 실시예 1과 동일한 방법으로 폴리락트산-폴리카프로락톤 공중합체를 제조하였다. 그 결과 분자량은 46,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 130 kg/㎠, 5%로 기계적 물성이 좋지 못하였다.Then, a polylactic acid-polycaprolactone copolymer was prepared in the same manner as in Example 1. As a result, the molecular weight was 46,000, and the tensile strength and elongation of the film were 130 kg / cm 2 and 5%, respectively, resulting in poor mechanical properties.

비교예 3Comparative Example 3

상기 실시예 1과 동일한 방법으로 얻은 락트산 올리고머(분자량 12,500, 미반응 락트산 함량 0.05 중량%) 28.8g과 ε-카프로락톤 1.2g을 혼합하여 반응기에 넣고 촉매 및 열안정제를 실시예 1과 동량 투입한 다음, 실시예 1과 동일한 방법으로 중합반응, 정제 및 건조과정을 거쳐 제조한 폴리락트산-폴리카프로락톤 공중합체의 분자량은 163,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 470 kg/㎠, 1%로 너무 딱딱하고 유연성이 없어 기계적 물성이 좋지 못하였다.28.8 g of lactic acid oligomer (molecular weight 12,500, unreacted lactic acid content 0.05% by weight) and 1.2 g of ε-caprolactone obtained in the same manner as in Example 1 were mixed into a reactor, and a catalyst and a thermal stabilizer were added in the same amount as in Example 1. Next, the molecular weight of the polylactic acid-polycaprolactone copolymer prepared by the polymerization, purification and drying in the same manner as in Example 1 was 163,000, and the tensile strength and elongation of the film were 470 kg, respectively. / ㎠, 1% too hard and not flexible, the mechanical properties were not good.

비교예 4Comparative Example 4

상기 실시예 1과 동일한 방법으로 얻은 락트산 올리고머(분자량 12,500, 미반응 락트산 함량 0.05 중량%) 20.7g과 ε-카프로락톤 9.3g을 혼합하여 반응기에 넣고 촉매 및 열안정제를 실시예 1과 동량 투입한 다음, 실시예 1과 동일한 방법으로 중합반응, 정제 및 건조과정을 거쳐 제조한 폴리락트산-폴리카프로락톤 공중합체의 분자량은 78,000이었으며, 이를 이용하여 필름을 제조한 결과 인장강도와 신도는 각각 126 kg/㎠, 13%로 기계적 물성이 좋지 못하였다.20.7 g of lactic acid oligomer (molecular weight 12,500, unreacted lactic acid content 0.05% by weight) obtained in the same manner as in Example 1 was mixed with 9.3 g of ε-caprolactone, and the same amount of catalyst and thermal stabilizer as in Example 1 was added. Next, the molecular weight of the polylactic acid-polycaprolactone copolymer prepared by the polymerization, purification and drying in the same manner as in Example 1 was 78,000, and the tensile strength and elongation of the film were 126 kg. / Cm 2, 13% was not good mechanical properties.

상술한 바와 같이 본 발명은 락트산의 직접탈수 축중합반응 및 ε-카프로락톤의 개환반응에 의해 생분해성 고분자인 폴리락트산-폴리카프로락톤 공중합체를 제조하는 방법에 관한 것으로서, 본 발명에 따른 제조방법은 종래 제법에 비하여 증류, 재결정 등의 많은 노력과 그로 인한 비용을 줄일 수 있을 뿐만 아니라 열분해 등의 종래 고분자가 가지는 문제를 한꺼번에 해결하고, 또한 필름제조시 인장강도 및 신율이 보다 우수한 유연한 물성을 갖는 효과가 있다.As described above, the present invention relates to a method for preparing a polylactic acid-polycaprolactone copolymer, which is a biodegradable polymer by direct dehydration polycondensation of lactic acid and ring-opening reaction of ε-caprolactone, and according to the present invention. Compared to the conventional manufacturing method, the solution not only reduces distillation and recrystallization, but also reduces costs, and solves problems of conventional polymers such as pyrolysis at once, and also has flexible physical properties with better tensile strength and elongation at the time of film production. It works.

Claims (4)

폴리락트산-폴리카프로락톤 공중합체의 제조방법에 있어서,In the method for producing a polylactic acid-polycaprolactone copolymer, 락트산 수용액을 예비 축중합하여 락트산 올리고머를 제조하는 과정,Preparing a lactic acid oligomer by precondensing lactic acid aqueous solution, 상기 락트산 올리고머중의 미반응 락트산의 함량이 0.5 중량% 이하가 되도록 정제하되, 올리고머를 클로로포름 또는 메틸렌클로라이드에 녹인 후 메탄올에 침전시켜 결정으로 얻거나 또는 올리고머 분말을 이소프로필에테르로 세정하여 미반응 락트산을 제거하여 정제하는 과정,The amount of unreacted lactic acid in the lactic acid oligomer is purified to be 0.5% by weight or less, and the oligomer is dissolved in chloroform or methylene chloride and precipitated in methanol to obtain crystals or the oligomer powder is washed with isopropyl ether to give unreacted lactic acid. The process of removing and refining, 상기 정제된 락트산 올리고머와 ε-카프로락톤을 혼합하여 축중합 및 개환중합하는 것을 특징으로 하는 폴리락트산-폴리카프로락톤 공중합체의 제조방법.Method for producing a polylactic acid-polycaprolactone copolymer, characterized in that the condensation polymerization and ring-opening polymerization by mixing the purified lactic acid oligomer and ε-caprolactone. 제 1 항에 있어서, 상기 락트산 올리고머는 평균분자량이 3,000 이상인 것을 특징으로 하는 폴리락트산-폴리카프로락톤 공중합체의 제조방법.The method of claim 1, wherein the lactic acid oligomer has an average molecular weight of 3,000 or more. 제 1 항에 있어서, 상기 ε-카프로락톤은 정제된 락트산 올리고머와 ε-카프로락톤의 총량에 대하여 5 ∼ 30 중량% 범위내에서 사용하는 것을 특징으로 하는 폴리락트산-폴리카프로락톤 공중합체의 제조방법.The method of claim 1, wherein the ε-caprolactone is used in the range of 5 to 30% by weight based on the total amount of the purified lactic acid oligomer and ε-caprolactone. . 제 1 항에 있어서, 상기 폴리락트산-폴리카프로락톤 공중합체는 평균분자량 이 50,000 ∼ 200,000인 것을 특징으로 하는 폴리락트산-폴리카프로락톤 공중합체의 제조방법.The method of claim 1, wherein the polylactic acid-polycaprolactone copolymer has an average molecular weight of 50,000 to 200,000.
KR1019980003166A 1998-02-04 1998-02-04 Preparation of Poly(lactic acid-co-caprolactone) KR100255038B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980003166A KR100255038B1 (en) 1998-02-04 1998-02-04 Preparation of Poly(lactic acid-co-caprolactone)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980003166A KR100255038B1 (en) 1998-02-04 1998-02-04 Preparation of Poly(lactic acid-co-caprolactone)

Publications (2)

Publication Number Publication Date
KR19990069124A KR19990069124A (en) 1999-09-06
KR100255038B1 true KR100255038B1 (en) 2000-05-01

Family

ID=19532517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980003166A KR100255038B1 (en) 1998-02-04 1998-02-04 Preparation of Poly(lactic acid-co-caprolactone)

Country Status (1)

Country Link
KR (1) KR100255038B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260460B (en) * 2022-09-26 2023-02-10 苏州大学 Copolyester and preparation method thereof

Also Published As

Publication number Publication date
KR19990069124A (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US9683075B2 (en) Process for the continuous production of polyesters
US6291597B1 (en) Viscosity-modified lactide polymer composition and process for manufacture thereof
US8304490B2 (en) Polylactic acid and manufacturing process thereof
WO2003006525A1 (en) Polyhydroxycarboxylic acid and its production process
Japu et al. Bio-based aromatic copolyesters made from 1, 6-hexanediol and bicyclic diacetalized D-glucitol
KR101784221B1 (en) Biodegradable resin composition and biodegradable film prepared from the same
CN111087580A (en) Method for preparing polyglycolic acid
US6096855A (en) Process for the preparation of polyhydroxy acids
KR100255038B1 (en) Preparation of Poly(lactic acid-co-caprolactone)
JPH1149851A (en) Production of biodegradable polyester, catalyst system therefor, and biodegradable polyester produced thereby
JP2007191625A (en) Polylactic acid
KR20130016296A (en) New polyester ethers derived from asymmetrical monomers based upon bisanhydrohexitols
KR20150107286A (en) Poly Lactic Acid Resin Plasticizer Composition Containing Low Molecular Weight Lactide Oligomer
KR0163495B1 (en) Method of manufacturing polyester flat yarn
KR100212968B1 (en) Process for preparing polylactic acid and polyglycolic acid copolymer
JP3339601B2 (en) Polylactic acid based polyester block copolymer
KR100190230B1 (en) Process for preparing polylactic acid
JPH0616790A (en) Aliphatic polyester and its production
JPH06287278A (en) Production of aliphatic polyester
KR20150026368A (en) Method of preparing biodegradable polyester resin
JPH0857949A (en) Biodegradable polymer film and its preparation
CN113004499B (en) Biodegradable polyester elastomer and preparation method and application thereof
JP2009046552A (en) Composition and film
JPH083293A (en) Aliphatic polyester copolymer and its production
JPH08301999A (en) Production of biodegradable aliphatic polyester carbonate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20131209

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20141217

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20161202

Year of fee payment: 18

EXPY Expiration of term