KR100248077B1 - Ohmic contacts to compound semiconductor - Google Patents

Ohmic contacts to compound semiconductor Download PDF

Info

Publication number
KR100248077B1
KR100248077B1 KR1019970046098A KR19970046098A KR100248077B1 KR 100248077 B1 KR100248077 B1 KR 100248077B1 KR 1019970046098 A KR1019970046098 A KR 1019970046098A KR 19970046098 A KR19970046098 A KR 19970046098A KR 100248077 B1 KR100248077 B1 KR 100248077B1
Authority
KR
South Korea
Prior art keywords
layer
content
lid
compound semiconductor
collector
Prior art date
Application number
KR1019970046098A
Other languages
Korean (ko)
Other versions
KR19990024758A (en
Inventor
김경옥
Original Assignee
정선종
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정선종, 한국전자통신연구원 filed Critical 정선종
Priority to KR1019970046098A priority Critical patent/KR100248077B1/en
Publication of KR19990024758A publication Critical patent/KR19990024758A/en
Application granted granted Critical
Publication of KR100248077B1 publication Critical patent/KR100248077B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 화합물 반도체의 오믹접촉 방법에 관한 것으로, 특히 스트레인 보상층 (strain compensation layer)을 이용한 GaAs계 및 InP계 화합물반도체의 오믹접촉 방법에 관한 것이다.The present invention relates to an ohmic contact method of a compound semiconductor, and more particularly, to an ohmic contact method of a GaAs-based and InP-based compound semiconductor using a strain compensation layer.

일반적으로 InP계 전자 소자의 경우 금속 접촉층으로 도핑된 InGaAs층을 사용한다. 금속 접촉층으로 도핑된 InGaAs층을 사용시 In의 함량이 증가시켜 InAs층을 도입함으로써 쇼트키(Schottky) 장벽층의 높이를 낮추어 오믹 접촉 특성을 향상시킬 수 있다고 알려져 있다. 그러나, In의 함량이 증가 또는 감소함에 따라 격자불일치 (lattice mismatch)가 존재한다. 또한 상기 격자 불일치에 의해 성장 가능한 임계 두께 (critical thickness) 및 성장한 에피층에 전위 (dislocation) 및 적층결함 (stacking fault) 등의 존재로 전기적 특성의 퇴화 (degradation)가 일어난다. 따라서, 본 발명은 In함량의 증가에 의해서 에피택시얼층에 생기는 압축 스트레인 (compressive strain)을 상쇄하기 위해 상기 에피택시얼층 상에 In함량을 감소시킨 에피택시얼층을 성장시킨다. 그 결과 인장 스트레인 (tensile strain)의 발생으로 압축스트레인을 상쇄시켜 격자 정합성을 유지하면서 성장 시킬 수 있을 뿐 아니라, In 함량 증가에 따른 쇼트키(Schottky) 장벽 높이의 감소로 오믹 특성이 향상되는 장점을 계속 유지할 수 있다.InP-based electronic devices generally use an InGaAs layer doped with a metal contact layer. It is known that when the InGaAs layer doped with the metal contact layer is used, the In content is increased to introduce the InAs layer, thereby improving the ohmic contact property by lowering the height of the Schottky barrier layer. However, as the content of In increases or decreases, lattice mismatch exists. In addition, due to the lattice mismatch, degradation of electrical characteristics occurs due to the presence of critical thickness and dislocations and stacking faults in the grown epitaxial layer. Accordingly, the present invention grows an epitaxial layer having a reduced In content on the epitaxial layer in order to offset the compressive strain generated in the epitaxial layer by increasing the In content. As a result, not only can the compressive strain be offset by the generation of tensile strain, but also the growth can be maintained while maintaining the lattice consistency, and the ohmic characteristics are improved by decreasing the Schottky barrier height with increasing In content. You can keep it.

Description

화합물 반도체의 오믹접촉 방법Ohmic contact method of compound semiconductor

본 발명은 화합물 반도체의 오믹접촉 방법에 관한 것으로, 특히 스트레인 보상층 (strain compensation layer)을 이용한 GaAs계 및 InP계 화합물반도체의 오믹접촉 방법에 관한 것이다.The present invention relates to an ohmic contact method of a compound semiconductor, and more particularly, to an ohmic contact method of a GaAs-based and InP-based compound semiconductor using a strain compensation layer.

일반적으로, 금속과 반도체사이의 저항성 접촉은 소자의 전기적 특성을 향상시키는데 매우 중요한 역할을 한다. 특히, 접촉 비저항 (specific contact resistance)을 적게 하기 위하여 반도체 표면에 도우핑(doping)을 한다. 그 결과 금속과 반도체 사이에 형성되는 쇼트키(Schottky) 장벽의 두께가 얇아지게 되어 전자가 쉽게 터널링(tunneling) 할 수 있게 된다. 또한, 화합물 반도체소자의 오믹 접촉을 위한 금속의 증착은 전체 소자의 성능을 좌우하는 매우 중요한 제조공정이다. N형 GaAs, InGaAs에 저항성 접촉을 형성하기 위하여 불순물로서 Si, Ge, Sn, Se, Te등이, p형 GaAs의 경우에는 Zn, Be, Mg등을 이용한다. N형 GaAs의 저항성 접촉을 형성하기 위해서는 AuGe/Ni/Au를 증착하여 열처리(thermal annealing)하는 방법이 가장 많이 사용된다. 이때 Au 대 Ge의 질량비가 88:12로 혼합했을 경우 공정(eutectic) 온도가 365oC로 가장 낮으므로 합금화 (alloying)에 용이하다. 상기 경우 합금화 과정 동안에 Au가 GaAs내부로 침투하는데 그 깊이는 1000Å 내지 3000Å이다. 이때 합금화 시간이나 온도 그리고 Au의 량에 따라 침투 깊이도 달라진다.In general, the ohmic contact between the metal and the semiconductor plays a very important role in improving the electrical characteristics of the device. In particular, doping is performed on the surface of the semiconductor in order to reduce specific contact resistance. As a result, the Schottky barrier formed between the metal and the semiconductor becomes thinner, and the electrons can be easily tunneled. In addition, the deposition of metal for ohmic contact of the compound semiconductor device is a very important manufacturing process that determines the performance of the entire device. Si, Ge, Sn, Se, Te, and the like are used as impurities to form ohmic contacts in N-type GaAs and InGaAs, and Zn, Be, Mg, and the like are used in the case of p-type GaAs. In order to form ohmic contacts of the N-type GaAs, a method of depositing AuGe / Ni / Au and thermal annealing is most commonly used. In this case, when the mass ratio of Au to Ge is 88:12, the eutectic temperature is the lowest at 365 o C, so it is easy to alloy. In this case, Au penetrates into GaAs during the alloying process, and its depth is 1000 kPa to 3000 kPa. At this time, penetration depth also depends on alloying time, temperature and amount of Au.

Au의 GaAs내부 침투는 매우 불규칙적이므로 스파이크(spike) 형태를 갖는다. 이때 Ni,In, Pt등을 AuGe위에 증착하여 합금화함으로써 Au의 GaAs 내부 침투에 의한 접촉표면의 불규칙적이고 볼링-업(Balling-up)하려는 문제를 줄일 수 있다. 판저항(sheet resistance)이 1 내지2Ω/sq 인 합금화된 AuGe/Ni는 표면이 불규칙적이므로 전기적 특성을 측정할 경우 정확하고 재현성 있는 결과를 얻기 힘들다. 따라서, 판저항이 적은 Au를 그 위에 증착해줌으로써 이러한 문제점을 해결할 수 있다.Penetration of Au into GaAs is very irregular and therefore has a spike shape. In this case, Ni, In, Pt, etc. are deposited on AuGe and alloyed to reduce the problem of irregular and bowling-up of the contact surface due to the GaAs internal penetration of Au. Alloyed AuGe / Ni with sheet resistance of 1 to 2 Ω / sq has irregular surfaces, so it is difficult to obtain accurate and reproducible results when measuring electrical properties. Therefore, this problem can be solved by depositing Au having low sheet resistance thereon.

Au 증착시, Au의 두께가 너무 얇으면 대부분의 Au가 합금화에 참여하여 표면 형상(morphology)이 나빠진다. 반면에 Au의 두께가 너무 두꺼우면 많은 량의 Ga이 Au와 결합하므로 Ga 동공(vacancy)을 만들어 전기적 저항이 큰 영역이 형성된다. 따라서, Au의 량을 적절하게 조절하는 것이 중요하다.In Au deposition, if the thickness of Au is too thin, most Au participates in alloying and the surface morphology deteriorates. On the other hand, if the thickness of Au is too thick, a large amount of Ga combines with Au, thereby creating Ga holes (vacancy), thereby forming a region of high electrical resistance. Therefore, it is important to appropriately adjust the amount of Au.

종래 금속과 반도체의 오믹접촉 향상을 위하여 다음과 같은 방법이 제시되었다.In order to improve ohmic contact between a conventional metal and a semiconductor, the following method has been proposed.

첫째, 금속과의 반도체 접촉면을 유황(sulfur)으로 처리함으로써 오믹 특성을 향상하고자 하였다. 그러나 상기 공정은 추가 공정이 필요할 뿐 아니라 불순물에 의한 오염문제가 발생한다.First, the semiconductor contact surface with the metal was treated with sulfur to improve ohmic characteristics. However, the process requires not only an additional process but also a problem of contamination by impurities.

둘째, 뚜껑층 (cap layer)으로 금속과 쇼트키 장벽 높이(Schottky barrier height) 가 0.2 eV 로 기존의 GaAs (0.8eV)보다 낮아 전자의 투과가 쉽게 일어날 수 있는 InGaAs 화합물반도체를 사용하는 방법이다. 그러나 상기 방법은 GaAs계의 경우 격자 정합(lattice-match)되는 조성이 존재하지 않아 일정 두께 (임계 두께;Critical thickness)이상으로 에피택시 성장이 불가능하다. InP계의 경우 In조성이 53%일때만 격자 정합 조건을 이루어 활용 폭이 제한된다.Second, as a cap layer, a metal and Schottky barrier height of 0.2 eV is lower than that of conventional GaAs (0.8 eV), which uses an InGaAs compound semiconductor that can easily transmit electrons. However, the GaAs-based method does not have a lattice-matched composition, and thus epitaxy growth is impossible beyond a certain thickness (critical thickness). In the InP system, the lattice matching condition is achieved only when the In composition is 53%, thereby limiting the application range.

셋째, 화합물반도체의 뚜껑층에 불순물의 도우핑 농도가 증가할수록 오믹 접촉을 향상시키는 방법이다. 그러나 상기 방법 또한 소자의 전기적 특성상 불순물의 농도는 1020/cm3이상으로 증가시키기 어려운 문제가 있다.Third, as the doping concentration of impurities increases in the cap layer of the compound semiconductor, the ohmic contact is improved. However, the method also has a problem that it is difficult to increase the concentration of impurities above 10 20 / cm 3 due to the electrical characteristics of the device.

따라서, 본 발명은 기존의 오믹 접촉용 금속을 사용하여 화합물반도체와 금속사이의 쇼트키 장벽 높이를 낮추는 새로운 에피구조를 도입함으로써 반도체 전자 소자의 전기적 특성을 향상시킬 수 있는 화합물 반도체의 오믹 접촉방법을 제공하는데 그 목적이 있다.Accordingly, the present invention provides an ohmic contact method of a compound semiconductor capable of improving the electrical characteristics of a semiconductor electronic device by introducing a new epistructure that lowers the Schottky barrier height between the compound semiconductor and the metal using an existing ohmic contact metal. The purpose is to provide.

상기한 목적을 달성하기 위한 본 발명에 따른 화합물 반도체의 오믹 접촉방법은 기판 상에 콜렉터층을 형성하되, 상기 콜렉터층은 N형 불순물이 도핑된 InGaAs로 이루어진 제 1 뚜껑층, In 함량을 증가시켜 압축 변형된 N형 불순물이 도핑된 InGaAs로 이루어진 제 2 뚜껑층 및 In함량을 감소시켜 인장변형된 N형 불순물이 도핑된 InGaAs로 이루어진 제 3 뚜껑층을 순차적으로 적층하여 형성하는 단계와, 상기 콜렉터층 상에 콜렉터 장벽층 및 베이스층을 순차적으로 형성하되, 상기 베이스층은 상기 제 1, 2 및 3 뚜껑층을 순차적으로 적층하여 형성하는 단계와, 상기 베이스층 상에 도핑 안된 전위변화 흡수(완충)층, 도핑 안된 에미터 장벽층, 도핑 안된 전자의 양자 우물층, 도핑 안된 전자 장벽층 및 에미터층을 순차적으로 형성하되, 상기 에미터층은 상기 제 1, 2 및 3 뚜껑층을 순차적으로 적층하여 형성하는 단계와, 상기 콜렉터층, 베이스층 및 에미터층 상에 원하는 오믹 접촉용 금속을 형성하는 단계를 포함하여 이루어지는 것을 특징 한다.The ohmic contact method of the compound semiconductor according to the present invention for achieving the above object is to form a collector layer on the substrate, the collector layer is a first lid layer made of InGaAs doped with N-type impurities, by increasing the In content Sequentially stacking a second lid layer made of InGaAs doped with compression-deformed N-type impurities and a third lid layer made of InGaAs doped with tensilely-modified N-type impurities, thereby forming the collector; A collector barrier layer and a base layer are sequentially formed on the layer, wherein the base layer is formed by sequentially laminating the first, second and third lid layers, and absorbs undoped dislocation change on the base layer. ) Layer, an undoped emitter barrier layer, a quantum well layer of undoped electrons, an undoped electron barrier layer and an emitter layer are sequentially formed, wherein the emitter layer is the first and second layers. Forming by stacking a third cap layer sequentially, and characterized by comprising a step of forming a desired metal for ohmic contact on the collector layer, base layer and emitter layer.

도 1은 본 발명에 따른 핫전자장치의 단면도.1 is a cross-sectional view of a hot electronic device according to the present invention.

〈도면의 주요 부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1 : 기판 2 : 콜렉터(Collector)1: Substrate 2: Collector

3 : 도우핑 안된 콜렉터 (collector) 장벽층3: non-doped collector barrier layer

4 : 베이스 (Base) 5 : 도우핑 안된 전위변화 흡수(완충)층4 Base 5 Undoped Potential Change Absorption (Buffer) Layer

6 : 도우핑이 안된 에미터(emitter) 장벽층(barrier layer)6: non-doped emitter barrier layer

7 : 도우핑이 안된 전자의 양자우물층7: quantum well layer of undoped electron

8 : 도우핑이 안된 전자 장벽층 10 : 에미터 (Emitter)8 non-doped electron barrier layer 10 emitter

본 발명을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 핫전자(Hot Electron) 장치의 단면도로서, 기판 (6)상에 콜렉터층(2)은 N형 불순물이 도핑된 InGaAs 화합물 반도체 상에 In함량을 증가시켜 압축 변형된InxGa1-xAs(x〉0.53) 화합물 반도체 및 In함량을 감소시켜 인장변형된 InxGa1-xAs(x〈0.53) 화합물 반도체를 순차적으로 에피택시얼(Epitaxial) 성장시켜 형성한다.1 is a cross-sectional view of a hot electron device according to the present invention, wherein a collector layer 2 on a substrate 6 is compressed and deformed by increasing In content on an InGaAs compound semiconductor doped with N-type impurities. The X Ga 1-x As (x> 0.53) compound semiconductor and the In content of the tensilely strained In x Ga 1-x As (x <0.53) compound semiconductor are sequentially formed by epitaxial growth.

그 후 콜렉터층(2)상에 콜렉터 장벽층(3) 및 베이스층(4)을 순차적으로 형성한다. 이때 베이스층(4)은 콜렉터층(2)과 동일하게 N형 불순물이 도핑된 InGaAs 화합물 반도체 상에 In함량을 증가시켜 압축 변형된InxGa1-xAs(x〉0.53) 화합물 반도체 및 In함량을 감소시켜 인장변형된 InxGa1-xAs(x〈0.53) 화합물 반도체를 순차적으로 에피택시얼(Epitaxial) 성장시켜 형성한다.Thereafter, the collector barrier layer 3 and the base layer 4 are sequentially formed on the collector layer 2. At this time, the base layer 4 is the In x Ga 1-x As (x> 0.53) compound semiconductor and In which are increased in the content of In on the InGaAs compound semiconductor doped with N-type impurities like the collector layer 2. By decreasing the content, the strain-modified In x Ga 1-x As (x <0.53) compound semiconductor is sequentially formed by epitaxial growth.

그 후 베이스층(4) 상에 도핑 안된 전위변화 흡수(완충)층(5), 도핑 안된 에미터 장벽층, 도핑 안된 전자의 양자 우물층(7), 도핑 안된 전자 장벽층(8) 및 에미터층(9)을 순차적으로 형성한다. 이때 에미터층(9)은 콜렉터층(2)과 동일하게 N형 불순물이 도핑된 InGaAs 화합물 반도체 상에 In함량을 증가시켜 압축 변형된InxGa1-xAs(x〉0.53) 화합물 반도체 및 In함량을 감소시켜 인장변형된 InxGa1-xAs(x〈0.53) 화합물 반도체를 순차적으로 에피택시얼(Epitaxial) 성장시켜 형성한다.Then, on the base layer 4, an undoped dislocation change absorbing (buffer) layer 5, an undoped emitter barrier layer, a quantum well layer 7 of undoped electrons, an undoped electron barrier layer 8, and an emi The foundation layer 9 is formed sequentially. In this case, the emitter layer 9 is made of In x Ga 1-x As (x> 0.53) compound semiconductor and In, which is increased in an In content on an InGaAs compound semiconductor doped with N-type impurities, similarly to the collector layer 2. By decreasing the content, the strain-modified In x Ga 1-x As (x <0.53) compound semiconductor is sequentially formed by epitaxial growth.

그 후 에피택시얼 성장으로 형성된 콜렉터층(2), 베이스층(4) 및 에미터층(9) 상에 원하는 오믹 접촉용 금속(10)을 증착시킨다.The desired ohmic contact metal 10 is then deposited on the collector layer 2, the base layer 4 and the emitter layer 9 formed by epitaxial growth.

상술한 바와같이 도우프된 InGaAs층을 금속 접촉층으로 사용시, In의 함량의 증가에 의하여 에피택시얼층에 생기는 압축 스트레인 (compressive strain)이 상쇄되도록 In의 함량이 증가된 에피택시얼층 상에 In함량을 감소시킨 에피택시얼층을 성장 시킨다. 그 결과 상기 에피택시얼층에 인장 스트레인(tensile strain)의 발생으로 압축 스트레인을 상쇄시켜 격자정합성을 유지하면서 성장시킬 수 있을 뿐 아니라, In 함량 증가에 따른 쇼트키(Schottky)장벽 높이의 감소로 오믹 특성이 향상되는 장점을 계속 유지 할 수 있다.As described above, when the doped InGaAs layer is used as the metal contact layer, the In content is increased on the epitaxial layer having an increased In content so that the compressive strain generated in the epitaxial layer is canceled by the increased In content. Growing epitaxial layer reduced. As a result, not only the compressive strain can be offset by the occurrence of tensile strain in the epitaxial layer, but also it can be grown while maintaining the lattice coherence, and the ohmic characteristics can be reduced by decreasing the Schottky barrier height with increasing In content. You can continue to benefit from this improvement.

상술한 바와같이 본 발명은 기존의 화합물반도체 오믹 접촉용 금속 증착 공정을 이용하여 추가적인 공정없이 소자를 제작할 수 있도록 화합물 반도체와 오믹금속층사이에 오믹 접촉을 향상 시키는 새로운 에피택시얼 구조를 도입함으로써 소자의 전기적 특성이 향상된다.As described above, the present invention provides a novel epitaxial structure for improving the ohmic contact between the compound semiconductor and the ohmic metal layer so that the device can be fabricated without using an existing metal semiconductor deposition process for compound semiconductor ohmic contact. Electrical characteristics are improved.

Claims (3)

기판 상에 콜렉터층을 형성하되, 상기 콜렉터층은 N형 불순물이 도핑된 InGaAs로 이루어진 제 1 뚜껑층, In 함량을 증가시켜 압축 변형된 N형 불순물이 도핑된 InGaAs로 이루어진 제 2 뚜껑층 및 In함량을 감소시켜 인장변형된 N형 불순물이 도핑된 InGaAs로 이루어진 제 3 뚜껑층을 순차적으로 적층하여 형성하는 단계와,A collector layer is formed on a substrate, wherein the collector layer is a first lid layer made of InGaAs doped with N-type impurity, a second lid layer made of InGaAs doped with N-type impurity doped by compression deformation by increasing In content, and In Reducing the content to sequentially form a third lid layer made of InGaAs doped with tensilely-modified N-type impurities; 상기 콜렉터층 상에 콜렉터 장벽층 및 베이스층을 순차적으로 형성하되, 상기 베이스층은 상기 제 1, 2 및 3 뚜껑층을 순차적으로 적층하여 형성하는 단계와,Forming a collector barrier layer and a base layer sequentially on the collector layer, wherein the base layer is formed by sequentially stacking the first, second and third lid layers; 상기 베이스층 상에 도핑 안된 전위변화 흡수(완충)층, 도핑 안된 에미터 장벽층, 도핑 안된 전자의 양자 우물층, 도핑 안된 전자 장벽층 및 에미터층을 순차적으로 형성하되, 상기 에미터층은 상기 제 1, 2 및 3 뚜껑층을 순차적으로 적층하여 형성하는 단계와,An undoped dislocation change absorbing (buffered) layer, an undoped emitter barrier layer, a quantum well layer of undoped electrons, an undoped electron barrier layer, and an emitter layer are sequentially formed on the base layer, wherein the emitter layer is formed of the first layer. Stacking one, two, and three lid layers sequentially; 상기 콜렉터층, 베이스층 및 에미터층 상에 원하는 오믹 접촉용 금속을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 화합물 반도체의 오믹 접촉방법.And forming a desired ohmic contact metal on the collector layer, the base layer, and the emitter layer. 제 1 항에 있어서,The method of claim 1, 상기 제 2 뚜껑층의 조성비는 InxGa1-xAs에서 x는 0.53 이상이고, 상기 제 3 뚜껑층의 조성비는 InxGa1-xAs에서 x는 0.53 이하인 것을 특징으로 하는 화합물 반도체의 오믹접촉 방법.The composition ratio of the second lid layer is at least x 0.53 in In x Ga 1-x As, and the composition ratio of the third lid layer is less than 0.53 in In x Ga 1-x As. Contact way. 제 1 항에 있어서,The method of claim 1, 상기 제 2 및 3 뚜껑층은 에피택시얼 성장법으로 형성하는 것을 특징으로 하는 화합물 반도체의 오믹접촉 방법.And the second and third lid layers are formed by an epitaxial growth method.
KR1019970046098A 1997-09-08 1997-09-08 Ohmic contacts to compound semiconductor KR100248077B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970046098A KR100248077B1 (en) 1997-09-08 1997-09-08 Ohmic contacts to compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970046098A KR100248077B1 (en) 1997-09-08 1997-09-08 Ohmic contacts to compound semiconductor

Publications (2)

Publication Number Publication Date
KR19990024758A KR19990024758A (en) 1999-04-06
KR100248077B1 true KR100248077B1 (en) 2000-03-15

Family

ID=19520963

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970046098A KR100248077B1 (en) 1997-09-08 1997-09-08 Ohmic contacts to compound semiconductor

Country Status (1)

Country Link
KR (1) KR100248077B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658605B2 (en) 2017-09-11 2020-05-19 Samsung Display Co., Ltd. Light emitting assembly and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674837B1 (en) * 2005-02-28 2007-01-26 삼성전기주식회사 Semiconductor device and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658605B2 (en) 2017-09-11 2020-05-19 Samsung Display Co., Ltd. Light emitting assembly and display device

Also Published As

Publication number Publication date
KR19990024758A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
US5907159A (en) Hot electron device and a resonant tunneling hot electron device
EP0619613B1 (en) A heterojunction bipolar transistor
US5837565A (en) Semiconductor device
US5099295A (en) Compound semiconductor device which utilizes an electron supply layer which has a graded composition so that a constituent varies in percentage composition from one side to the other
JP3792390B2 (en) Semiconductor device and manufacturing method thereof
US5231298A (en) GaAs device having a strain-free c-doped layer
CA2529595A1 (en) Heterostructure bipolar transistor
EP0249371B1 (en) Semiconductor device including two compound semiconductors, and method of manufacturing such a device
CN113659047B (en) Epitaxial structure and light emitting diode
KR100248077B1 (en) Ohmic contacts to compound semiconductor
US7291873B2 (en) High electron mobility epitaxial substrate
US20220077288A1 (en) Compound semiconductor substrate
US5371387A (en) Field effect transistors
US20090045437A1 (en) Method and apparatus for forming a semi-insulating transition interface
US7902569B2 (en) Si/SiGe interband tunneling diodes with tensile strain
US5786244A (en) Method for making GaAs-InGaAs high electron mobility transistor
US6043143A (en) Ohmic contact and method of manufacture
KR100519896B1 (en) High-concentration doped semiconductor and method of fabricating the same
JPH0945635A (en) Manufacture of semiconductor device and semiconductor device
CN117012814B (en) Epitaxial structure of InP-based heterojunction bipolar transistor and preparation method thereof
WO2000007248A1 (en) High electron mobility transistor
JP2621854B2 (en) High mobility transistor
CN111243953B (en) Method for preparing semiconductor device by molecular beam epitaxy and semiconductor device
EP0249777B1 (en) Method of making a metal to higher band gap compound semiconductor and contact obtainable by such a method
JP2687937B2 (en) Field effect transistor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071115

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee