KR100247440B1 - Method of forming ohmic contact of ni on inp - Google Patents

Method of forming ohmic contact of ni on inp Download PDF

Info

Publication number
KR100247440B1
KR100247440B1 KR1019970034739A KR19970034739A KR100247440B1 KR 100247440 B1 KR100247440 B1 KR 100247440B1 KR 1019970034739 A KR1019970034739 A KR 1019970034739A KR 19970034739 A KR19970034739 A KR 19970034739A KR 100247440 B1 KR100247440 B1 KR 100247440B1
Authority
KR
South Korea
Prior art keywords
inp
type
junction
resistance
resistive
Prior art date
Application number
KR1019970034739A
Other languages
Korean (ko)
Other versions
KR19990011598A (en
Inventor
김동주
Original Assignee
김동주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김동주 filed Critical 김동주
Priority to KR1019970034739A priority Critical patent/KR100247440B1/en
Publication of KR19990011598A publication Critical patent/KR19990011598A/en
Application granted granted Critical
Publication of KR100247440B1 publication Critical patent/KR100247440B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

1. 청구범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION

본 발명은 InP의 저항접합(ohmic contact)형성에 관한 것이다.The present invention relates to the formation of ohmic contacts of InP.

2. 발명이 해결하려고 하는 기술적 과제2. The technical problem to be solved by the invention

InP의 저항접합형성시 n형과 p형에 공통으로 사용할 수 있는 재질 발견과 양질의 저항접합형성조건 발견, 공정개선, 경비절감과 전기적 특성 향상이다.It is to find materials that can be used for both n-type and p-type in InP, and to find high-quality resistive bonding conditions, process improvement, cost reduction, and electrical characteristics improvement.

3. 발명의 해결방법 요지3. Solution Summary of the Invention

Ni를 직접 InP표면에 에바퍼레이션(evaporation)하여 메탈리제이션(metalization) 하여 저항접합을 InP의 n형과 p형에서 동시에 얻는다. 이 때 메탈리제이션(metalization)과정 중 Ni이 InP표면을 어택(attack)하는 증착(deposit)속도를 조정하여 저항접합형성의 최적조건을 얻는다.Ni is directly evaporated on the InP surface and metallized to obtain resistance junctions simultaneously in n-type and p-type of InP. At this time, the optimum condition of resistance junction formation is obtained by adjusting the deposition rate at which Ni attacks the InP surface during the metallization process.

4. 발명의 중요한 용도4. Important uses of the invention

본 발명은 InP의 n형과 p형의 저항접합을 동시에 형성하고 반도체에 직접 금속을 접합시켜 저항접합을 얻으므로 공정과정이 단순하고 및 시간이 단축된다. 특히 접합의 비저항이 양호하여 Shottky접합 및 저항접합이 사용되는 반도체소자의 전기적인 특성을 개선시켜 전체적인 속도개선등 성능을 향상시킬 수 있다.In the present invention, since n-type and p-type resistive junctions of InP are simultaneously formed and a metal is directly bonded to a semiconductor to obtain a resistive junction, the process is simple and the time is shortened. In particular, since the resistivity of the junction is good, the electrical characteristics of the semiconductor device in which the shottky junction and the resistance junction are used can be improved, thereby improving the overall speed improvement performance.

Description

니켈(Ni)과 InP의 저항접합(Ohmic contact) 형성방법Ohmic contact formation method of nickel (Ni) and InP

본 발명은 Ⅲ-V족 화합물반도체 InP(Indium Phosphorus, Phosphor-Indium)의 저항접합(ohmic contact)형성에 관한 것이다.The present invention relates to the formation of ohmic contacts of group III-V compound semiconductor InP (Indium Phosphorus, Phosphor-Indium).

일반적으로 InP의 오믹컨택(ohmic contact)은 InP기판표면의 산화막, 지질 등을 화학적·물리적 방법으로 제거(cleaning)한후, 진공상태에서 n형InP(InP(n))은 합금 AuGeNi을, p형 InP(InP(p))은 합금 AuZn을 에바퍼레이션(evaporation)하여 증착(metalization)시킨 후, 어닐닝(annealing)하여 만든다.In general, ohmic contact of InP removes oxide film, lipid, etc. from InP substrate surface by chemical and physical method, and nP InP (InP (n)) is alloy AuGeNi, p-type under vacuum. InP (InP (p)) is made by annealing the alloy AuZn by evaporation and then metalization.

본 발명이 이루고자 하는 기술적 과제는 InP의 저항접합(ohmic contact, ohmic junction) 형성시 일반적으로 사용되는 합금AuGeNi과 합금AuZn보다 저렴한 금속으로 양종류(n형, p형)에 공통으로 사용할 수 있는 단일금속 발견과 이때 양질의 저항접합(ohmic contact)을 형성하는 조건을 찾아 공정의 신뢰도 향상과 경비절감 그리고 전기적 특성을 개선하는 것이다.The technical problem to be achieved by the present invention is a metal which is cheaper than the alloy AuGeNi and alloy AuZn, which are generally used in forming ohmic contact and ohmic junction of InP, and can be used in common for both types (n-type and p-type). The discovery of metals and the conditions under which a good ohmic contact is formed can be found to improve process reliability, reduce cost and improve electrical properties.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : InP기판(layer) 2 : 도핑된 InP(1016-3또는 1016-3이상)1: InP layer 2: Doped InP (10 16 cm -3 or 10 16 cm -3 or more)

3 : 마스크 4 : Ni층3: mask 4: Ni layer

5 : Au(Ag)층5: Au (Ag) layer

본 발명은 Ni로 InP에 저항접합(ohmic contact)을 형성하는 것이다. 일반적으로 도핑농도(doping concentration)가 1016-3또는 1016-3이상인 InP기판이 사용된다. 보통 InP에 저항접합(ohmic contact)을 형성하는 방법은 먼저 기판표면의 산화막, 지질 등 이물질을 화학적·물리적 방법, 즉 HF 용액 등과 초음파 세척장비를 사용하여 세척(cleaning)한다. 이어서 마스킹 공정을 거친 다음 진공상태에서 약100℃로 2∼3분 가열하여 InP기판 표면의 잔류가스를 제거한 후 메탈리제이션(metalization) 공정에 들어 간다. InP(n)의 경우 합금 AuGeNi을 사용하고, InP(p)에는 합금 AuZn을 사용하여 에바퍼레이션(evaporation)하여 메탈리제이션(metalization)한다. 다음 300∼400℃로 어닐닝(annealing)하면 저항접합(ohmic contact)을 얻을 수 있다. 이러한 공정에 의해 저항접합이 형성되는 것을 다음과 같이 설명하고 있다. InP(n)의 경우, 합금AuGeNi이 InP위에 메탈리제이션(metalization)된 후, 300∼400℃의 어닐닝(annealing)과정동안 InP와 합금경계면에 Au2P3가 생성된다. 이 때 Ge가 InP속으로 확산(in-diffusion)되어 표면농도가 높아져 공핍영역(depletion zone)폭이 좁아져 터널효과(tunnel effect)가 발생하여, 전자가 쉽게 금속과 InP와의 접합면을 통과하게 되어 오믹접합(ohmic contact)이 형성된다. 그리고 InP(p)의 경우는, 합금 AuZn의 InP표면위 메탈리제이션(metalization)후, 어닐닝(annealing)하는 과정에 Au3In2가 생성되면서 In이 바깥쪽으로 확산(out-diffusion)되며 접촉면 농도가 높아져 공핍영역(depletion zone)폭이 좁아져 터널효과(tunnel effect)가 발생하여, 정공(hole)이 금속과 InP와의 접합면을 쉽게 통과하게 된다. 즉 오믹접합(ohmic contact)이 형성된다. 또 한편으로는 이와는 전혀 다른 주장이 있다. 합금 중 Ni성분이 InP와 반응하여 Ni3P이 생성되어, 이것이 전기전도의 길 역할을 하여 오믹접합(ohmic contact)이 형성된다는 것이다. 이 이론에 따르면 Ni3P가 InP와 외부접촉금속과의 캐리어(carrier)연결통로 역할을 하여 캐리어(carrier)가 쉽게 왕래할 수 있다. InP의 형, 즉 n형 p형에 관계없이 Ni3P가 캐리어(carrier)연결통로 역할하기 때문에 Ni3P의 생성이 곧 Ni과 InP와의 저항접합형성으로 연결 된다. 즉 Ni3P이 생성조건이 저항접합형성조건이 되는 것이다. 상기와 같은 이론적인 설명에 바탕을 두고, Ni을 직접 InP표면에 에바퍼레이션(evaporation)하여 메탈리제이션(metalization)한 결과 양호한 저항접합을 InP의 n형과 p형에서 동시에 얻을 수 있었다. Ni을 직접 InP표면에 메탈리제이션(metalization)하여 저항접합을 얻는 방법은 다음과 같다. Ni-InP 저항접합(ohmic contact)을 만드는 일반적인 방법과 같이 기판표면(도면(A)도의 2)의 산화막, 지질 등 이물질을 화학적·물리적 방법, 즉 HF용액 등과 초음파 세척장비를 사용하여 세척(cleaning)한후, 도면(A)도와 같이 마스킹(3)공정을 거친 다음, 2×10-6mbar의 진공상태에서 약100℃로 2∼3분 가열하여 InP기판표면(2)의 잔류가스를 제거한다. 상기 공정후 (B)도와 같이 분말 또는 세선 형태의 Ni을 진공상태에서 가열로(heater)를 사용하여 에바퍼레이션(evaporation)시켜, 5∼10Å/sec의 증착(deposit)속도로 메탈리제이션(metalization)한 후(4), n형은 300∼350℃, p형은 400℃로 어닐닝(annealing)하여 Ni-InP저항접합을 얻는다. 그리고 (C)도와 같이 Ni층(layer)위에 Au또는 Ag층(layer)을 증착형성(5)해서 외부회로 연결을 용이하게 한다.The present invention is to form an ohmic contact to InP with Ni. In general, an InP substrate having a doping concentration of 10 16 cm −3 or 10 16 cm −3 or more is used. In general, a method of forming an ohmic contact on an InP is first cleaned of a foreign material such as an oxide film or a lipid on a surface of a substrate using a chemical and physical method, that is, an HF solution or an ultrasonic cleaning device. Subsequently, the masking process is performed, followed by heating at about 100 ° C. for 2 to 3 minutes in a vacuum state to remove residual gas on the surface of the InP substrate, and then enter the metallization process. InP (n) uses alloy AuGeNi, and InP (p) uses alloy AuZn to evaporate and metallize. After annealing at 300 to 400 ° C., ohmic contacts can be obtained. Formation of the resistance junction by this process is explained as follows. In the case of InP (n), after alloying AuGeNi is metallized on InP, Au 2 P 3 is formed in the alloy interface with InP during annealing at 300 to 400 ° C. At this time, Ge diffuses in-diffusion into InP, which increases the surface concentration, narrows the depth of the depletion zone, resulting in a tunnel effect, allowing electrons to easily pass through the junction between metal and InP. The ohmic contact is then formed. In the case of InP (p), Au 3 In 2 is formed during the annealing process after metallization on the InP surface of the alloy AuZn, and In diffuses out-diffusion to the outside. As the concentration increases, the depth of the depletion zone is narrowed, and a tunnel effect occurs, and holes easily pass through the junction between the metal and the InP. In other words, an ohmic contact is formed. On the other hand, there is a very different argument. Ni in the alloy reacts with InP to form Ni 3 P, which acts as a path for electrical conduction, forming ohmic contacts. According to this theory, Ni 3 P acts as a carrier connection path between InP and an external contact metal, so that a carrier can easily move in and out. Regardless of the InP type, that is, the n-type p-type, Ni 3 P acts as a carrier connection channel, so the formation of Ni 3 P leads to resistance junction formation between Ni and InP. In other words, Ni 3 P is a condition for forming a resistance junction. Based on the above theoretical explanation, Ni was directly evaporated on the InP surface and metallized to obtain a good resistance joint at both n-type and p-type of InP. A method of obtaining a resistance junction by directly metallizing Ni to an InP surface is as follows. As with the general method of making Ni-InP ohmic contact, foreign substances such as oxide film and lipids on the substrate surface (2 in Fig. A) are cleaned using chemical and physical methods, that is, HF solution and ultrasonic cleaning equipment. After the masking (3) process is carried out as shown in the drawing (A), the residue is heated at about 100 ° C. for 2 to 3 minutes in a vacuum state of 2 × 10 −6 mbar to remove residual gas from the surface of the InP substrate (2). . After the process (B) as shown in Fig. (B), Ni in the form of powder or fine wire is evaporated using a heater in a vacuum state, and metallization is performed at a deposition rate of 5 to 10 s / sec. After metalization (4), the n-type is annealed to 300 to 350 ° C and the p-type to 400 ° C to obtain a Ni-InP resistance junction. As shown in (C), an Au or Ag layer is deposited on the Ni layer (5) to facilitate external circuit connection.

이러한 공정으로 얻어진 InP-Ni 오믹컨택(ohmic contact)은 10-4Ω-㎝2전후의 비저항(specific resistance)을 갖는 양호한 전기적 특성을 나타낸다.InP-Ni ohmic contacts obtained by this process show good electrical properties with specific resistance around 10 −4 Ω-cm 2 .

여기서 특기할 점은 메탈리제이션(metalization)과정 중 Ni이 에바퍼레이션(evaporation)하여 InP표면을 어택(attack)하는 증착(deposit)속도가 양질의 저항접합을 형성하는 주요요건(know-how)중 하나임을 상당기간의 실험결과를 통해 발견하였다. 여기에 대한 이론적인 설명은 다음단계의 발명과 연관되어 있어 생략한다.It should be noted that the key requirement is that the deposition rate at which the Ni evaporates during the metallization process to attack the InP surface to form a high quality resistance junction. It was found through the results of a considerable period of experiments. The theoretical explanation for this is omitted in connection with the invention of the next step.

이상에서 상술한 바와 같이 본 발명은 InP의 저항접합(ohmic contact, ohmic junction) 형성시 일반적으로 사용되는 합금AuGeNi보다 저렴한 금속 니켈(Ni)로 양질의 n형과 p형의 저항접합을 동시에 얻게 되므로 공정의 신뢰도를 높이고 반도체소자제작 비용을 경감할 수 있다. 반도체에 직접 금속을 접합시켜 저항접합을 얻으므로 장시간 어닐링(annealing)하여 반도체 표면의 도핑농도를 높혀 저항접합을 얻는 공정에 비하여 공정과정 및 시간이 단축된다. 특히 접합의 비저항이 양호하여 전기적인 특성을 개선시켜 Shottky접합 및 저항접합이 사용되는 반도체소자의 전체적인 성능을 향상시킬 수 있다.As described above, the present invention obtains high quality n-type and p-type resistance junctions at the same time as metal nickel (Ni), which is cheaper than the alloy AuGeNi, which is generally used when forming ohmic contacts (ohmic junctions) of InP. The reliability of the process can be improved and the cost of semiconductor device manufacturing can be reduced. Since a resistive junction is obtained by directly bonding a metal to a semiconductor, the process and time are shortened as compared with a process of annealing for a long time to increase the doping concentration of a semiconductor surface to obtain a resistive junction. In particular, since the resistivity of the junction is good, the electrical characteristics can be improved to improve the overall performance of the semiconductor device in which the shottky junction and the resistance junction are used.

Claims (1)

InP(n)과 InP(p)의 저항접합 형성에 세선 또는 분말의 니켈(Ni)을 사용하는 것과 Ni-InP(n형, p형)접합형성 공정시 2×10-6mbar의 진공상태에서 니켈(Ni)을 에바퍼레이션(evaporation)시켜, 5∼10Å/sec의 증착(deposit)속도로 메탈리제이션(metalization)하는 공정.The use of fine wire or powder nickel (Ni) to form the resistive junction of InP (n) and InP (p) and the vacuum process of 2 × 10 -6 mbar in the Ni-InP (n-type, p-type) formation process A process of evaporating nickel (Ni) to metallize at a deposition rate of 5 to 10 kW / sec.
KR1019970034739A 1997-07-24 1997-07-24 Method of forming ohmic contact of ni on inp KR100247440B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970034739A KR100247440B1 (en) 1997-07-24 1997-07-24 Method of forming ohmic contact of ni on inp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970034739A KR100247440B1 (en) 1997-07-24 1997-07-24 Method of forming ohmic contact of ni on inp

Publications (2)

Publication Number Publication Date
KR19990011598A KR19990011598A (en) 1999-02-18
KR100247440B1 true KR100247440B1 (en) 2000-03-15

Family

ID=19515516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970034739A KR100247440B1 (en) 1997-07-24 1997-07-24 Method of forming ohmic contact of ni on inp

Country Status (1)

Country Link
KR (1) KR100247440B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941123B2 (en) 2013-05-30 2015-01-27 International Business Machines Corporation Local interconnects by metal-III-V alloy wiring in semi-insulating III-V substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941123B2 (en) 2013-05-30 2015-01-27 International Business Machines Corporation Local interconnects by metal-III-V alloy wiring in semi-insulating III-V substrates

Also Published As

Publication number Publication date
KR19990011598A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
US3617824A (en) Mos device with a metal-silicide gate
US3906540A (en) Metal-silicide Schottky diode employing an aluminum connector
EP0985233A1 (en) Solar cell and process of manufacturing the same
US3601888A (en) Semiconductor fabrication technique and devices formed thereby utilizing a doped metal conductor
JP4126359B2 (en) Silicon carbide Schottky diode and manufacturing method thereof
US4301592A (en) Method of fabricating semiconductor junction device employing separate metallization
US10796918B2 (en) Integrated circuits with backside metalization and production method thereof
JPH02275624A (en) Ohmic electrode and its forming method
US5843837A (en) Method of contact hole burying
KR100247440B1 (en) Method of forming ohmic contact of ni on inp
US4333100A (en) Aluminum Schottky contacts and silicon-aluminum interconnects for integrated circuits
US10192970B1 (en) Simultaneous ohmic contact to silicon carbide
JP2005135972A (en) Manufacturing method of semiconductor device
KR930003555B1 (en) Manufacturing method of semiconductor device
US6100186A (en) Method of selectively forming a contact in a contact hole
EP0137980B1 (en) Method for making electrical connections to a semiconductor substrate
Hasenberg et al. An improved Au/Be contact to p‐type InP
US6815326B2 (en) Method of manufacturing semiconductor electrode and semiconductor device provided with electrodes manufactured by the method
KR100545538B1 (en) Method for manufacturing contact with doped region of semiconductor device
JP2005079233A (en) Schottky diode and its manufacturing method
KR950005259B1 (en) Fabricating method of semiconductor device
Dheasuna et al. Novel buried contact technology for advanced silicon solar cells
JP2003197924A (en) Semiconductor element and method for manufacturing the same
KR0143705B1 (en) Method for preventing ion penetration
JPS5961191A (en) Semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071109

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee