KR100236418B1 - Magneto-optical recording medium for short wavelength - Google Patents

Magneto-optical recording medium for short wavelength Download PDF

Info

Publication number
KR100236418B1
KR100236418B1 KR1019940008763A KR19940008763A KR100236418B1 KR 100236418 B1 KR100236418 B1 KR 100236418B1 KR 1019940008763 A KR1019940008763 A KR 1019940008763A KR 19940008763 A KR19940008763 A KR 19940008763A KR 100236418 B1 KR100236418 B1 KR 100236418B1
Authority
KR
South Korea
Prior art keywords
layer
film
magneto
recording medium
recording
Prior art date
Application number
KR1019940008763A
Other languages
Korean (ko)
Other versions
KR950030071A (en
Inventor
안용진
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019940008763A priority Critical patent/KR100236418B1/en
Publication of KR950030071A publication Critical patent/KR950030071A/en
Application granted granted Critical
Publication of KR100236418B1 publication Critical patent/KR100236418B1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

본 발명은 단파장용 광자기 기록매체에 관한 것으로, 좀 더 상세하게는 기판(1)상에 유전체막(2), 기록막(3), 절연막(4) 및 반사막(5)이 순차적으로 형성되어 있는 광자기 기록매체에 있어서, 상기 기록막(3)을 NdTbFeCo재생층(31) 및 TbFeCo기록층(33)의 2층으로 형성시키고 상기 NdTbFeCo재생층(31)과 TbFeCo기록층(33)의 사이에 중간층(32)을 형성시키므로써 종래의 기록매체에 비해 단파장 레이저에서의 커회전각이 우수하며 경시변화에 따른 신뢰성 면에서도 보자력 및 C/N 비가 거의 감소되지 않는 단파장용 광자기 기록매체에 관한 것이다.The present invention relates to a short-wavelength magneto-optical recording medium. More specifically, the dielectric film 2, the recording film 3, the insulating film 4 and the reflective film 5 are sequentially formed on the substrate 1, In a magneto-optical recording medium, the recording film 3 is formed of two layers of an NdTbFeCo reproducing layer 31 and a TbFeCo recording layer 33, and between the NdTbFeCo reproducing layer 31 and the TbFeCo recording layer 33. By forming the intermediate layer 32 on the optical fiber, a shorter wavelength of the magnetoelectric recording medium is superior to the conventional recording medium, and the coercivity and the C / N ratio are hardly reduced in terms of reliability due to changes over time. will be.

Description

단파장용 광자기 기록매체Short-wavelength magneto-optical recording media

제1도는 종래의 광자기 기록매체의 개략적인 단면도이고,1 is a schematic cross-sectional view of a conventional magneto-optical recording medium,

제2도는 본 발명의 단파장용 광자기 기록매체의 개략적인 단면도이며,2 is a schematic cross-sectional view of the short wavelength magneto-optical recording medium of the present invention,

제3도는 본 발명과 비교예에 따른 단파장용 광자기 기록매체의 반복 재생 횟수에 따른 보자력의 변화를 나타낸 그래프이고,3 is a graph showing a change in the coercivity with respect to the number of repetitive reproduction times of the short wavelength magneto-optical recording medium according to the present invention and the comparative example,

제4도는 본 발명과 비교예에 따른 단파장용 광자기 기록매체의 반복 재생 횟수에 따른 C/N비(carrier to noise ratio)의 변화를 나타낸 그래프이다.4 is a graph showing a change in C / N ratio (carrier to noise ratio) according to the number of repetitive reproduction times of the short wavelength magneto-optical recording medium according to the present invention and the comparative example.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1, 11 : 기판 2, 21 : 유전체막1, 11 substrate 2, 21 dielectric film

3 : 기록막 31 : 재생층3: recording film 31: reproduction layer

32 : 중간층 33 : 기록층32: intermediate layer 33: recording layer

4, 41 : 절연막 5, 51 : 반사막4, 41 insulation film 5, 51 reflection film

본 발명은 단파장용 광자기 기록매체에 관한 것으로, 좀더 상세하게는 광자기 기록매체의 자성막인 기록막의 제조시, 기록을 담당하는 기록층과 광자기 효과를 담당하는 재생층의 2층막으로 제조하므로써 단파장 레이저를 사용하여도 기록 및 재생특성이 우수한 단파장용 광자기 기록매체에 관한 것이다.The present invention relates to a short-wavelength magneto-optical recording medium, and more particularly, to manufacturing a recording film which is a magnetic film of a magneto-optical recording medium, comprising a two-layer film for recording and a reproducing layer for magneto-optical effects. Therefore, the present invention relates to a short wavelength magneto-optical recording medium having excellent recording and reproducing characteristics even with a short wavelength laser.

광자기 기록매체는 정보를 기록 및 재생하는 장치로서, 정보기록의 경우에는 열자기적 특성을, 정보재생의 경우에는 자기광학 특성을 이용한다.A magneto-optical recording medium is an apparatus for recording and reproducing information. The magneto-optical characteristic is used for information recording and the magneto-optical characteristic for information reproducing.

광자기 기록이란 기판에 수직자화막을 형성시키고 기록막에 레이저광을 조사하여 상기 기록막을 수직방향에 대해 평행 또는 반평행한 자구(magnetic domain)을 형성시켜 정보를 기록, 재생 및 소거하는 기술이다. 즉, 다시 말해서, 집적된 레이저광을 광자기 기록매체의 기록막에 조사하게 되면 국부적으로 큐리 온도(Curie temperature)이상으로 온도가 상승하여 자화를 잃게 되므로써 외부자계가 인가되면 레이저 광이 조사된 부분의 자화가 외부자계와 같은 방향으로 자구를 형성시키므로서 정보의 기록이 가능하게 되는 것이다. 또한, 광자기 기록매체에서의 정보의 재생은 커효과(Kerr effect)를 이용하고 있다.Magneto-optical recording is a technique for recording, reproducing, and erasing information by forming a perpendicular magnetization film on a substrate and irradiating a laser beam on the recording film to form a magnetic domain in which the recording film is parallel or antiparallel to the vertical direction. In other words, when the integrated laser light is irradiated onto the recording film of the magneto-optical recording medium, the temperature is locally raised above the Curie temperature and the magnetization is lost. When the external magnetic field is applied, the laser light is irradiated. Since the magnetization of the magnetic field forms a magnetic domain in the same direction as the external magnetic field, the information can be recorded. Also, the reproduction of information on the magneto-optical recording medium utilizes the Kerr effect.

한편, 입사된 레이저 빔이 기록막에서 반사될 때에는 편광면의 회전이 기록막의 자화상태에 따라 달라진다. 즉, 기록막의 상방향으로 자화가 되어 있을 경우에는 편광면이 +k 회전한다고 하면, 기록막의 하방향으로 자화가 되어 있는 경우에는 편광면이 -k 회전하게 된다. 따라서, 자화의 방향에 따라서 반사된 레이저 광은 서로 2k의 편광면이 회전하게 된다. 이러한 차이를 광 검출기에서 전기적 신호로 재생하는 것이 광자기 기록매체의 재생원리인 것이다.On the other hand, when the incident laser beam is reflected on the recording film, the rotation of the polarization plane varies depending on the magnetization state of the recording film. That is, in the case where the recording film is magnetized upward, the polarization plane is + If k is rotated, the polarization plane is-when it is magnetized in the downward direction of the recording film. k will rotate. Therefore, the reflected laser lights along the direction of magnetization are two The polarization plane of k is rotated. Reproducing this difference as an electrical signal in the photodetector is the principle of reproduction of the magneto-optical recording medium.

일반적으로, 광자기 기록매체는 외경이 180mm(또는 90mm)이고, 홈(groove)이 1.6㎛간격으로 형성된 기판위에 유전체막/기록막/절연막/반사막을 스퍼터링방식으로 제작하며, 그 기록용량은 10E8 byte/㎠정도로 기억용량이 매우 높다. 한편, 광자기 기록매체의 기록막은 희토류 원소와 천이원소로 이루어진 합금 박막으로 제작되는데, 이러한 희토류 원소의 천이원소는 서로 반평행하게 결합하여 이의 총 자화값이 희토류 원소와 천이원소의 부격자의 자화갑의 차가 되는 페리(Ferri)자성체이다.In general, a magneto-optical recording medium has an outer diameter of 180 mm (or 90 mm) and a dielectric film / recording film / insulating film / reflective film is sputtered on a substrate formed with grooves of 1.6 μm intervals, and the recording capacity thereof is 10E8. The memory capacity is very high, about byte / cm 2. On the other hand, the recording film of the magneto-optical recording medium is made of an alloy thin film composed of rare earth elements and transition elements, and the transition elements of such rare earth elements are antiparallel to each other so that the total magnetization value thereof is the sublattice of the rare earth element and the transition element. Ferri is a car of armor.

제1도는 종래의 광자기 기록매체의 개략적인 단면도를 나타낸 것으로, 이것은 기판(1)위에 유전체막(2) 기록박(3), 절연막(4) 및 반사막(5)이 순차적으로 적층된 구조이다.FIG. 1 shows a schematic cross-sectional view of a conventional magneto-optical recording medium, in which a dielectric film 2, a recording foil 3, an insulating film 4 and a reflective film 5 are sequentially stacked on a substrate 1. .

그러나, 이러한 구조의 종래 광자기 기록매체의 기록막을 TbFeCo박막으로 제작한 경우, 830nm의 파장에서는 커회전각이 약 0.3°정도로 기록 및 재생특성이 우수하지만, 파장이 점점 더 짧아짐에 따라 커회전각이 감소하여 그 특성이 열화되었다. 즉, TbFeCo로 이루어진 기록막에 파장 830nm(또는 780nm)의 레이저 다이오드를 광원으로 사용하여 기록 및 재생을 수행할 경우에는 커회전각이 약 0.3°정도이지만, 파장이 점점 더 감소함에 따라 커회전각이 감소하여 파장이 절반인 415nm이하가 되면 0.2°이하가 되어 기록, 재생특성이 현저하게 나빠지는 문제점이 있었다.However, when the recording film of the conventional magneto-optical recording medium having such a structure is made of a TbFeCo thin film, the recording angle is about 0.3 ° and excellent in recording and reproducing characteristics at a wavelength of 830 nm. However, as the wavelength becomes shorter, the angle of rotation becomes larger. This decreases and the characteristics deteriorate. That is, when recording and reproducing using a laser diode having a wavelength of 830 nm (or 780 nm) as a light source on a recording film made of TbFeCo, the rotation angle is about 0.3 °, but as the wavelength gradually decreases, the rotation angle is increased. When the wavelength is reduced to 415 nm or less, which is half of the wavelength, the recording and reproducing characteristics deteriorate significantly.

따라서, 본 발명의 목적은 상기 문제점을 해결할 뿐만 아니라 종래의 것보다 제특성이 개선된 단파장용 광자기 기록매체를 제공하는데 있다.Accordingly, it is an object of the present invention to provide a short wavelength magneto-optical recording medium in which the above problems are solved as well as improved in characteristics over the conventional ones.

상기 목적을 달성하기 위한 본 발명의 단파장용 광자기 기록매체는, 기판상에 유전체막, 기록막, 절연막 및 반사막이 순차적으로 형성되어 있는 광자기 기록매체에 있어서, 상기 기록막을 NdTbFeCo재생층 및 TbFeCo기록층의 2층으로 형성시키고 상기 NdTbFeCo재생층과 TbFeCo기록층의 사이에 중간층을 형성시켜서 된 것으로 구성된다.The short-wavelength magneto-optical recording medium of the present invention for achieving the above object is a magneto-optical recording medium in which a dielectric film, a recording film, an insulating film, and a reflective film are sequentially formed on a substrate, wherein the recording film is an NdTbFeCo reproducing layer and a TbFeCo. It is formed by forming two layers of the recording layer and forming an intermediate layer between the NdTbFeCo reproducing layer and the TbFeCo recording layer.

이하 본 발명의 구성을 첨부된 도면을 참조하여 좀 더 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the accompanying drawings.

광자기 기록매체의 경우, 데이타 전송속도의 고속화 및 고밀도화가 해결되어야 할 과제로 남아 있으며, 미국, 일본 및 유럽에서 현재 그 연구가 활발히 진행되고 있다.In the case of a magneto-optical recording medium, the high data rate and high density remain to be solved, and the research is actively being conducted in the US, Japan and Europe.

한편, 고밀도화를 이루기 위해서는 우선 레이저 파장이 짧아져야 하며, 단파장에서 커회전각이 커서 기록 및 재생 특성이 우수하여야 한다.On the other hand, in order to achieve high density, the laser wavelength must be shortened first, and the rotation angle is large at the short wavelength, so the recording and reproduction characteristics must be excellent.

그러나, 전술한 바와같이 TbFeCo박막으로 이루어진 기록막을 사용할 경우, 830nm의 파장에서는 커회전각이 약 0.3°정도로 기록 및 재생특성이 우수하지만, 파장이 점점 더 짧아져서 파장이 절반 수준인 415nm이하가 되면 0.2°이하가 되어 기록, 재생특성이 현저하게 나빠지는 문제점이 있었다.However, in the case of using the recording film made of the TbFeCo thin film as described above, the recording and reproduction characteristics are excellent with the rotation angle of about 0.3 ° at the wavelength of 830 nm, but the wavelength becomes shorter and becomes less than 415 nm, which is half the wavelength. There was a problem that the recording and reproducing characteristics were significantly worsened at 0.2 degrees or less.

본 발명자는 이러한 문제점을 해결하기 위하여 연구를 거듭한 결과, 광자기 기록매체의 기록막을 재생층과 기록층의 2층으로 형성시키고 상기 재생층과 기록층의 사이에 중간층을 형성시키므로써 전술한 문제점을 해결할 수 있다는 것을 알게 되어 본 발명의 단파장용 광자기 기록매체를 개발한 것이다.The present inventors have conducted studies to solve these problems. As a result, the above-described problems are formed by forming a recording film of a magneto-optical recording medium into two layers of a reproduction layer and a recording layer and forming an intermediate layer between the reproduction layer and the recording layer. It has been found that the solution of the present invention is to develop a short wavelength magneto-optical recording medium of the present invention.

제2도는 본 발명의 단파장용 광자기 기록매체의 개략적인 단면도를 나타낸 것으로, 도면중 부호 11은 2P(Photo-polymer) 글래스 또는 PC(Polucatbonate)재질의 기판, 21은 SiN성분의 유전체막, 31은 NdTbFeCo성분의 재생층, 32는 중간층, 33은 TbFeCo성분의 기록층, 41은 SiN성분의 절연막, 51은 Al-Ti성분의 반사막이다.2 is a schematic cross-sectional view of a short wavelength magneto-optical recording medium of the present invention, wherein reference numeral 11 denotes a substrate made of 2P (Photo-polymer) glass or PC (Polucatbonate) material, 21 is a dielectric film of SiN component, 31 Is a reproducing layer of NdTbFeCo component, 32 is an intermediate layer, 33 is a recording layer of TbFeCo component, 41 is an insulating film of SiN component, and 51 is an Al-Ti reflective film.

제2도를 참조하여 본 발명의 단파자용 광자기 기록매체의 제작공정 및 그 구조를 살펴보면 다음과 같다.Referring to FIG. 2, the manufacturing process and structure of the shortwave magneto-optical recording medium of the present invention are as follows.

먼저 기판(11)위에 SiN성분의 유전체막(21)을 DC 마그네트론 스퍼터링방식(magnetron sputtering)으로 500~600Å두께로 형성시킨다. 그 위에 NdTbFeCo성분의 재생층(31), 중간층(32) 및 TbFeCo성분의 기록층(33)을 순차적으로 적층시킨다. 이때, 상기 NdTbFeCo 재생층(31)의 두께를 100~500Å, 중간층(32)의 두께를 10~100Å 및 TbFeCo 기록층(33)의 두께를 150∼1000Å으로 형성시킨다.First, a SiN-containing dielectric film 21 is formed on the substrate 11 to a thickness of 500 to 600 kHz by DC magnetron sputtering. On top of that, the reproduction layer 31 of the NdTbFeCo component, the intermediate layer 32 and the recording layer 33 of the TbFeCo component are sequentially stacked. At this time, the thickness of the NdTbFeCo regeneration layer 31 is 100 to 500 mW, the thickness of the intermediate layer 32 is 10 to 100 mW, and the thickness of the TbFeCo recording layer 33 is 150 to 1000 mW.

한편, 상기 중간층(32)은 에이징 테스트(aging test)후 보자력 및 C/N비의 감소를 막아주는 역할을 하는데, 이때 사용되는 중간층 물질로는 SiN, TiN, AlN등이 있으며, 바람직하기로는 SiN이다.On the other hand, the intermediate layer 32 serves to prevent the reduction of the coercive force and the C / N ratio after the aging test (aging test), the intermediate layer material used is SiN, TiN, AlN, etc., preferably SiN to be.

그 다음, 전술한 방법과 같은 스퍼터링방식으로 상기 TbFeCo기록층(33)위에 SiN성분의 절연막(41)과 Al-Ti성분의 반사막(51)을 각각 약 300Å, 400Å두께로 형성시켜 본 발명의 단파장용 광자기 기록매체를 제작한다.Next, the insulating film 41 of the SiN component and the reflective film 51 of the Al-Ti component were formed on the TbFeCo recording layer 33 by the same sputtering method as described above, respectively, to about 300 mW and 400 mW, and thus the short wavelength of the present invention. A magneto-optical recording medium is produced.

한편, 상기 NdTbFeCo 재생층(31), TbFeCo 기록층(33) 및 Al-Ti 반사막(51)의 제조시에는 통상 아르곤 가스를 이용하지만, SiN 유전체층(21)과 SiN 중간층(32)의 제조시에는 (Ar+N2)혼합가스가 사용되며, 각막의 제조시의 초기 진공도는 3×10E-7mbar이다.On the other hand, argon gas is generally used in the production of the NdTbFeCo regenerating layer 31, the TbFeCo recording layer 33 and the Al-Ti reflecting film 51, but in the case of manufacturing the SiN dielectric layer 21 and the SiN intermediate layer 32, A mixed gas of (Ar + N 2 ) is used, and the initial vacuum at the time of preparation of the cornea is 3 × 10 E-7 mbar.

따라서, 상기 제작공정을 거쳐 제조된 본 발명의 단파장용 광자기 기록매체의 구조는 기판(1)상에 유전체막(2), 기록막(3), 절연막(4) 및 반사막(5)이 순차적으로 형성되어 있는 광자기 기록매체에 있어서, 상기 기록막(3)을 NdTbFeCo재생층(31) 및 TbFeCo기록층(33)의 2층으로 형성시키고 상기 NdTbFeCo재생층(31)과 TbFeCo기록층(33)의 사이에 중간층(32)을 형성시켜서 된 것으로 이루어진다.Therefore, the structure of the short-wavelength magneto-optical recording medium of the present invention manufactured through the above manufacturing process is a dielectric film 2, the recording film 3, the insulating film 4 and the reflective film 5 sequentially on the substrate (1) In the magneto-optical recording medium, the recording film 3 is formed of two layers, the NdTbFeCo reproduction layer 31 and the TbFeCo recording layer 33, and the NdTbFeCo reproduction layer 31 and the TbFeCo recording layer 33 The intermediate layer 32 is formed in between.

이하 실시예를 통하여 본 발명을 좀 더 상세하게 설명하지만, 이것이 본 발명의 범주를 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following Examples, which however do not limit the scope of the present invention.

[실시예 1]Example 1

2P 글래스 기판위에 DC마그네트론 스퍼터링방식으로 SiN 유전체막을 500Å두께로 형성시키고, 그 위에 NdTbFeCo 재생층, SiN 중간층 및 TbFeCo 기록층을 순차적으로 적층시켰다. 이때, 상기 NdTbFeCo 재생층의 두께를 100Å, SiN 중간층의 두께를 50Å 및 TbFeCo 기록층의 두께를 200Å으로 형성시켰다.A SiN dielectric film was formed to a thickness of 500 mW on a 2P glass substrate by DC magnetron sputtering, and an NdTbFeCo regenerated layer, a SiN intermediate layer, and a TbFeCo recording layer were sequentially stacked thereon. At this time, the thickness of the NdTbFeCo reproducing layer was 100 kPa, the thickness of the SiN intermediate layer was 50 kPa, and the thickness of the TbFeCo recording layer was 200 kPa.

그 다음, 전술한 방법과 같은 방식으로 상기 TbFeCo기록층위에 SiN 절연막과 Al-Ti 반사막을 각각 300Å, 400Å 두께로 형성시켜 본 발명의 단파장용 광자기 기록매체를 제작하였다.Then, the SiN insulating film and the Al-Ti reflecting film were formed on the TbFeCo recording layer in the same manner as described above with a thickness of 300 mW and 400 mW, respectively, to prepare the short wavelength magneto-optical recording medium of the present invention.

한편, NdTbFeCo 재생층, TbFeCo 기록층 및 Al-Ti 반사막의 제조시에는 아르곤 가스를 이용하였지만, SiN 유전체층과 SiN 중간층의 제조시에는 (Ar+N2)혼합가스를 사용하였으며, 각 막의 제조시 초기 진공도를 3×10E-7mbar로 하였다.On the other hand, argon gas was used for the production of the NdTbFeCo regeneration layer, TbFeCo recording layer, and Al-Ti reflective film, but (Ar + N 2 ) mixed gas was used for the production of the SiN dielectric layer and the SiN intermediate layer. The degree of vacuum was 3 × 10 E-7 mbar.

[실시예 2]Example 2

본 실시예에서는 실시예 1의 SiN 대신에 TiN을 사용하여 중간층을 형성시켰다는 점을 제외하고는 실시예 1과 같은 조건 및 방법을 사용하여 단파장용 광자기 기록매체를 제작하였다.In this embodiment, a short wavelength magneto-optical recording medium was fabricated using the same conditions and methods as in Example 1, except that an intermediate layer was formed using TiN instead of SiN in Example 1.

[실시예 3]Example 3

본 실시예에서는 실시예 1의 SiN 대신에 AIN을 사용하여 중간층을 형성시켰다는 점을 제외하고는 실시예 1과 같은 조건 및 방법을 사용하여 단파장용 광자기 기록매체를 제작하였다.In this embodiment, a short wavelength magneto-optical recording medium was fabricated using the same conditions and methods as in Example 1 except that the intermediate layer was formed using AIN instead of the SiN of Example 1.

[비교예 1]Comparative Example 1

본 발명과의 비교를 위해 도입한 것으로, 본 비교예에서는 전술한 실시예들과는 달리 중간층을 형성시키지 않았지만, 상기 실시예들과 같은 조건 및 방법을 사용하여 광자기 기록매체를 제작하였다.Introduced for the purpose of comparison with the present invention, unlike the above-described embodiments, the intermediate layer was not formed, but the magneto-optical recording medium was manufactured using the same conditions and methods as those of the above-described embodiments.

이상의 실시예와 비교예를 통하여 제작된 광자기 기록매체의 자기적 특성(보자력)을 VSM(Vibrating Sample Magnetometer)을 이용하여 측정하였으며, 디스크(DISK)의 동특성(C/N비)을 다이나믹 테스터로 측정하였으며, 그 결과를 제3도 및 제4도에 기재하여 서로 비교하였다.The magnetic properties (coercive force) of the magneto-optical recording media produced by the above examples and comparative examples were measured using a Vibrating Sample Magnetometer (VSM), and the dynamic characteristics (C / N ratio) of the disk (DISK) were measured by the dynamic tester. Measurements were made and the results are compared with each other as described in FIGS. 3 and 4.

제3도는 본 발명과 비교예에 따른 단파장용 광자기 기록매체의 반복 재생 횟수에 따른 보자력의 변화를 나타낸 그래프이고, 제4도는 본 발명과 비교예에 따른 단파장용 광자기 기록매체의 반복 재생 횟수에 따른 C/N비의 변화를 나타낸 그래프로서, 상기 그래프에 기재된 표시 "X"는 중간층을 형성시키지 않은 상태를 의미한다.3 is a graph showing the change in the coercive force according to the number of repetitive reproduction times of the short wavelength magneto-optical recording medium according to the present invention and the comparative example, and FIG. 4 is the number of repetition reproduction times of the short wavelength magneto-optical recording medium according to the present invention and the comparative example A graph showing a change in C / N ratio according to the above, wherein the indication "X" described in the graph means a state in which no intermediate layer is formed.

제3도에 도시된 바와 같이, 중간층이 없는 경우(비교예 1)에는 보자력이 가장 현저하게 감소하였으며, 중간층으로 SiN을 형성시킨 경우(실시예 1)에 보자력의 감소가 거의 나타나지 않았음을 알 수 있다.As shown in FIG. 3, the coercive force was most remarkably reduced in the absence of the intermediate layer (Comparative Example 1), and almost no decrease in coercive force was observed in the case of forming SiN in the intermediate layer (Example 1). Can be.

또한, 제4도에 도시된 것에 따르면, 중간층이 없는 경우(비교예 1)에는 기록매체의 C/N비의 저하가 급속하게 나타났으며, 중간층이 있는 기록매체의 경우에는 C/N비의 감소가 상대적으로 작았으며, 특히 SiN을 중간층으로 사용한 기록매체의 경우(실시예 1)에는 C/N비의 변화가 거의 없음을 알 수 있다.Further, as shown in FIG. 4, in the absence of the intermediate layer (Comparative Example 1), the C / N ratio of the recording medium rapidly decreased, and in the case of the recording medium having the intermediate layer, the C / N ratio was decreased. The decrease was relatively small, and especially in the case of the recording medium using SiN as an intermediate layer (Example 1), it can be seen that there is almost no change in the C / N ratio.

그러므로, 본 발명의 단파장용 광자기 기록매체에서는 기록막을 기록층과 재생층의 2개의 층으로 분리하여 제작하였기 때문에 종래의 기록매체에 비해 단파장 레이저에서의 커회전각이 우수하다.Therefore, in the short wavelength magneto-optical recording medium of the present invention, since the recording film is produced by separating the recording layer into two layers, the Kerr rotation angle of the short wavelength laser is superior to that of the conventional recording medium.

또한 상기 재생층과 기록층 상이에 중간층을 형성시키므로써 경시변호(시간경과에 따른 물성변화)에 따른 신뢰성 테스트에서도 보자력 및 C/N비의 감소가 거의 나타나지 않는 잇점이 있다.In addition, since the intermediate layer is formed between the reproduction layer and the recording layer, the coercivity and the C / N ratio are hardly reduced even in the reliability test according to the time-dependent change (change in physical property over time).

Claims (1)

(정정)기판(1)사이에 유전체막(2), 기록막(3), 절연막(4) 및 반사막(5)이 순차적으로 형성되어 있는 광자기 기록매체에 있어서, 상기 기록막(3)을 NdTbFeCo재생층(31) 및 TbFeCo기록층(33)의 2층으로 형성시키고, 상기 NdTbFeCo재생층(31) 및 TbFeCo기록층(33)사이에 중간층(32)을 형성시킨 것으로, 상기 중간층(32)은 SiN, TiN 및 AlN로 구성된 군으로부터 선택된 물질로 두께가 10Å~100Å이고, 상기 재생층(31)의 두께가 100Å~500Å이며, 상기 기록층(33)의 두께는 150Å~1000Å인 것을 특징으로 하는 단파장용 광자기 기록매체.In a magneto-optical recording medium in which a dielectric film 2, a recording film 3, an insulating film 4 and a reflective film 5 are sequentially formed between a (correction) substrate 1, the recording film 3 is The intermediate layer 32 is formed by forming two layers of the NdTbFeCo reproducing layer 31 and the TbFeCo recording layer 33 and between the NdTbFeCo reproducing layer 31 and the TbFeCo recording layer 33. Is a material selected from the group consisting of SiN, TiN, and AlN, the thickness of which is 10 kPa to 100 kPa, the thickness of the regeneration layer 31 is 100 kPa to 500 kPa, and the thickness of the recording layer 33 is 150 kPa to 1000 kPa. Short-wavelength magneto-optical recording media.
KR1019940008763A 1994-04-25 1994-04-25 Magneto-optical recording medium for short wavelength KR100236418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940008763A KR100236418B1 (en) 1994-04-25 1994-04-25 Magneto-optical recording medium for short wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940008763A KR100236418B1 (en) 1994-04-25 1994-04-25 Magneto-optical recording medium for short wavelength

Publications (2)

Publication Number Publication Date
KR950030071A KR950030071A (en) 1995-11-24
KR100236418B1 true KR100236418B1 (en) 1999-12-15

Family

ID=19381704

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940008763A KR100236418B1 (en) 1994-04-25 1994-04-25 Magneto-optical recording medium for short wavelength

Country Status (1)

Country Link
KR (1) KR100236418B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185647A (en) * 1989-12-14 1991-08-13 Pioneer Electron Corp Magneto-optical recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185647A (en) * 1989-12-14 1991-08-13 Pioneer Electron Corp Magneto-optical recording medium

Also Published As

Publication number Publication date
KR950030071A (en) 1995-11-24

Similar Documents

Publication Publication Date Title
JPH0757313A (en) Multilayer magneto-optic recording medium
EP0157664B1 (en) Magnetooptic recording medium
KR100201449B1 (en) Magneto-optical recording medium
US5407755A (en) Multilayer magnetooptic recording media
KR100236418B1 (en) Magneto-optical recording medium for short wavelength
KR100225109B1 (en) Optic-magneto disc
JPH09180282A (en) Formation of high performance co/pt disk
US4999260A (en) Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric
Carcia et al. MATERIALS'CHALLENGES FOR METAL MULTILAYERS AS A MAGNETO-OPTICAL RECORDING MEDIUM
JPS6122455A (en) Magnetooptic recording medium
KR100225108B1 (en) Optic-magneto recording medium
EP0448919B1 (en) Recording media
KR100209288B1 (en) Magneto-optical recording medium
JPH02265051A (en) Optical recording medium
JPS6122454A (en) Photomagnetic recording medium
KR0166892B1 (en) Method of manufacturing magneto-optical recording medium with super resolution
JP2663881B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPH03102658A (en) Optical memory element
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
KR960007904B1 (en) Optical magnetic recording medium
KR950006415B1 (en) Making method of optical magneto
KR100587257B1 (en) magneto-optical disk and method for fabricating the same
JPS6029996A (en) Photomagnetic recording carrier
JP3148017B2 (en) Magneto-optical recording medium and method of manufacturing the same
KR0176748B1 (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070830

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee