KR100218855B1 - Chimeric gene for herbicidal resistance - Google Patents

Chimeric gene for herbicidal resistance Download PDF

Info

Publication number
KR100218855B1
KR100218855B1 KR1019970051032A KR19970051032A KR100218855B1 KR 100218855 B1 KR100218855 B1 KR 100218855B1 KR 1019970051032 A KR1019970051032 A KR 1019970051032A KR 19970051032 A KR19970051032 A KR 19970051032A KR 100218855 B1 KR100218855 B1 KR 100218855B1
Authority
KR
South Korea
Prior art keywords
promoter
gene
rubisco
site
sunflower
Prior art date
Application number
KR1019970051032A
Other languages
Korean (ko)
Other versions
KR19990030697A (en
Inventor
베르나르 르루
베르나르 펠리시에
미셀 르브룅
Original Assignee
크리스티앙 쥘랭
롱-쁘랑 아그로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 크리스티앙 쥘랭, 롱-쁘랑 아그로 filed Critical 크리스티앙 쥘랭
Publication of KR19990030697A publication Critical patent/KR19990030697A/en
Application granted granted Critical
Publication of KR100218855B1 publication Critical patent/KR100218855B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Thermistors And Varistors (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catching Or Destruction (AREA)
  • Saccharide Compounds (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

New chimeric gene (I) confers resistance to herbicides (II) of the 3,5-dihalo-4-hydroxybenzonitrile type comprises: (i) at least one gene (Ia) encoding resistance to (II); (ii) a heterologous promoter; and optionally(iii) a polyadenylation signal. The promoter is from a gene naturally expressed in plant cells: (a) the 35S RNA promoter of cauliflower mosaic virus (P1); or (b) the promoter from the small subunit of the ribulose-1,5-bis-phosphatocarboxylase oxidase (Rubisco) gene of Helianthus annuus (P2). Also claimed are: (1) vectors used to transform plants to make them resistant to (II); (2) microorganisms comprising (I); (3) plant cells comprising (Ia); (4) transformed plants (or plant parts) obtained by regenerating (3); (5) seeds of (4); and (6) a process of selectively weeding using (II) applied to (4).

Description

제초제 내성을 위한 키메라 유전자Chimeric Genes for Herbicide Tolerance

본 발명은 식물체에 3,5-디할로-4-히드록시벤조니트릴 기재의 제초제에 대한 내성을 부여하는 데 쓸 수가 있는 키메라 유전자, 이 유전자를 이용하는 식물 세포들의 형질전환 방법 그리고 이들 세포들에서 재생된 형질전환 식물체들에 관한 것이다.The present invention provides a chimeric gene that can be used to confer resistance to a herbicide based on 3,5-dihalo-4-hydroxybenzonitrile, a method of transforming plant cells using the gene, and regeneration in these cells. To transgenic plants.

식물체들의 게놈 내에 상기한 종류의 제초제들의 분해에 특이적인 니트릴라제를 코오딩하는 유전자를 도입하면, 그 식물체들은 상기 제초제들, 특히 3,5-디브로모-4-히드록시벤조니트릴 또는 브로목시닐에 대한 내성을 갖게 된다는 것이, 유럽 출원 제 229,042호로부터, 잘 알려져 있다. 이 기술은 유용한 결과를 가져다 주지만, 특히 식물체들에서의 발현의 수준과, 따라서, 상기 제초제들에 대한 식물체의 내성의 질에 관련하여 성공의 기회를 높이고 그것의 경제적 잠재성을 크게 하기 위하여는 개선이 필요하다.Incorporation of genes encoding nitrilas specific for the degradation of these types of herbicides into the genome of plants results in the plants being able to produce these herbicides, in particular 3,5-dibromo-4-hydroxybenzonitrile or bromine. It is well known from European Application No. 229,042 to have resistance to moxinil. This technique has useful results, but in order to increase its chances of success and increase its economic potential, especially with respect to the level of expression in plants and, therefore, the quality of the plant's resistance to the herbicides. This is necessary.

본 기술에 있어, "식물체"는 광합성을 할 수 있는 분화된 어떠한 다세포 유기체를 의미하는 것으로 이해되고, "식물 세포"는 식물체에서 유래된 그리고 칼루스(callus) 또는 배(embryo) 등의 분화하지 않은 조직, 또는 식물체의 부분 또는 식물체 등의 분화한 조직 또는 종자를 형성하는 능력이 있는 어떠한 세포를 의미하는 것으로 이해한다.In the present technology, "plant" is understood to mean any differentiated multicellular organism capable of photosynthesis, and "plant cells" are derived from plants and not differentiated, such as callus or embryo. It is understood to mean any cell that is capable of forming a tissue or part of a plant or differentiated tissue or seed such as a plant.

본 발명의 목적은 이와 같은 요구를 충족시키기 위한 것이다.The object of the present invention is to meet this need.

그것은 식물체들에 3, 5-디할로-4-히드록시벤조니트릴 기재의 제초제에 대한 내성을 부여하는 데 쓸 수가 있는, 상기 제초제에 대한 내성의 니트릴라제를 코딩하는 적어도 하나의 유전자, 외래 프로모터 그리고, 경우에 따라서는, 폴리아데닐화 신호 부위를 함유하는 키메라 유전자에 관한 것이다(여기서 프로모터는 식물세포들에서 자연 발현되는 유전자에서 유래한 것이며 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S)의 프로모터, 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위(SSU) 의 프로모터로 이루어진 군에서 선택된 것임).It is at least one gene encoding a nitriase resistant to the herbicide, the foreign promoter, which can be used to confer plants to herbicides based on 3, 5-dihalo-4-hydroxybenzonitrile. And, in some cases, to a chimeric gene containing a polyadenylation signal site (wherein the promoter is derived from a gene that is naturally expressed in plant cells and is a promoter of 35 S RNA (CaMV 35S) of cauliflower mosaic virus). , Sunflower (Helianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) small subunit (SSU) promoter.

제1도는 pTiA6의 오른쪽 및 왼쪽 보더를 그들의 본래 방향으로 소유하는 T DNA의 재형성을 나타낸 것이다.1 shows the remodeling of T DNA that possesses the right and left borders of pTiA6 in their original directions.

제2도는 T DNA의 pBR 322 속으로의 도입을 나타낸 것이다.Figure 2 shows the introduction of T DNA into pBR 322.

제3도는 겐타마이신에 대한 내성을 위한 유전자의 클로닝을 나타낸 것이다.Figure 3 shows the cloning of genes for resistance to gentamicin.

제4도는 카나마이신에 대한 내성을 위한 유전자의 클로닝을 나타낸 것이다.4 shows the cloning of genes for resistance to kanamycin.

본 발명에 따른 키메라 유전자의 프로모터는 식물체에서 자연 발현되는 즉, 비식물형의, 예를 들면 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S) 등의 바이러스형 등, 또는 바람직하게는 단자엽 또는 쌍자엽 식물체들의 식물형, 특히 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위의 유전자에서 유래한 것이다. 이들 프로모터들을 단독으로 또는 조합하여 사용하는 것이 가능하다. 선택대상의 종류는 형질전환시키고자 하는(단자엽 또는 쌍지엽) 식물체의 성질에 달려있다. 따라서, 쌍자엽 식물체의 형질전환에는 해바라기의 작은 아단위 RubisCO를 사용하는 것이 좋다.The promoter of the chimeric gene according to the present invention is naturally expressed in a plant, that is, a viral type such as 35 S RNA (CaMV 35S) of a non-plant type, for example, cauliflower mosaic virus, or preferably monocot or dicotyledonous plant. Plant type, particularly from the gene of the small subunit of sunflower (Hlianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO). It is possible to use these promoters alone or in combination. The type of selection depends on the nature of the plant to be transformed (monolithic or dicotyledonous). Therefore, it is better to use the small subunit RubisCO of sunflower for transformation of dicotyledonous plants.

이들 프로모터들의 각각은 다음과 같이 얻어질 수 있다 : 1) 콜리프라워 모자이크 바이러스 35 S RNA(CaMV 35S)의 프로모터 : 이 프로모터의 분리는 오델(Odell) 등 (1985)에 의해 기술된 바 있다. 전사 개시 부위에서 위쪽으로 약 850bp를 포함하는 클론(pJO5-2) 이 구축을 위해 선택된 것으로 기술되었다. EcoRI-HindIII 단편이 분리되었고, 그 말단들을 클레나우 폴리머라제로 블런트(blunt) 상태로 만들어 주었으며 이 단편을 벡터 pUC19 [얀니쉬-퍼론(Yannish-Perron) 등, 1985년]의 HincII 부위 속으로 클로닝하였다. 이 클론을 Xbal 및 PstI의 작용에 의해 소화시켰고, 얻어진 단편을 파아지 T4 폴리머라제로 처리하여 그 말단들을 블런트 상태로 만들어 주었다. 이 단편을 SmaI 및 XbaⅠ으로 절단시킨 pUC19 Cm[벅클리(Buckley), 1985년] 속으로 클로닝하여, 클레나우 포리머라제로 처리하였다. 이에 의해 얻어진 클론을 pRPA-BL I45로 표시하였다. 3'말단 AccI 부위를 클레나우 폴리머라제로써 처리하고 그것을 상기 프로모터로부터 아래쪽에 위치한 단편들의, 클레나우 폴리머라제로 처리해 준, EcoRI 부위와 연결시킴으로서, EcoRI 부위가 재형성되며 이에 의해 얻어진 서열은, 전사 개시 부위에서 시작하면, 다음과 같다:Each of these promoters can be obtained as follows: 1) Promoter of Cauliflower Mosaic Virus 35 S RNA (CaMV 35S): Isolation of this promoter has been described by Odell et al. (1985). A clone (pJO5-2) comprising about 850 bp upwards at the transcription initiation site was described as selected for construction. The EcoRI-HindIII fragment was isolated and its ends blunted with Klenow polymerase and cloned into the HincII site of vector pUC19 (Yannish-Perron et al., 1985). It was. This clone was digested by the action of Xbal and PstI, and the resulting fragments were treated with phage T4 polymerase to make their ends blunt. This fragment was cloned into pUC19 Cm (Buckley, 1985) digested with SmaI and XbaI and treated with Klenow polymerase. The clone thus obtained was represented by pRPA-BL I45. By treating the 3 ′ terminal AccI site with Klenow polymerase and linking it with an EcoRI site treated with Klenow polymerase of fragments located downstream from the promoter, the EcoRI site is reformed and the resulting sequence is transcribed. Starting at the initiation site,

Figure kpo00002
Figure kpo00002

2) 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위의 프로모터.2) Promoter of small subunit of Sunflower (Helianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO).

이 프로모터가 유래되는 유전자는 왁스만(Wacksman)등(1987년) 에 의해 분리되었다. 이 유전자의 프로모터를 함유하는 EcoRI 단편은 mp 18, 이 벡터의 폴리링커에서 바로 위쪽의 프로모터의 3' 부분 속으로 클로닝하였다. 이 클론을 그후 BstXI으로 선형화하고 Ba131 엑소누클레아제로 처리하였다. 그에 의해 얻어진 단편들의 혼합물을 SalI 으로, 그 다음에는 클레나우 폴리머라제로 처리하였고, 마지막에는 낮은 DNA 농도에서 연결시켰다. 이러한 조작 후의 얻어진 클론들을 서열분석하였고, 추정되는 전사 개시 부위의 아래쪽의 후속 서열을 가지는 그것들의 하나가 선택되었다:The gene from which this promoter is derived was isolated by Waxman et al. (1987). The EcoRI fragment containing the promoter of this gene was cloned into the 3 'portion of the promoter just above the mp 18, polylinker of this vector. This clone was then linearized with BstXI and treated with Ba131 exonuclease. The mixture of fragments thus obtained was treated with SalI followed by Klenow polymerase and finally linked at low DNA concentrations. The clones obtained after this manipulation were sequenced and one of them with the subsequent sequence below the putative transcription initiation site was selected:

Figure kpo00003
Figure kpo00003

이 클론의 PstI 부위에서 C1aI 링커(A T C G A T) 가 도입되었다. 따라서, 이 C1aI 부위를 클레나우 폴리머라제로 처리하고, 이 프로모터의 아래쪽에 위치한 단편들의 클레나우 폴리머라제로 처리된, EcoRI 부위와 연결함으로써, EcoRI 부위가 재형성되며 이에 의해 얻어지는 서열은, 추정되는 전사 개시 부위에서 시작하면, 다음과 같다:The C1aI linker (A T C G A T) was introduced at the PstI site of this clone. Thus, by treating this C1aI site with Klenow polymerase and linking it with an EcoRI site treated with Klenow polymerase of fragments located underneath this promoter, the EcoRI site is reformed and the resulting sequence is estimated Starting at the site of transcription initiation,

Figure kpo00004
Figure kpo00004

본 발명의 또 하나의 면에 따라면, 키메라 유전자는 코오딩 유전자와 프로모터 사이에 비(非)번역 중간 부위(링커)를 함유하며, 그것은 다음을 포함하는 군에서 선택될 수가 있다 : -한편은, 클로닝에 의해 부분변형된 그리고 다음의 서열을 갖는 pUC 19 의 링커 :According to another aspect of the invention, the chimeric gene contains a non-translating intermediate site (linker) between the coding gene and the promoter, which may be selected from the group comprising: , A linker of pUC 19 partially modified by cloning and having the following sequence:

Figure kpo00005
Figure kpo00005

-다른 한편은, 옥수수 RubisCO 의 작은 아단위의 비번역 부위: 이 부위는 레브런(Lebrun) 등(1987년) 이 기술한 유전자에 해당하는 cDNA에서 나온 것이다. 그것은 다음의 서열을 가지는 EcoRI-NcoI 단편이다 :On the other hand, the untranslated site of a small subunit of maize RubisCO: it comes from the cDNA corresponding to the gene described by Lebrun et al. (1987). It is an EcoRI-NcoI fragment having the following sequence:

Figure kpo00006
Figure kpo00006

-또 다른 한편은, 해바라기 RubisCO의 작은 아단위의 비번역 영역: 이 영역은 왁스만과 프레이시네트(Freyssinet)(1987년)가 분리한 cDNA에서 나온 것이다. 그것은 그자체로서 분리된 적이 없고, 언제나 해바리기 RubisCO 의 운송 펩티드에 선행하여 발견된다. 그 서열은 다음과 같다:On the other hand, the untranslated region of the small subunit of sunflower RubisCO: this region comes from cDNA separated by Waxman and Freysinet (1987). It has never been isolated as such and is always found preceding the transport peptide of the sunflower RubisCO. The sequence is as follows:

Figure kpo00007
Figure kpo00007

본 발명에 따른 키메라 유전자는 경우에 따라서는 폴리아데닐화 영역 또는 부위를 함유하며, 그것은, 예를 들면 다음과 같은 것일 수가 있다:The chimeric gene according to the present invention optionally contains a polyadenylation region or site, which may be, for example:

1) pTi 37 의 노팔린 신타제 유전자 [베반(Bevan) 등, 1983년] 의 폴리아데닐화 부위. 이 부위는 5' 및 3' 말단에서, 각각, BamHI 및 EcoRI 부위를 도입하기 위하여 클레나우 폴리머라제로 처리하여 M13mp18의 SmaI 부위 속으로 클로닝한 260-bp MboI 단편 [프랄리(Fraley) 등, 1983년, 특허출원 PCT 제84/02913호] 중에 포함되어 있다. BamHI 부위는 비그나 라디아타(Vigna radiata) 누클레아제로 처리하여 pUC 19 의, 클레나우 폴리머라제로 처리된, Sall 부위에서 클로닝하였다. 이 단편은 이제 5' 말단에서 HindIII부위를 포함하며, 그것은 니트릴라제 유전자의 3' 말단에서 연결될 수가 있다.1) The polyadenylation site of the nopaline synthase gene (Bevan et al., 1983) of pTi 37. This site is a 260-bp MboI fragment cloned into the SmaI site of M13mp18 and treated with Klenow polymerase to introduce BamHI and EcoRI sites at the 5 'and 3' ends, respectively (Fraley et al., 1983). And patent application PCT No. 84/02913. The BamHI site was cloned at the Sall site, treated with Klenow polymerase of pUC 19 by treatment with Vigna radiata nuclease. This fragment now contains a HindIII site at the 5 'end, which can be linked at the 3' end of the nitrile gene.

2) 옥수수 RubisCO 의 작은 야단위의 유전자의 폴리아데닐화 부위: 이 부위는 레브런 등(1987년)이 기술한 유전자의 540-bp Smal-Bg1II 단편의 형태로 분리되었다. C1aI 링커(ATCGAT)를 Smal 부위에서 도입하였다. ClaI 으로 절단하고 클레나우 폴리머라제로써 메운 후, 이 단편을 PstI 으로 절단한 pUC19 속으로 클로닝하였으며 파아지 T4 폴리머라제로써 처리하고 BamHI 으로 다시 잘라 주었었다. 이 조작으로 HindIII 부위가 폴리아데닐화 부위의 5' 말단에서 도입될 수 가 있었다. 얻어진 서열은 다음과 같다:2) Polyadenylation site of a small subunit of maize RubisCO: This site was isolated in the form of a 540-bp Smal-Bg1II fragment of the gene described by Revrun et al. (1987). C1I linker (ATCGAT) was introduced at the Smal site. After cleavage with ClaI and filling with Klenow polymerase, the fragment was cloned into pUC19 digested with PstI, treated with phage T4 polymerase and cut back with BamHI. This operation allowed the HindIII site to be introduced at the 5 'end of the polyadenylation site. The sequence obtained is as follows:

Figure kpo00008
Figure kpo00008

본 발명의 또 하나의 면에 따르면, 키메라 유전자는 경우에 따라서는, 중간부위와 니트릴라제 유전자 사이에 옥수수 RubisCO 의 작은 아단위의 운송 펩티드를 코오딩하는 부위 및 해바라기의 작은 아단위의 그것으로 이루어진 군에서 선택된, 그것을 포함하는 것이 좋을 수가 있다. 천연 유전자에서의 운송 펩티드의 기능은 RubisCO 의 작은 아단위가 엽록체의 스트로마 속으로 들어가게 하는 것이다.According to another aspect of the invention, the chimeric gene is optionally with a site encoding the small subunit of maize RubisCO transport peptide and the small subunit of sunflower between the intermediate region and the nitrile gene. It may be good to include it, which is chosen from the group that was made up. The function of the transport peptide in natural genes is to allow small subunits of RubisCO to enter the chloroplast stroma.

그것들은 상기한 중간 부위와 니트릴라제의 구조 유전자 사이에 도입된 경우에는 마찬가지로 니티릴라제도 이 구획 속으로 들어가게 하여야 한다:They should likewise enter nitrilease into this compartment when introduced between the intermediate region described above and the structural gene of the nitrilease:

1) 옥수수 RubisCO 의 작은 아단위의 운송 펩티드 : 이 단편은 레브런 등(1987년) 이 기술한 유전자에 해당하는 cDNA에서 나온 것이다. 그것은 141-bp NcoI-SphI 단편이며, 이 NcoI 부위는 번역 개시 코돈과 운송 펩티드의 절단 부위인, SphI 부위를 걸치고 있다. 이 단편의 SphI 말단을 파아지 T4 폴리머라제로써 처리하고 그것을 니티릴라제 유전자의, 클레나우 폴리머라제로 처리한, NcoI 말단과 연결함으로써, 변형되지 않은 니티릴라제의 엽록체의 스트로마에서의 생성을 가능케 하는 서열이 재형성된다.Transport peptides for small subunits of maize RubisCO: This fragment comes from the cDNA corresponding to the gene described by Revrun et al. (1987). It is a 141-bp NcoI-SphI fragment, which spans the SphI site, which is the cleavage site of the translation initiation codon and the transport peptide. By treating the SphI terminus of this fragment with phage T4 polymerase and linking it with the NcoI terminus treated with the Klenau polymerase of the nitrilase gene, it allows for the production in the stromal of the chloroplasts of the unmodified nitrilase. The sequence is reshaped.

2) 해바라기 RubisCO 의 작은 아단위의운송 펩티드 : 이 단편은 왁스만과 프레이시네트(1987년)가 분리한 cDNA에서 나온 것이다. 이 서열은 원래 SphI 부위를 운송 펩티드의 절단 부위에서 가진 것은 아니다. 이영역의 서열은 다음과 같다:2) Transport peptide of small subunit of sunflower RubisCO: This fragment comes from cDNA isolated from Waxman and Freycinet (1987). This sequence does not originally have a SphI site at the cleavage site of the transport peptide. The sequence of this region is as follows:

Figure kpo00009
Figure kpo00009

C 하나가 통제 인위돌연변이에 의해 별표로 표시된 A로 치환되어, 이에 의해 SphI 부위가 만들어졌다. 이 조작을 수행하기 위하여, 졸러(Zoller)와 스미스(Smith)(1984년)의 방법이 사용되었다. 270-bp EcoRI-SalI 단편을 M13mp19am4 속으로 클로닝하였다. M13mp19에서 유래된, 상기 벡터는 5327번 염기에서 4번 유전자의 앰버 돌연변이를 가지며, 이 유형의 동연변이에 대한 억제물질을 갖고있지 않은 균주에서는 증식할 수가 없다. 이 재조합 파아지의 단일-가닥형의 정제 후, 세 개의 올리고누레오티드들을 한 단계로 혼성체형성(hybridization) 시켰다. 이들 인산화 올리고누레오티드들의 서열은 다음과 같다:One C was replaced with an A starred by a control anthropogenic mutation, thereby creating a SphI site. To carry out this manipulation, the method of Zoler and Smith (1984) was used. 270-bp EcoRI-SalI fragment was cloned into M13mp19am4. Derived from M13mp19, the vector has an amber mutation of gene 4 at base 5327 and cannot propagate in a strain that does not have an inhibitor against this type of covariation. After single-stranded purification of the recombinant phage, three oligonucleotides were hybridized in one step. The sequence of these phosphorylated oligonucleotides is as follows:

Figure kpo00010
Figure kpo00010

그것들은, 각각, 다음을 가능케 한다:They each enable the following:

1 : 운송 펩티드의 절단 부위에서의 단편의 돌연변이,1: mutation of the fragment at the cleavage site of the transport peptide,

2 : 엠버 돌연변이의 수정,2: modification of amber mutation,

3 : 인위돌연변이 단편의 위쪽 서열의 프라이밍(priming).3: priming of the top sequence of an anthropogenic fragment.

네 종류의 누레오티드 존재하의 클레나우 폴리머라제와 파아지 T4 리가제의 동시 작용 후, 얻어진 혼합물을 HB2154 균주 속으로 형질전환시켰으며 그 다음에는 HB2151 의 론(lawn) 상에 플레이트하였다 [카터(Carter) 등, 1985 년]. 얻어진 클론들 중, SphI 부위를 추가로 가진 것들을 서열분석하여 이 구조를 확인하였고, 그들 중 하나를 키메라 유전자의 제조에 사용하였다. 운송 팹티드의 절단 부위의 영역에 있어, 이 서열은 이제 다음과 같다:After simultaneous action of Klenau polymerase and phage T4 ligase in the presence of four kinds of nucleotides, the resulting mixture was transformed into HB2154 strains and then plated on the lawn of HB2151 [Carter ), 1985]. Of the clones obtained, those with additional SphI sites were sequenced to confirm this structure and one of them was used for the preparation of the chimeric gene. In the region of the cleavage site of the transport peptide, this sequence is now as follows:

Figure kpo00011
Figure kpo00011

이 단편은 옥수수 RubisCO 의 작은 아단위의 운송 펩티드를 코오딩하는 단편에 사용된 것과 똑같은 방식으로 사용된다.This fragment is used in the same manner as was used for the fragment encoding the small peptide transport peptide of maize RubisCO.

키메라 유전자의 어셈블링은 상기한 요소들로써 제1도 내지 4도의 도식에 따라 이루어진다. 그리하여 만들어진 각종의 유전자들을 하나 또는 두 종류의 백터에 위치시켰으며 어셈블리 각각은 참고 번호가 지정되었다. 그리하여 제조된 각종의 벡터들은 아래의 표 1에 기술되어 있다:The assembling of the chimeric genes is done according to the schemes of Figs. The resulting genes were placed in one or two types of vectors, each of which was assigned a reference number. The various vectors thus prepared are described in Table 1 below:

Figure kpo00012
Figure kpo00012

사용된 벡터 : 제1 내지 4도에 나타낸 벡터 pRPA-BL-142 및 pRPA-BL-150Aalphal을 가져다 준, 각종의 카메라 구성들은 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) 운반 시스템에 의해서 식물체 속으로 도입되었다. 이 목적을 위해 만들어진 운반 백터들은 다음의 특징들 갖는다:Vectors used: Various camera configurations, resulting in the vectors pRPA-BL-142 and pRPA-BL-150Aalphal shown in FIGS. 1-4, were introduced into the plant by the Agrobacterium tumefaciens transport system. It became. Carry vectors created for this purpose have the following characteristics:

-pBR 322 유래의 복제 및 운반 원점, -박테리아 선별을 위한, 예를 들면 겐타마이신에 대한 내성의 유전자, -파아지 람다 유래의 COS 부위, -pTiA6 T DNA의 오른쪽 및 왼쪽 보더(border)의 모두, -경우에 따라서는, 유핵세포의 선별 유전자, 이를 테면 카나마이신에 대한 내성 등, -경우에 따라서는, pUC18 의 1ac 알파 보상 유전자를 함유하는 단편.-replication and transport origin from pBR 322,-genes for resistance to bacteria, eg, gene resistance to gentamicin,-COS sites from phage lambda,-both right and left borders of pTiA6 T DNA, -Optionally, resistance to a selection gene of nucleated cells, such as kanamycin, and the like-optionally, a fragment containing the 1ac alpha compensation gene of pUC18.

pRPA-BL-142의 구성(제1도 내지 제4도) : pTiA6의 좌측 T DNA 의 오른쪽 및 왼쪽 보더(제1도)를 먼저 서브클로닝 하였다 : -오른쪽 보더 : 바커(Barfker) 등(1983년)의 번호부여 시스템에서 13774번에서 16202번까지 뻗어있는 BaMHI-EcoRI 단편을 해당 부위들에서 pGEM 1(프로메가 바이오테크사) 속으로 클로닝하여, pBL-17을 얻었다. 이 플라스미드를 NruI(14276 번과 14475 번) 및 EcoRI (16202 번) 으로써 소화시키고 클레나우 폴리머라제로 처리해 주었다. 이 NruI 부위와 메워준 EcoRI 부위의 연결로써 14276 번에서 EcoRI 부위가 재생되며 플라스미드 pBL-19 가 얻어진다.Configuration of pRPA-BL-142 (FIGS. 1 to 4): The right and left borders (FIG. 1) of the left T DNA of pTiA6 were first subcloned:-Right border: Barfker et al. (1983) The BaMHI-EcoRI fragment extending from 13774 to 16202 in the numbering system of) was cloned into the pGEM 1 (Promega Biotech Co., Ltd.) at the sites, to obtain pBL-17. This plasmid was digested with NruI (No. 14276 and No. 14475) and EcoRI (No. 16202) and treated with Klenow polymerase. By linking this NruI site with the filled EcoRI site, the EcoRI site was regenerated at 14276 to obtain plasmid pBL-19.

-왼쪽 보더 : 바커 등(1983년)의 시스템에서 602번에서 3390번까지의 뻗어있는 HindIII 단편을 pGEM 1의 해당 부위 속으로 클로닝하여, pBL-21을 얻었고, 여기서 왼쪽 보더는 폴리링커의 반대 쪽에 있다. 이 플라스미드를 Acc 1(1161 번과 2687 번)으로 소화시키고 클레나우 폴리머라제로 처리한 후 연결시켰다. 그 결과로서 얻어지는 플라스미드 pBL-26 은 HindIII 와 Xbal 부위 사이에 삽입된 602 번에서 1161 번 까지 뻗어있는 단편을 함유한다.Left border: Cloning the stretched HindIII fragments from 602 to 3390 in a Barker et al. (1983) system into the corresponding site of pGEM 1 to obtain pBL-21, where the left border is on the opposite side of the polylinker. have. This plasmid was digested with Acc 1 (1161 and 2687), treated with Klenow polymerase and linked. The resulting plasmid pBL-26 contains fragments extending from No. 602 to No. 1161 inserted between the HindIII and Xbal sites.

T DNA 의 제조 : pBL-19 의 EcoRI-BamHI 단편을 pBL-26 의 해당 부위 속으로 도입함으로써, pTiA6의 본래 방향의 오른쪽 및 왼쪽 보더들을 갖고 있는 T DNA 가 재형성되었다. 얻어진 플라스미드는 pBL-70 으로 표시된다.Preparation of T DNA: By introducing EcoRI-BamHI fragment of pBL-19 into the corresponding site of pBL-26, T DNA having right and left borders in the original direction of pTiA6 was reshaped. The resulting plasmid is represented by pBL-70.

T DNA 의 pBR 322 속으로 도입(제2도) : pBL-70을 HindIII 로 잘라낸 후, 이 부위를 클레나우 폴리머라제로 처리하였고 이 플라스미드를 EcoRI 으로 다시 절단시켰다. 얻어진 단편을 PruII-EcoRI으로 절단한 pBR 322 속으로 클로닝하였다. 그 결과로서 얻어지는 클론은 pRPA-BL-112로 표시된다.Introduction of T DNA into pBR 322 (Figure 2): After pBL-70 was cut with HindIII, this site was treated with Klenow polymerase and the plasmid was digested again with EcoRI. The resulting fragment was cloned into pBR 322 digested with PruII-EcoRI. The resulting clone is represented by pRPA-BL-112.

겐타마이신에 대한 내성의 유전자의 클로닝(제3도) : 겐타마이신에 대한 내성을 갖는 유전자는 pPH1 J1I [허쉬(Hirsh) 와 브링거(Bringer), 1984년]에서 얻어졌다. 이 플라스미드를 BamHI 및 HindIII 로 소화시켰고 그 단편들의 모두를 동일한 효소들로써 절단한 pUC 19 속으로 클로닝하였다. 암피실린+겐타마이신에 대한 선별 후, 2.45-kbp 단편을 함유하는 클론들이 분리되었다. 이후의 조작을 위해 선택된 클론은 pRPA-BL-133 이라 명명되었다. 이 클론의 BamHI 부위에서, pHC 79 [혼(Hohn) 과 콜린즈(Collins), 1980년]에서 분리된 그리고 파아지 람다의 COS 부위를 함유하는 1.6-kb의 BalII 단편을 도입하였다. 양쪽 방향으로 삽입된, 이 단편에 의해서 두 개의 클론들 pRPA-BL-134 및 pRPA-BL-135가 얻어질 수가 있었다.Cloning of genes resistant to gentamicin (Figure 3): Genes resistant to gentamicin were obtained from pPH1 J1I (Hirsh and Bringer, 1984). This plasmid was digested with BamHI and HindIII and all of the fragments were cloned into pUC 19 digested with the same enzymes. After screening for ampicillin + gentamycin, clones containing 2.45-kbp fragments were isolated. The clone selected for subsequent manipulation was named pRPA-BL-133. At the BamHI site of this clone, a 1.6-kb BalII fragment isolated from pHC 79 (Hohn and Collins, 1980) and containing the COS site of phage lambda was introduced. Two fragments, pRPA-BL-134 and pRPA-BL-135, could be obtained by this fragment inserted in both directions.

통합 벡터의 제조(제3도) : 하나의 동일한 벡터에서 상기한 각종의 다른 부분들을 합치기 위하여, 플러스미드 pRPA-BL-134 및 pRPA-BL-135를 SmaI과 HindIII로 소화시키고, 겐타마이신에 대한 내성의 유전자를 함유하는 삽입서열(insert)과 파아지 람다의 COS부위를 클레나우 폴리머라제로써 처리하였다. 플라스미드 pRPA-BL-112를 PstI 및 EcoRI으로 소화시키고 파아지 T3 폴리머라제로써 처리하였다. 양 단편들을 연결시켰고, 겐타마이신에 대한 내성, COS 부위, T DNA 그리고 pBR 322의 복제 원점을 동시에 함유하는 클론들을 선택하였다. 플라스미드 pRPA-BL-134로부터 pRPA-BL-141과 pRPA-BL-142가 얻어졌고, pRPA-BL-135로 부터는 pRPA-BL-143과 pRPA-BL-144 가 얻어졌다. 식물체 속으로 운반시키고자 하는 키메라 유전자들의 도입을 위해 pRPB-BL-142 가 선택되었다. 이 벡터로부터, 마커 유전자 NOS-NPTII-NOS를 함유하는 구성(제4도) 이 얻어졌다. 플라스미드 pRPA-BL-142를 XbaI 으로 소화시켰고, 그 말단들을 비그나 라디아타(Vigna radiata) 누클레아제의 작용에 의해서 환원시켰다. 별도로, pEND4 K [클리(Klee) 등, 1985년]를 EcoRI으로 소화시켰으며 클레나우 플리머라제로써 처리하였다. 가나마이신에 대한 내성의 키메라 유전자를 함유하는 1.6-kbp 의 단편을 분리하였고, pRPB-BL-142 속으로 도입하였다. 이들 융합들의 산물 하나가 pRPB-BL-150A으로 명명되었고, 이후의 조작을 위해 선택되었다. 이 벡터 속으로의 클로닝을 용이하게 하기 위하여, 파아지 T4 폴리머라제로 처리된, 그리고 pUC18(얀니쉬-페론 등, 1985년)에서 분리한 lac 알파 보상 유전자를 함유하는 HacII 단편을 비그나 라디아타 누클레아제로 처리해 준 BamHI 부위에서 도입되었다. 얻어진 벡터들은 pRPA-BL-150Aalphal 및 pRPA-BL-150Aalpha2로 명명되었다. pRPA-BL-150Aalphal은 식물체 속으로의 유전자 도입을 위한 기분으로서 사용된 벡터였다.Preparation of Integral Vectors (FIG. 3): To combine the various other parts described above in one and the same vector, plusmid pRPA-BL-134 and pRPA-BL-135 were digested with SmaI and HindIII, and were treated for gentamicin. Inserts containing the gene of resistance and COS sites of phage lambda were treated with Klenow polymerase. Plasmid pRPA-BL-112 was digested with PstI and EcoRI and treated with phage T3 polymerase. Both fragments were linked and clones containing both resistance to gentamicin, COS site, T DNA and origin of replication of pBR 322 were selected. PRPA-BL-141 and pRPA-BL-142 were obtained from plasmid pRPA-BL-134, and pRPA-BL-143 and pRPA-BL-144 were obtained from pRPA-BL-135. PRPB-BL-142 was chosen for the introduction of chimeric genes to be transported into plants. From this vector, the constitution (FIG. 4) containing the marker gene NOS-NPTII-NOS was obtained. Plasmid pRPA-BL-142 was digested with XbaI and its ends were reduced by the action of Vigna radiata nuclease. Separately, pEND4 K (Klee et al., 1985) was digested with EcoRI and treated with Klenow plymerase. A fragment of 1.6-kbp containing the chimeric gene of resistance to kanamycin was isolated and introduced into pRPB-BL-142. One product of these fusions was named pRPB-BL-150A and was selected for later manipulation. In order to facilitate cloning into this vector, a HagII fragment treated with phage T4 polymerase and containing a lac alpha compensation gene isolated from pUC18 (Jannish-Peron et al., 1985) was obtained by vigna radiata nu. It was introduced at the BamHI site treated with clease. The obtained vectors were named pRPA-BL-150Aalphal and pRPA-BL-150Aalpha2. pRPA-BL-150Aalphal was a vector used as a mood for the introduction of genes into plants.

pRPA-BL-142 및 pRPA-VL-150Aalphal 의 사용Use of pRPA-BL-142 and pRPA-VL-150Aalphal

이들 벡터들은 스스로의 힘으로 아그로박테리움에서 유지되지 않는다. 그것들이 유지되기 위하여는, 이 박테리움에 거주하는 플라스미드에서의 단순 재조합에 의해 통합되어야 한다. 이는 pVK 102 등의 코스미드들에 존재하는 부위 등의 단편들의 하나, 또는 상기 서열들을 갖는 플라스미드들을 위한 pBR322 의 단편 등을 통하여 일어날 수가 있다. 이는 pRPA-BL-142와 pRPA-BL-150Aalphal의 호스트이기도 한, GV3850 균주의 Ti 플라스미드[잠브리스키(Zambryski) 등, 1983년]에 대해서 사실이다. pBR322의 복제 원점을 사용하여, 이들 플라스미드들을 디테(Ditte) 등(1980년) 이 기술한 세-부분 시스템을 통해서 아그로박테리움 속으로 운반시킨다.These vectors are not maintained in Agrobacterium by themselves. In order for them to be retained, they must be integrated by simple recombination in the plasmid residing in this bacterium. This may occur via one of the fragments, such as a site present in cosmids such as pVK 102, or a fragment of pBR322 for plasmids having the sequences. This is true for the Ti plasmid (Zambryski et al., 1983) of the GV3850 strain, which is also a host of pRPA-BL-142 and pRPA-BL-150Aalphal. Using the origin of replication of pBR322, these plasmids are transferred into Agrobacterium through a three-part system described by Ditte et al. (1980).

식물체 구성요소의 형질전환Transformation of plant components

이들 키메라 유전자들의 효능을 시험하기 위하여, 후자를 아래에 기술된 방법에 따라 구성요소 속으로 운반시켰다:To test the efficacy of these chimeric genes, the latter were transferred into components according to the method described below:

A - 형질전환 방법A-Transformation Method

1. 담배1. Tobacco

벡터를 코스미드 pTVK 291[고마리(Komari)등, 1986년]을 지니고 있는 비발암성 균주 아그로박테리움 EHA 101[후드(Hood)등, 1987년] 속으로 도입한다. 형질전환 기술은 호쉬(Horch)등(1985년)의 방법에 기초한 것이다. 상업용 담배 PBD6(출처:SEITA,프랑스)의 재생 방법이 아래에 기술된다.The vector is introduced into non-carcinogenic strain Agrobacterium EHA 101 (Hood et al., 1987) with cosmid pTVK 291 (Komari et al., 1986). The transformation technique is based on the method of Hoch et al. (1985). The regeneration method of commercial tobacco PBD6 (Source: SEITA, France) is described below.

잎의 체외배양체에서의 담배 PBD6의 재생을 30g/1의 수크로오스를 함유하는 무라시게와 스쿠그(MS) 기초 배지상에서 수행한다. 잎의 체외배양체는 온실 또는 시험관내에서 배양한 식물체로부터 취하고, 3연속 단계의 리프 디스크 기법(leaf disc technique) [사이언스 1985년, 제227권, 제1229-1231페이지]에 따라 형질전환시킨다.Regeneration of tobacco PBD6 in the in vitro culture of the leaves is carried out on Murashige and Squag (MS) basal medium containing 30 g / 1 sucrose. In vitro cultures of leaves are taken from plants grown in greenhouses or in vitro and transformed according to the three consecutive stages of the leaf disc technique (Science 1985, Vol. 227, pp. 1229-1231).

제1단계는 0.05

Figure kpo00013
의 NAA 및 2
Figure kpo00014
/1의 BAP를 함유하는 MS+30g 수크로오스상에서 15일동안 새싹을 유도하는 것으로 이루어져 있다.The first step is 0.05
Figure kpo00013
NAA and 2
Figure kpo00014
Induce buds for 15 days on MS + 30 g sucrose containing BAP of / 1.

제2단계는 제1단계 중에 형성된 새싹을 발육되게 하는 것이다: 그것은 어떠한 호르몬도 함유하지 않은 MS+30g/1 수크로오스상에서 10일 동안 수행한다.The second step is to develop the shoots formed during the first step: it is carried out for 10 days on MS + 30 g / 1 sucrose containing no hormones.

제3단계는 각기 취한 새싹들을 뿌리가 나게 하는 것이다. 뿌리를 내리게 하는 상기 배지는 염, 비타민 그리고 설탕을 함유하고 있으며, 두-배로 희석한 것이다. 그것은 호르몬을 전혀 함유하고 있지 않다. 10 내지 15일후, 이식된 새싹을 땅으로 옮겨준다.The third step is to root each shoot. The rooting medium contains salts, vitamins and sugars and is diluted twice-fold. It contains no hormones at all. After 10-15 days, the transplanted shoots are transferred to the ground.

호르몬 밸런스의 결정Determination of Hormone Balance

최적 재생 빈도는 BAP 1.5 및 2

Figure kpo00015
/1와 NAA 0.05 및 0.1
Figure kpo00016
/1 에 대하여 관찰한 25개의 호르몬 밸런스 BAP 0.2-0.5-1-1.5.2 및 NAA 0-0.5-0.05를 시험함으로써 얻어졌다. 0.05 NAA와 2
Figure kpo00017
/1 BAP의 혼합물이 채택되다.The optimal refresh rate is BAP 1.5 and 2
Figure kpo00015
/ 1 and NAA 0.05 and 0.1
Figure kpo00016
It was obtained by testing the 25 hormone balances BAP 0.2-0.5-1-1.5.2 and NAA 0-0.5-0.05 observed for / 1. 0.05 NAA and 2
Figure kpo00017
A mixture of 1 BAP is adopted.

2. 다른 쌍자엽 식물들2. Other Dicotyledonous Plants

표 2에 표시된 바의 식물 구성요소를 사용하여 해당 벡터와 연결된 코스미드 pTVK291을 지니고 있는 발암성 균주의 아그로박테리움 A281을 사용하여 표 2에 나타낸 쌍자엽 식물들을 형질전환시켰다.The plant components as indicated in Table 2 were used to transform the dicotyledonous plants shown in Table 2 using Agrobacterium A281 of a carcinogenic strain carrying cosmid pTVK291 linked to the vector.

B - 브로목시닐에 대한 내성의 측정Determination of resistance to B-bromoxynil

1. 담배1. Tobacco

내성은 시험관 내의 경우 옥타노에이트형의 브로목시닐(20

Figure kpo00018
/1)의 존재하의 칼루스들의 성장에 의해서, 그리고 생체 내의 경우 오픈-필드 처리에 추천되는 용량의 10 배를 나타내는 용량으로 잎에 브로목시닐 또는 이옥시닐을 살포하는 방법으로 측정하였다. 얻어진 결과는 표 1a에 요약되어 있다.Resistance in vitro is octanoate bromoxynil (20)
Figure kpo00018
The growth of callus in the presence of / 1) and, in vivo, was measured by spraying bromoxynil or oxynyl on the leaves at a dose representing 10 times the dose recommended for open-field treatment. The results obtained are summarized in Table 1a.

2. 다른 쌍자엽 식물들2. Other Dicotyledonous Plants

내성은 시험관 내에서 배지 1리터당 10

Figure kpo00019
의(옥타노에이트형의) 브로목시닐의 존재하에 칼루스들의 성장으로 측정하였다. 모든 경우들에 있어, 결과는 양성이다(표 2).Resistance is 10 per liter of medium in vitro
Figure kpo00019
It was measured by the growth of callus in the presence of (octanoate type) bromoxynil. In all cases, the result is positive (Table 2).

Figure kpo00020
Figure kpo00020

Figure kpo00021
Figure kpo00021

본 발명의 키메라 유전자는 식물체들에서의 발현의 수준과 상기 제초제들에 대한 식물체의 내성의 질을 높여주며, 따라서 경제적인 면에서 유리한 것이기도 하다.The chimeric gene of the present invention enhances the level of expression in plants and the quality of the plant's resistance to the herbicides, and is therefore economically advantageous.

Claims (4)

3,5-디할로-4-히드록시벤조니트릴 기재의 제초제에 대한 내성을 부여하는, 기능상 외래 프로모터 및 폴리아데닐화 신호 부위와 연결된, 상기 제초제의 분해에 특이적인 니트릴라제를 코오딩하는 유전자를 함유하는, 박테리아 유래의 니트릴라제를 코오딩하는 키메라 유전자(여기서 상기 프로모터는 식물 세포들에서 자연 발현되는 유전자에서 유래한 것이며 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S) 의 상기 유전자와 기능상 연결된 프로모터, 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위(SSU)의 프로모터 및 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S)의 프로모터와 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위(SSU)의 프로모터로 이루어진 군에서 선택된 것임)를 함유하는, 식물체를 상기 제초제에 내성인 식물체로 형질전환시키는데 유용한 벡터.Genes encoding nitriases specific for degradation of the herbicide, linked to functional foreign promoters and polyadenylation signal sites, which confer resistance to herbicides based on 3,5-dihalo-4-hydroxybenzonitrile A chimeric gene encoding a nitrile derived from bacteria, wherein the promoter is derived from a gene that is naturally expressed in plant cells and functionally with the gene of 35 S RNA (CaMV 35S) of cauliflower mosaic virus. Linked promoter, promoter of small subunit (SSU) of sunflower (Hlianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) and 35 S RNA of cauliflower mosaic virus (CaMV 35S) Promoter of sunflower (Helianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) small subunit (SSU) Useful for transforming a plant into a plant that is resistant to the herbicide. 제1항에 있어서, 플라스미드로 구성된 벡터.The vector of claim 1 consisting of plasmids. 3,5-디할로-4-히드록시벤조니트릴 기재의 제초제에 대한 내성을 부여하는, 기능상 외래 프로모터 및 폴리아데닐화 신호 부위와 연결된, 상기 제초제의 분해에 특이적인 니트릴라제를 코오딩하는 유전자를 함유하는, 박테리아 유래의 니트릴라제를 코오딩하는 키메라 유전자(여기서 상기 프로모터는 식물 세포들에서 자연 발현되는 유전자에서 유래한 것이며 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S)의 상기 유전자와 기능상 연결된 프로모터, 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO) 의 작은 아단위(SSU)의 프로모터 및 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S) 의 프로모터와 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위(SSU) 의 프로모터로 이루어진 군에서 선택된 것임)를 함유하는 미생물.Genes encoding nitriases specific for degradation of the herbicide, linked to functional foreign promoters and polyadenylation signal sites, which confer resistance to herbicides based on 3,5-dihalo-4-hydroxybenzonitrile Chimeric gene encoding a nitrile derived from bacteria, wherein the promoter is derived from a gene that is naturally expressed in plant cells and functionally with the gene of 35 S RNA (CaMV 35S) of cauliflower mosaic virus. Linked promoter, promoter of small subunit (SSU) of sunflower (Hlianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) and 35 S RNA of cauliflower mosaic virus (CaMV 35S) Promoter of Small Subunit of Sunflower (Helianthus annuus) Ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) Microorganisms). 3,5-디할로-4-히드록시벤조니트릴 기재의 제초제에 대한 내성을 부여하는, 기능상 외래 프로모터 및 폴리아데닐화 신호 부위와 연결된, 상기 제초제의 분해에 특이적인 니트릴라제를 코오딩하는 유전자를 함유하는, 박테리아 유래의 니트릴라제를 코오딩하는 키메라 유전자(여기서 상기 프로모터는 식물 세포들에서 자연 발현되는 유전자에서 유래한 것이며 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S)의 상기 유전자와 기능상 연결된 프로모터, 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO)의 작은 아단위(SSU)의프로모터 및 콜리플라워 모자이크 바이러스의 35 S RNA(CaMV 35S)의 프로모터와 해바라기(Helianthus annuus) 리불로오스-1,5-비스포스페이트 카르복실라제/옥시게나제(RubisCO) 의 작은 아단위(SSU) 의 프로모터로 이루어진 군에서 선택된 것임) 의 통합에 의해서 수득한, 상기 제초제에 대한 내성 유전자를 함유하는 식물 세포.Genes encoding nitriases specific for degradation of the herbicide, linked to functional foreign promoters and polyadenylation signal sites, which confer resistance to herbicides based on 3,5-dihalo-4-hydroxybenzonitrile Chimeric gene encoding a nitrile derived from bacteria, wherein the promoter is derived from a gene that is naturally expressed in plant cells and functionally with the gene of 35 S RNA (CaMV 35S) of cauliflower mosaic virus. Linked promoter, promoter of small subunit (SSU) of sunflower (Hlianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) and 35 S RNA of cauliflower mosaic virus (CaMV 35S) Promoter of sunflower (Helianthus annuus) ribulose-1,5-bisphosphate carboxylase / oxygenase (RubisCO) small subunit (SSU) Plant cells containing genes resistant to the herbicides, obtained by integration of the herbicide.
KR1019970051032A 1988-03-23 1997-10-02 Chimeric gene for herbicidal resistance KR100218855B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8804130A FR2629098B1 (en) 1988-03-23 1988-03-23 CHEMICAL GENE OF HERBICIDE RESISTANCE
FR8804130 1988-03-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019890003682A Division KR0145703B1 (en) 1988-03-23 1989-03-23 Chimeric herbicide resistance gene

Publications (2)

Publication Number Publication Date
KR19990030697A KR19990030697A (en) 1999-05-06
KR100218855B1 true KR100218855B1 (en) 1999-10-01

Family

ID=9364755

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1019890003682A KR0145703B1 (en) 1988-03-23 1989-03-23 Chimeric herbicide resistance gene
KR1019970051032A KR100218855B1 (en) 1988-03-23 1997-10-02 Chimeric gene for herbicidal resistance

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1019890003682A KR0145703B1 (en) 1988-03-23 1989-03-23 Chimeric herbicide resistance gene

Country Status (26)

Country Link
US (2) US5559024A (en)
EP (2) EP0337899B1 (en)
JP (1) JPH029374A (en)
KR (2) KR0145703B1 (en)
CN (1) CN1046763C (en)
AT (1) ATE188250T1 (en)
AU (1) AU629539B2 (en)
BR (1) BR8901499A (en)
CA (1) CA1314505C (en)
DD (1) DD294040A5 (en)
DE (1) DE68929125T2 (en)
DK (1) DK144689A (en)
EG (1) EG20026A (en)
ES (1) ES2139565T3 (en)
FR (1) FR2629098B1 (en)
GR (1) GR3032288T3 (en)
HU (1) HU213581B (en)
IE (1) IE20001005A1 (en)
IL (1) IL89614A (en)
NZ (1) NZ228458A (en)
PH (1) PH31569A (en)
PL (1) PL161444B1 (en)
RO (1) RO107001B1 (en)
RU (1) RU2106410C1 (en)
TR (1) TR23682A (en)
ZA (1) ZA892146B (en)

Families Citing this family (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673643B1 (en) 1991-03-05 1993-05-21 Rhone Poulenc Agrochimie TRANSIT PEPTIDE FOR THE INSERTION OF A FOREIGN GENE INTO A PLANT GENE AND PLANTS TRANSFORMED USING THIS PEPTIDE.
USRE36449E (en) * 1991-03-05 1999-12-14 Rhone-Poulenc Agro Chimeric gene for the transformation of plants
US5866379A (en) * 1997-01-28 1999-02-02 Novus International Enzymatic conversion of α-hydroxynitriles to the corresponding .alpha.
US7161064B2 (en) * 1997-08-12 2007-01-09 North Carolina State University Method for producing stably transformed duckweed using microprojectile bombardment
FR2771104B1 (en) * 1997-11-17 2000-12-08 Rhone Poulenc Agrochimie CHIMERIC GENE HAVING A DEPENDENT LIGHT PROMOTER GIVING TOLERANCE TO HPPD INHIBITORS
JP2002520024A (en) * 1998-07-10 2002-07-09 カルジーン エルエルシー Expression of herbicide resistance gene in plant plastids
US6492578B1 (en) * 1998-07-10 2002-12-10 Calgene Llc Expression of herbicide tolerance genes in plant plastids
WO2000012732A2 (en) * 1998-08-28 2000-03-09 Pioneer Hi-Bred International, Inc. Organelle targeting sequences
CA2839066A1 (en) 1999-12-16 2001-06-21 Monsanto Technology Llc Hybrid promoter for use in plants
FR2815969B1 (en) 2000-10-30 2004-12-10 Aventis Cropscience Sa TOLERANT PLANTS WITH HERBICIDES BY METABOLIC BYPASS
EP1362113B1 (en) * 2001-02-22 2011-01-12 Biogemma Constitutive promoter from arabidopsis
EP1256629A1 (en) 2001-05-11 2002-11-13 Société des Produits Nestlé S.A. Leaf specifc gene promoter of coffee
UA108733C2 (en) * 2006-12-12 2015-06-10 Sunflower herbicide tolerant to herbicide
CN104206402B (en) 2007-04-12 2018-04-24 巴斯夫欧洲公司 Pesticide combination comprising cyanosulfoximine compounds
JP2010539213A (en) 2007-09-20 2010-12-16 ビーエーエスエフ ソシエタス・ヨーロピア Combinations containing bactericidal strains and active ingredients
JP2010540495A (en) 2007-09-26 2010-12-24 ビーエーエスエフ ソシエタス・ヨーロピア Three-component bactericidal composition comprising boscalid and chlorothalonil
CA2724908C (en) * 2008-07-23 2017-03-14 Boehringer Ingelheim Pharma Gmbh & Co. Kg Hgh polyadenylation signal
EP2315760B1 (en) 2008-07-29 2013-03-06 Basf Se Piperazine compounds with herbicidal effect
EP2183969A3 (en) 2008-10-29 2011-01-05 Basf Se Method for increasing the number of seedlings per number of sowed grains of seed
US20110183848A1 (en) 2008-10-02 2011-07-28 Basf Se Piperazine Compounds With Herbicidal Effect
ES2524819T3 (en) 2009-01-27 2014-12-12 Basf Se Seed Treatment Procedure
WO2010089244A1 (en) 2009-02-03 2010-08-12 Basf Se Method for dressing seeds
CN102307478A (en) 2009-02-11 2012-01-04 巴斯夫欧洲公司 Pesticidal mixtures
WO2010092014A2 (en) 2009-02-11 2010-08-19 Basf Se Pesticidal mixtures
WO2010092031A2 (en) 2009-02-11 2010-08-19 Basf Se Pesticidal mixtures
BRPI1005355A2 (en) 2009-02-11 2016-02-10 Basf Se mixtures, pesticide composition, method for pest control and / or for improving plant health, method for protecting plant propagation material against pests and plant propagation material
AR075573A1 (en) 2009-02-11 2011-04-20 Basf Se DIMETHOMORPH AS A PESTICIDE PROTECTOR WITH PHYTO-TOXIC EFFECTS
AU2010220293B2 (en) 2009-03-04 2014-09-11 Basf Se 3-arylquinazolin-4-one compounds for combating invertebrate pests
WO2010103065A1 (en) 2009-03-11 2010-09-16 Basf Se Fungicidal compositions and their use
WO2010106008A2 (en) 2009-03-16 2010-09-23 Basf Se Fungicidal compositions comprising fluopyram and metrafenone
KR20120014241A (en) 2009-03-20 2012-02-16 바스프 에스이 Method for treatment of crop with an encapsulated pesticide
NZ594887A (en) 2009-03-26 2013-11-29 Basf Se Use of synthetic and biological fungicides in combination for controlling harmful fungi
CN102369199A (en) 2009-04-01 2012-03-07 巴斯夫欧洲公司 Isoxazoline compounds for combating invertebrate pests
US9232785B2 (en) 2009-04-02 2016-01-12 Basf Se Method for reducing sunburn damage in plants
US20120077676A1 (en) 2009-06-12 2012-03-29 Basf Se Antifungal 1,2,4-Triazolyl Derivatives Having a 5-Sulfur Substituent
WO2019106641A2 (en) 2017-12-03 2019-06-06 Seedx Technologies Inc. Systems and methods for sorting of seeds
EP2443098A1 (en) 2009-06-18 2012-04-25 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
WO2010146115A1 (en) 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
EP2442653A2 (en) 2009-06-18 2012-04-25 Basf Se Fungicidal mixtures
WO2010146116A1 (en) 2009-06-18 2010-12-23 Basf Se Triazole compounds carrying a sulfur substituent
EP2443097A1 (en) 2009-06-18 2012-04-25 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
EP2443099A1 (en) 2009-06-18 2012-04-25 Basf Se Antifungal 1, 2, 4-triazolyl derivatives having a 5- sulfur substituent
KR20120062679A (en) 2009-06-18 2012-06-14 바스프 에스이 Triazole compounds carrying a sulfur substituent
SI2443102T1 (en) 2009-06-19 2013-08-30 Basf Se Herbicidal benzoxazinones
WO2010149758A1 (en) 2009-06-25 2010-12-29 Basf Se Antifungal 1, 2, 4-triazolyl derivatives
EP2451804B1 (en) 2009-07-06 2014-04-30 Basf Se Pyridazine compounds for controlling invertebrate pests
WO2011003775A2 (en) 2009-07-09 2011-01-13 Basf Se Substituted cyanobutyrates having a herbicidal effect
WO2011003776A2 (en) 2009-07-09 2011-01-13 Basf Se Substituted cyanobutyrates having a herbicidal effect
BR112012001001A2 (en) 2009-07-14 2016-11-16 Basf Se azole compounds of formulas i and ii, compounds of formulas i and i, compounds of formula ix, agricultural composition, use of a pharmaceutical compound, method for treating cancer or virus infections to combat zoopathogenic or humanopathogenic fungi
WO2011009804A2 (en) 2009-07-24 2011-01-27 Basf Se Pyridine derivatives compounds for controlling invertebrate pests
US20120129696A1 (en) 2009-07-28 2012-05-24 Basf Se Method for increasing the level of free amino acids in storage tissues of perennial plants
MX2012000421A (en) 2009-07-28 2012-02-08 Basf Se Pesticidal suspo-emulsion compositions.
WO2011014660A1 (en) 2009-07-30 2011-02-03 Merial Limited Insecticidal 4-amino-thieno[2,3-d]-pyrimidine compounds and methods of their use
UY32838A (en) 2009-08-14 2011-01-31 Basf Se "HERBICIDE ACTIVE COMPOSITION THAT BENZOXAZINONAS UNDERSTANDS
JP2013505909A (en) 2009-09-24 2013-02-21 ビーエーエスエフ ソシエタス・ヨーロピア Aminoquinazoline compounds for combating invertebrate pests
US20120178625A1 (en) 2009-09-25 2012-07-12 Basf Se Method for reducing pistillate flower abortion in plants
AU2010303120A1 (en) 2009-09-29 2012-04-19 Basf Se Pesticidal mixtures
WO2011042378A1 (en) 2009-10-09 2011-04-14 Basf Se Substituted cyanobutyrates having herbicidal effect
DE102010042867A1 (en) 2009-10-28 2011-06-01 Basf Se Use of heterocyclic compounds as herbicides and for controlling undesirable plants in culture of useful plants e.g. wheat, barley, rye, oats, millet and rice
WO2011051212A1 (en) 2009-10-28 2011-05-05 Basf Se Use of heteroaromatic compounds as herbicides
DE102010042864A1 (en) 2009-10-30 2011-06-01 Basf Se Substituted thioamides with herbicidal activity
WO2011051393A1 (en) 2009-11-02 2011-05-05 Basf Se Herbicidal tetrahydrophthalimides
US8329619B2 (en) 2009-11-03 2012-12-11 Basf Se Substituted quinolinones having herbicidal action
WO2011057989A1 (en) 2009-11-11 2011-05-19 Basf Se Heterocyclic compounds having herbicidal action
WO2011057942A1 (en) 2009-11-12 2011-05-19 Basf Se Insecticidal methods using pyridine compounds
WO2011057935A1 (en) 2009-11-13 2011-05-19 Basf Se 3-(3,4-dihydro-2h-benzo [1,4]oxazin-6-yl)-1h-pyrimidin-2,4-dione compounds as herbicides
WO2011058036A1 (en) 2009-11-13 2011-05-19 Basf Se Tricyclic compounds having herbicidal action
US9023874B2 (en) 2009-11-17 2015-05-05 Merial, Inc. Fluorinated oxa or thia heteroarylalkylsulfide derivatives for combating invertebrate pests
EP2504442B1 (en) 2009-11-24 2014-07-16 Katholieke Universiteit Leuven, K.U. Leuven R&D Banana promoters
WO2011064188A1 (en) 2009-11-27 2011-06-03 Basf Se Insecticidal methods using nitrogen-containing heteroaromatic compounds
WO2011067184A1 (en) 2009-12-01 2011-06-09 Basf Se 3- (4, 5 -dihydroisoxazol- 5 -yl) benzoylpyrazole compounds and mixtures thereof with safeners
ES2546100T3 (en) 2009-12-04 2015-09-18 Merial, Inc. Bis-organosulfurized pesticide compounds
WO2011069912A1 (en) 2009-12-07 2011-06-16 Basf Se Triazole compounds, use thereof and agents containing said compounds
WO2011069955A1 (en) 2009-12-07 2011-06-16 Basf Se Sulfonimidamide compounds for combating animal pests
WO2011069916A1 (en) 2009-12-08 2011-06-16 Basf Se Triazole compounds, use thereof as a fungicide, and agents comprising same
WO2011069894A1 (en) 2009-12-08 2011-06-16 Basf Se Triazole compounds, use thereof, and agents containing same
US20120291159A1 (en) 2009-12-18 2012-11-15 Basf Se Azoline Compounds for Combating Invertebrate Pests
WO2011073143A1 (en) 2009-12-18 2011-06-23 Basf Se Substituted cyanobutyrates having herbicidal action
CN102711456B (en) 2010-01-18 2015-05-13 巴斯夫欧洲公司 Compound comprising a pesticide and an alkoxylate of 2-propylheptyl amine
JP2013518084A (en) 2010-02-01 2013-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Substituted ketonic isoxazoline compounds and derivatives for controlling pests
WO2011098417A1 (en) 2010-02-10 2011-08-18 Basf Se Substituted cyanobutyrates having herbicidal action
WO2011101303A2 (en) 2010-02-16 2011-08-25 Basf Se Compound comprising a pesticide and an alkoxylate of isoheptadecylamine
WO2011110583A2 (en) 2010-03-10 2011-09-15 Basf Se Fungicidal mixtures comprising triazole derivatives
WO2011113786A2 (en) 2010-03-17 2011-09-22 Basf Se Compound comprising a pesticide and an alkoxylate of branched nonyl amine
CN102834391A (en) 2010-03-23 2012-12-19 巴斯夫欧洲公司 Pyridazine compounds for controlling invertebrate pests
JP2013522335A (en) 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Pyrazinothiazine with herbicidal activity
CN102858780A (en) 2010-03-23 2013-01-02 巴斯夫欧洲公司 Substituted pyridazines having herbicidal action
AR081526A1 (en) 2010-03-23 2012-10-03 Basf Se PIRIDAZINAS REPLACED THAT HAVE HERBICITY ACTION
BR112012023757B1 (en) 2010-03-23 2020-10-20 Basf Se pyridazine compound, method to control invertebrate pests and method to protect plant propagation material
EP2550271A1 (en) 2010-03-23 2013-01-30 Basf Se Substituted pyridines having herbicidal action
EP2550264B1 (en) 2010-03-23 2016-06-08 Basf Se Pyridazine compounds for controlling invertebrate pests
CN102822178B (en) 2010-03-23 2015-10-21 巴斯夫欧洲公司 There is the pyrido thiazine of herbicide effect
JP2013522339A (en) 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Substituted pyridines with herbicidal action
JP2013529074A (en) 2010-05-04 2013-07-18 ビーエーエスエフ ソシエタス・ヨーロピア Plants with increased resistance to herbicides
CN103025161A (en) 2010-05-24 2013-04-03 明治制果药业株式会社 Noxious organism control agent
TWI584733B (en) 2010-05-28 2017-06-01 巴地斯顏料化工廠 Pesticidal mixture comprising abamectin, its use and methods of using the mixture
TWI501727B (en) 2010-05-28 2015-10-01 Basf Se Pesticidal mixtures
WO2012007426A1 (en) 2010-07-13 2012-01-19 Basf Se Azoline substituted isoxazoline benzamide compounds for combating animal pests
DE102011080568A1 (en) 2010-08-16 2012-02-16 Basf Se New substituted cyanobutyrate compounds useful for combating weeds in culture plants e.g. cotton, rice, maize or wheat
BR112013005869A2 (en) 2010-09-13 2019-09-24 Basf Se '' Method for controlling invertebrate pests, use of a compost, method, plant propagation material and agricultural composition ''
WO2012034960A1 (en) 2010-09-13 2012-03-22 Basf Se Pyridine compounds for controlling invertebrate pests ii
BR112013005382B1 (en) 2010-09-13 2020-02-18 Basf Se USE OF A 3-PYRIDILLA COMPOUND, METHOD FOR CONTROLLING INVERTEBRATED PLACES, METHOD FOR PROTECTING VEGETABLE PROPAGATION MATERIAL AND / OR PLANTS AND AGRICULTURAL COMPOSITION
AU2011303970B2 (en) 2010-09-14 2015-08-13 Basf Se Composition containing a pyripyropene insecticide and an adjuvant
CN103118537B (en) 2010-09-14 2015-08-12 巴斯夫欧洲公司 Composition pesticide containing pyripyropene insecticide and alkali
CN103228627A (en) 2010-10-01 2013-07-31 巴斯夫欧洲公司 Imine substituted 2, 4 -diaryl - pyrroline derivatives as pesticides
US20130184320A1 (en) 2010-10-01 2013-07-18 Basf Se Imine Compounds
JP2013540113A (en) 2010-10-01 2013-10-31 ビーエーエスエフ ソシエタス・ヨーロピア Herbicidal benzoxazinone
WO2012076704A2 (en) 2010-12-10 2012-06-14 Basf Se Pyrazole compounds for controlling invertebrate pests
CN103261424B (en) 2010-12-16 2017-12-12 巴斯夫农业公司 There is the plant of the tolerance of enhancing to herbicide
AU2011347752A1 (en) 2010-12-20 2013-07-11 Basf Se Pesticidal active mixtures comprising pyrazole compounds
WO2012085081A1 (en) 2010-12-22 2012-06-28 Basf Se Sulfoximinamide compounds for combating invertebrate pests ii
EP2481284A3 (en) 2011-01-27 2012-10-17 Basf Se Pesticidal mixtures
EA022869B1 (en) 2011-02-28 2016-03-31 Басф Се Composition comprising a pesticide, a surfactant and an alkoxylate of 2-propylheptylamine
PL2688405T3 (en) 2011-03-23 2018-05-30 Basf Se Compositions containing polymeric, ionic compounds comprising imidazolium groups
US9179680B2 (en) 2011-04-06 2015-11-10 Basf Se Substituted pyrimidinium compounds for combating animal pests
AR085872A1 (en) 2011-04-08 2013-10-30 Basf Se HETEROBICICLIC DERIVATIVES N-SUBSTITUTES USEFUL TO COMBAT PARASITES IN PLANTS AND / OR ANIMALS, COMPOSITIONS THAT CONTAIN THEM AND METHODS TO COMBAT SUCH PESTS
WO2013010946A2 (en) 2011-07-15 2013-01-24 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests i
CA2843083A1 (en) 2011-08-12 2013-02-21 Basf Se Anthranilamide compounds and their use as pesticides
JP2014522876A (en) 2011-08-12 2014-09-08 ビーエーエスエフ ソシエタス・ヨーロピア N-thio-anthranilamide compounds and their use as pesticides
EP2742021A1 (en) 2011-08-12 2014-06-18 Basf Se Aniline type compounds
IN2014CN01024A (en) 2011-08-12 2015-04-10 Basf Se
WO2013024003A1 (en) 2011-08-12 2013-02-21 Basf Se N-thio-anthranilamide compounds and their use as pesticides
EP2742037B1 (en) 2011-08-12 2015-10-14 Basf Se N-thio-anthranilamide compounds and their use as pesticides
BR112014002970A2 (en) 2011-08-12 2017-02-21 Basf Se compost, method for preparing a compost, agricultural or veterinary composition, method for combating or controlling invertebrate pests, method for protecting plant cultivation, method for protecting seeds, seed, uses of compost and method for treating
US20140243196A1 (en) 2011-08-18 2014-08-28 Basf Se Carbamoylmethoxy- and Carbamoylmethylthio- and Carbamoylmethylamino Benzamides for Combating Invertebrate Pests
CN103889960A (en) 2011-08-18 2014-06-25 巴斯夫欧洲公司 Carbamoylmethoxy- and carbamoylmethylthio- and carbamoylmethylamino benzamides for combating invertebrate pests
JP2014524434A (en) 2011-08-18 2014-09-22 ビーエーエスエフ ソシエタス・ヨーロピア Carbamoylmethoxybenzamide and carbamoylmethylthiobenzamide and carbamoylmethylaminobenzamide for combating harmful invertebrates
CN104023535A (en) 2011-09-02 2014-09-03 巴斯夫欧洲公司 Use of pesticidal active 3-arylquinazolin-4-one derivatives in soil application methods
JP2014525424A (en) 2011-09-02 2014-09-29 ビーエーエスエフ ソシエタス・ヨーロピア Agricultural mixture containing arylquinazolinone compounds
IN2014CN02367A (en) 2011-09-02 2015-06-19 Basf Se
SI2776038T1 (en) 2011-11-11 2018-06-29 Gilead Apollo, Llc Acc inhibitors and uses thereof
US20140323306A1 (en) 2011-11-14 2014-10-30 Basf Se Substituted 1,2,5-Oxadiazole Compounds and Their Use as Herbicides
MX2014005607A (en) 2011-11-16 2014-07-30 Basf Se Substituted 1,2,5-oxadiazole compounds and their use as herbicides ii.
CN104039780A (en) 2011-11-18 2014-09-10 巴斯夫欧洲公司 Substituted 1,2,5-oxadiazole compounds and their use as herbicides III
CN104023724A (en) 2011-12-21 2014-09-03 巴斯夫欧洲公司 N-thio-anthranilamide compounds and their use as pesticides
WO2013113789A1 (en) 2012-02-02 2013-08-08 Basf Se N-thio-anthranilamide compounds and their use as pesticides
BR112014021199A2 (en) 2012-03-01 2018-05-08 Basf Se composition, method for preparing composition, polymer, method for preparing polymer, method for controlling fungi and seed
KR102056608B1 (en) 2012-03-12 2019-12-17 바스프 에스이 Method for producing an aqueous suspension concentrate formulation of a pyripyropene insecticide
US9596843B2 (en) 2012-03-12 2017-03-21 Basf Se Liquid concentrate formulation containing a pyripyropene insecticide I
MX360700B (en) 2012-03-12 2018-11-14 Basf Se Liquid concentrate formulation containing a pyripyropene insecticide ii.
US20150031535A1 (en) 2012-03-13 2015-01-29 Basf Se Liquid concentrate formulation containing a pyripyropene insecticide III
WO2013144228A1 (en) 2012-03-29 2013-10-03 Basf Se Pesticidal methods using heterocyclic compounds and derivatives for combating animal pests
WO2013144223A1 (en) 2012-03-30 2013-10-03 Basf Se N-substituted pyrimidinylidene compounds and derivatives for combating animal pests
ES2626360T3 (en) 2012-03-30 2017-07-24 Basf Se N-substituted thiocarbonyl pyridinylidene compounds and their use to combat animal pests
WO2013149903A1 (en) 2012-04-03 2013-10-10 Basf Se N- substituted hetero - bicyclic furanone derivatives for combating animal
WO2013150115A1 (en) 2012-04-05 2013-10-10 Basf Se N- substituted hetero - bicyclic compounds and derivatives for combating animal pests
US20150291570A1 (en) 2012-04-27 2015-10-15 Basf Se Substituted N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamide compounds and their use as herbicides
JP2015519316A (en) 2012-04-27 2015-07-09 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Substituted N- (tetrazol-5-yl)-and N- (triazol-5-yl) hetarylcarboxamide compounds and their use as herbicides
IN2014MN02211A (en) 2012-04-27 2015-07-10 Basf Se
BR112014026789B1 (en) 2012-04-27 2019-10-22 Basf Se n- (tetrazol-5-yl) and n- (triazol-5-yl) aryl carboxamides compounds, composition, use of a compound and method for controlling unwanted vegetation
EA201401213A1 (en) 2012-05-04 2015-04-30 Басф Се SUBSTITUTED PYRAZOL-CONTAINING COMPOUNDS AND THEIR APPLICATION AS PESTICIDES
CN104487439B (en) 2012-05-24 2017-06-09 巴斯夫欧洲公司 N Thio-anthranilamids compound and its purposes as insecticide
WO2013186089A2 (en) 2012-06-14 2013-12-19 Basf Se Pesticidal methods using substituted 3-pyridyl thiazole compounds and derivatives for combating animal pests
AR091489A1 (en) 2012-06-19 2015-02-11 Basf Se PLANTS THAT HAVE A GREATER TOLERANCE TO HERBICIDES INHIBITORS OF PROTOPORFIRINOGENO OXIDASA (PPO)
EP3646731A1 (en) 2012-06-20 2020-05-06 Basf Se Pesticidal mixtures comprising a pyrazole compound
WO2013189777A1 (en) 2012-06-21 2013-12-27 Basf Se Adjuvant comprising a 2-propylheptylamine alkoxylate, sugar-based surfactant, and drift-control agent and/or humectant
EP2684879A1 (en) 2012-07-09 2014-01-15 Basf Se Substituted mesoionic compounds for combating animal pests
BR112015006299A2 (en) 2012-09-21 2017-07-04 Basf Se '' compost, agricultural composition, method for the protection of crop plants, method for the protection of plant propagating material and propagating material ''
CN104768377A (en) 2012-10-01 2015-07-08 巴斯夫欧洲公司 Pesticidally active mixtures comprising anthranilamide compounds
WO2014053401A2 (en) 2012-10-01 2014-04-10 Basf Se Method of improving plant health
WO2014053403A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling insecticide resistant insects
WO2014053407A1 (en) 2012-10-01 2014-04-10 Basf Se N-thio-anthranilamide compounds and their use as pesticides
AR094139A1 (en) 2012-10-01 2015-07-15 Basf Se ACTIVE MIXTURES AS PESTICIDES, WHICH INCLUDE ANTRANILAMIDE COMPOUNDS
WO2014053406A1 (en) 2012-10-01 2014-04-10 Basf Se Method of controlling ryanodine-modulator insecticide resistant insects
JP2016501264A (en) 2012-12-14 2016-01-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Malononitrile compounds for controlling animal pests
JP2016505585A (en) 2012-12-21 2016-02-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Cycloclabine and its derivatives for controlling invertebrate pests
WO2014128136A1 (en) 2013-02-20 2014-08-28 Basf Se Anthranilamide compounds and their use as pesticides
US20160050923A1 (en) 2013-04-19 2016-02-25 Basf Se N-substituted acyl-imino-pyridine compounds and derivatives for combating animal pests
CA2911818A1 (en) 2013-05-10 2014-11-13 Nimbus Apollo, Inc. Acc inhibitors and uses thereof
AU2014262638A1 (en) 2013-05-10 2015-11-26 Gilead Apollo, Llc ACC inhibitors and uses thereof
WO2014184058A1 (en) 2013-05-15 2014-11-20 Basf Se Substituted 1,2,5-oxadiazole compounds and their use as herbicides
WO2014184019A1 (en) 2013-05-15 2014-11-20 Basf Se N-(1,2,5-oxadiazol-3-yl)carboxamide compounds and their use as herbicides
BR112015028597A2 (en) 2013-05-15 2017-07-25 Basf Se n- (tetrazol-5-yl) - and n- (5-triazol-yl) arylcarboxamides, composition, use of a compound and method for controlling vegetation
WO2014184014A1 (en) 2013-05-15 2014-11-20 Basf Se N-(1,2,5-oxadiazol-3-yl)carboxamide compounds and their use as herbicides
EP2815649A1 (en) 2013-06-18 2014-12-24 Basf Se Fungicidal mixtures II comprising strobilurin-type fungicides
CN105377836B (en) 2013-07-18 2018-04-10 巴斯夫欧洲公司 Substituted N (base of 1,2,4 triazole 3) aryl carboxamide compounds and its purposes as herbicide
EP2835052A1 (en) 2013-08-07 2015-02-11 Basf Se Fungicidal mixtures comprising pyrimidine fungicides
US10619138B2 (en) 2013-08-12 2020-04-14 Basf Se Herbicide-resistant hydroxyphenylpyruvate dioxygenases
AR097362A1 (en) 2013-08-16 2016-03-09 Cheminova As COMBINATION OF 2-METHYLBYPHENYL-3-ILLAMETABLE (Z) - (1R) -CIS-3- (2-CHLORINE-3,3,3-TRIFLUORPROP-1-ENIL) -2, 2-DIMETHYLCYCLOPROPANOCARBOXYLATE WITH AT LEAST ONE INSECTICIDE , ACARICIDE, NEMATICIDE AND / OR FUNGICIDE
CA2922506A1 (en) 2013-09-19 2015-03-26 Basf Se N-acylimino heterocyclic compounds
WO2015052178A1 (en) 2013-10-10 2015-04-16 Basf Se 1,2,5-oxadiazole compounds and their use as herbicides
CN105636950A (en) 2013-10-10 2016-06-01 巴斯夫欧洲公司 Substituted n-(tetrazol-5-yl)- and n-(triazol-5-yl)arylcarboxamide compounds and their use as herbicides
WO2015052173A1 (en) 2013-10-10 2015-04-16 Basf Se Tetrazole and triazole compounds and their use as herbicides
WO2015055757A1 (en) 2013-10-18 2015-04-23 Basf Se Use of pesticidal active carboxamide derivative in soil and seed application and treatment methods
EP2868197A1 (en) 2013-11-05 2015-05-06 Basf Se Herbicidal compositions
EP2868196A1 (en) 2013-11-05 2015-05-06 Basf Se Herbicidal compositions
EA201691198A1 (en) 2013-12-18 2016-11-30 Басф Агро Б.В. PLANTS OWNED BY ENHANCED TOLERANCE TO HERBICIDES
EP3083581A1 (en) 2013-12-18 2016-10-26 Basf Se N-substituted imino heterocyclic compounds
AR100304A1 (en) 2014-02-05 2016-09-28 Basf Corp SEED COATING FORMULATION
EP2907807A1 (en) 2014-02-18 2015-08-19 Basf Se Benzamide compounds and their use as herbicides
WO2015150465A2 (en) 2014-04-03 2015-10-08 Basf Se Plants having increased tolerance to herbicides
RU2704450C2 (en) 2014-05-06 2019-10-28 Басф Се Composition containing pesticide and hydroxyalkyl ether of polyoxyethylene glycol
EA036537B1 (en) 2014-06-25 2020-11-20 Басф Агро Б.В. Pesticidal compositions
EP2962567A1 (en) 2014-07-01 2016-01-06 Basf Se Ternary mixtures comprising biopesticides and at least two chemical insecticides
UA120058C2 (en) 2014-07-14 2019-09-25 Басф Се Pesticidal compositions
WO2016034615A1 (en) 2014-09-02 2016-03-10 BASF Agro B.V. Aqueous insecticide formulation containing hyperbranched polymer
EP3227448A1 (en) 2014-12-01 2017-10-11 Basf Se A method for screening of genes conferring increased tolerance to herbicides
EP3247200A4 (en) 2015-01-21 2018-06-13 Basf Se Plants having increased tolerance to herbicides
US10757935B2 (en) 2015-02-10 2020-09-01 Basf Se Composition comprising a pesticide and an alkoxylated ester
AR103649A1 (en) 2015-02-11 2017-05-24 Basf Se HYDROXYPHENYL PYRUVATE DIOXYGENASES RESISTANT TO HERBICIDES
EP3061346A1 (en) 2015-02-26 2016-08-31 Bayer CropScience AG Use of fluopyram and biological control agents to control harmful fungi
AU2016239537B2 (en) 2015-03-31 2020-02-06 Basf Se Composition comprising a pesticide and isononanoic acid N,N-dimethyl amide
WO2016174042A1 (en) 2015-04-27 2016-11-03 BASF Agro B.V. Pesticidal compositions
US20180312864A1 (en) 2015-10-22 2018-11-01 Basf Se Plants having increased tolerance to herbicides
ES2939977T3 (en) 2015-11-25 2023-04-28 Gilead Apollo Llc Triazole ACC inhibitors and uses thereof
EP3380480B1 (en) 2015-11-25 2022-12-14 Gilead Apollo, LLC Pyrazole acc inhibitors and uses thereof
HUE053175T2 (en) 2015-11-25 2021-06-28 Gilead Apollo Llc Ester acc inhibitors and uses thereof
CR20180370A (en) 2015-12-17 2018-10-18 Basf Se BENZAMIDA COMPOUNDS AND THEIR USES AS HERBICIDES
UY37137A (en) 2016-02-24 2017-09-29 Merial Inc ANTIPARASITARY COMPOUNDS OF ISOXAZOLINE, INJECTABLE FORMULATIONS OF PROLONGED ACTION THAT INCLUDE THEM, METHODS AND USES OF THE SAME
US20190098899A1 (en) 2016-03-10 2019-04-04 Basf Se Fungicidal mixtures iii comprising strobilurin-type fungicides
EP3245872A1 (en) 2016-05-20 2017-11-22 BASF Agro B.V. Pesticidal compositions
WO2017207368A1 (en) 2016-06-02 2017-12-07 BASF Agro B.V. Fungicidal compositions
CA3030803A1 (en) 2016-07-15 2018-01-18 Basf Se Plants having increased tolerance to herbicides
BR112019001483A2 (en) 2016-07-27 2019-09-10 Basf Agro Bv method for controlling unwanted vegetation at a plantation site
CA3044728A1 (en) 2016-12-20 2018-06-28 BASF Agro B.V. Plants having increased tolerance to herbicides
WO2018141575A1 (en) 2017-02-01 2018-08-09 Basf Se Emulsifiable concentrate
AU2018276360A1 (en) 2017-05-30 2019-12-19 Basf Se Benzamide compounds and their use as herbicides II
EP3630734A1 (en) 2017-05-30 2020-04-08 Basf Se Benzamide compounds and their use as herbicides
AR112112A1 (en) 2017-06-20 2019-09-18 Basf Se BENZAMIDE COMPOUNDS AND THEIR USE AS HERBICIDES
AU2018287131B2 (en) 2017-06-23 2023-10-12 Basf Se Pesticidal mixtures comprising a pyrazole compound
CN110891923A (en) 2017-07-10 2020-03-17 巴斯夫欧洲公司 Mixtures comprising Urease Inhibitors (UI) and nitrification inhibitors, such as 2- (3, 4-dimethyl-1H-pyrazol-1-yl) succinic acid (DMPSA) or 3, 4-dimethylpyrazolium glycolate (DMPG)
WO2019016385A1 (en) 2017-07-21 2019-01-24 Basf Se Benzamide compounds and their use as herbicides
CN111246738A (en) 2017-11-15 2020-06-05 巴斯夫欧洲公司 Tank mix
AU2018376915A1 (en) 2017-11-29 2020-05-21 Basf Se Plants having increased tolerance to herbicides
WO2019105995A1 (en) 2017-11-29 2019-06-06 Basf Se Benzamide compounds and their use as herbicides
EP3707640A1 (en) 2017-12-03 2020-09-16 Seedx Technologies Inc. Systems and methods for sorting of seeds
WO2019106638A1 (en) 2017-12-03 2019-06-06 Seedx Technologies Inc. Systems and methods for sorting of seeds
WO2019122347A1 (en) 2017-12-22 2019-06-27 Basf Se N-(1,2,5-oxadiazol-3-yl)-benzamide compounds and their use as herbicides
WO2019122345A1 (en) 2017-12-22 2019-06-27 Basf Se Benzamide compounds and their use as herbicides
EP3508480A1 (en) 2018-01-08 2019-07-10 Basf Se Benzamide compounds and their use as herbicides
BR112020013929A2 (en) 2018-01-17 2020-12-01 Basf Se plants or parts of the plant, seed, plant cells, plant product, progeny or descending plant, methods for controlling weeds, for producing a plant and for producing a descending plant, nucleic acid molecule, expression cassette, vector, polypeptide, method to produce a plant product and plant product
WO2019162308A1 (en) 2018-02-21 2019-08-29 Basf Se Benzamide compounds and their use as herbicides
WO2019162309A1 (en) 2018-02-21 2019-08-29 Basf Se Benzamide compounds and their use as herbicides
WO2020058010A1 (en) 2018-09-19 2020-03-26 Basf Se Pesticidal mixtures comprising a mesoionic compound
CA3112042A1 (en) 2018-09-28 2020-04-02 Basf Se Method of controlling pests by seed treatment application of a mesoionic compound or mixture thereof
EP3680223A1 (en) 2019-01-10 2020-07-15 Basf Se Mixture comprising an urease inhibitor (ui) and a nitrification inhibitor (ni) such as an ni mixture comprising 2-(3,4-dimethyl-1h-pyrazol-1-yl)succinic acid (dmpsa) and dicyandiamide (dcd)
CA3162521A1 (en) 2019-12-23 2021-07-01 Basf Se Enzyme enhanced root uptake of agrochemical active compound
US20230063109A1 (en) 2020-01-16 2023-03-02 Basf Se Mixtures comprising nitrification inhibitors and carriers
CA3164114A1 (en) 2020-01-16 2021-07-22 Gregor Pasda Mixtures comprising a solid carrier comprising an urease inhibitor and a further solid carrier comprising a nitrification inhibitor
CN116234444A (en) 2020-07-06 2023-06-06 皮埃企业有限公司 Mixtures with insecticidal activity comprising sulfur-containing heterocyclylalkoxy compounds, oxides or salts thereof
TW202220557A (en) 2020-07-27 2022-06-01 印度商皮埃企業有限公司 A pesticidally active mixture comprising pyrazolopyridine anthranilamide compound, oxides or salts thereof
CN117897378A (en) 2021-09-03 2024-04-16 巴斯夫农业种子解决方案美国有限责任公司 Plants with increased tolerance to herbicides

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131623B2 (en) * 1983-01-17 1999-07-28 Monsanto Company Chimeric genes suitable for expression in plant cells
AU590597B2 (en) * 1985-08-07 1989-11-09 Monsanto Technology Llc Glyphosate-resistant plants
JPS62201527A (en) * 1985-10-29 1987-09-05 モンサント・カンパニ− Protection of plant from virus infection
KR950008571B1 (en) * 1986-01-08 1995-08-03 롱쁠랑 아그로시미 Method for producing nitrilase
US4810648A (en) * 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
EP0242236B2 (en) * 1986-03-11 1996-08-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
MA20977A1 (en) * 1986-05-19 1987-12-31 Ciba Geigy Ag Plants tolerant to herbicides containing the gluthathione S-Transferase gene

Also Published As

Publication number Publication date
AU3159189A (en) 1989-09-28
DD294040A5 (en) 1991-09-19
KR890014742A (en) 1989-10-25
ATE188250T1 (en) 2000-01-15
RO107001B1 (en) 1993-08-30
RU2106410C1 (en) 1998-03-10
CN1046763C (en) 1999-11-24
DE68929125D1 (en) 2000-02-03
EP0337899B1 (en) 1999-12-29
AU629539B2 (en) 1992-10-08
JPH029374A (en) 1990-01-12
DE68929125T2 (en) 2000-05-31
CA1314505C (en) 1993-03-16
PH31569A (en) 1998-11-03
EP0337899A1 (en) 1989-10-18
ZA892146B (en) 1989-11-29
DK144689D0 (en) 1989-03-22
PL161444B1 (en) 1993-06-30
GR3032288T3 (en) 2000-04-27
EP0894865A3 (en) 1999-04-14
US5559024A (en) 1996-09-24
IL89614A0 (en) 1989-09-10
KR19990030697A (en) 1999-05-06
FR2629098A1 (en) 1989-09-29
ES2139565T3 (en) 2000-02-16
US5773698A (en) 1998-06-30
KR0145703B1 (en) 1998-08-01
EG20026A (en) 1997-10-30
HU213581B (en) 1997-08-28
PL278448A1 (en) 1989-12-27
FR2629098B1 (en) 1990-08-10
HUT52158A (en) 1990-06-28
IL89614A (en) 1996-01-19
NZ228458A (en) 1991-06-25
DK144689A (en) 1989-09-24
BR8901499A (en) 1989-11-14
IE20001005A1 (en) 2001-05-30
CN1036038A (en) 1989-10-04
TR23682A (en) 1990-06-06
EP0894865A2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
KR100218855B1 (en) Chimeric gene for herbicidal resistance
KR100388121B1 (en) Isolated dna sequence which can serve as terminator region in a chimeric gene capable of being used for the transformation of plants
KR100233191B1 (en) Chimeric gene for the transformation of plants
US4795855A (en) Transformation and foreign gene expression with woody species
AU680899B2 (en) Isolated DNA sequence which can serve as terminator region in a chimeric gene capable of being used for the transformation of plants
US5792930A (en) Chimeric gene for the transformation of plants
Saito et al. Transgenic herbicide-resistant Atropa belladonna using an Ri binary vector and inheritance of the transgenic trait
US6268552B1 (en) Transgenic seedless fruit comprising AGL or GH3 promoter operably linked to isopentenyl transferase or tryptophan monooxygenase coding DNA
WO1996000291A1 (en) Genetic control of plant hormone levels and plant growth
US6187571B1 (en) Use of a DNA sequence coding for a protein capable of degrading oxalic acid as selection gene
CA2555332A1 (en) Regulation of gene expression in plant cells
US5917127A (en) Plasmids useful for and methods of preparing transgenic plants with modifications of habit and yield
AU6023401A (en) Modification of gene expression in transgenic plants
WO1996023072A1 (en) Deoxyribonucleic acid coding for glutathion-s-transferase and its use
HUANG et al. Agrobacterium tumefaciens-mediated transgenic wheat plants with glutamine synthetases confer tolerance to herbicide
US6362396B1 (en) Chimeric gene for the transformation of plants
WO2003052109A1 (en) Method of increasing the transgene-coded biomolecule content in organisms
KR101330031B1 (en) Modified site-specific recombinase and plant transformation vector for eliminating selective marker gene
DE60028751T2 (en) HERBICIDRESISTENT PLANTS

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040609

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee