KR100217851B1 - The multicrystal silicon cleaning method of granulate type for surface metal contamination - Google Patents

The multicrystal silicon cleaning method of granulate type for surface metal contamination Download PDF

Info

Publication number
KR100217851B1
KR100217851B1 KR1019950066221A KR19950066221A KR100217851B1 KR 100217851 B1 KR100217851 B1 KR 100217851B1 KR 1019950066221 A KR1019950066221 A KR 1019950066221A KR 19950066221 A KR19950066221 A KR 19950066221A KR 100217851 B1 KR100217851 B1 KR 100217851B1
Authority
KR
South Korea
Prior art keywords
polycrystalline silicon
deionized water
minutes
washing
silicon
Prior art date
Application number
KR1019950066221A
Other languages
Korean (ko)
Other versions
KR970043308A (en
Inventor
류근걸
김흥락
김동수
강성건
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019950066221A priority Critical patent/KR100217851B1/en
Publication of KR970043308A publication Critical patent/KR970043308A/en
Application granted granted Critical
Publication of KR100217851B1 publication Critical patent/KR100217851B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본발명은 기존의 배치방식의 단결정 실리콘 성장 방식의 여러 단점을 개선하기 위하여 실행하는 과립 형태의 다결정 실리콘을 이용한 연속 성장 방식 진행시 다결정 실리콘 표면에 오염된 금속 불순물을 제거하는 청정방법을 제공한다.The present invention provides a cleaning method for removing contaminated metal impurities on the surface of polycrystalline silicon during the continuous growth method using granular polycrystalline silicon, which is executed to improve various disadvantages of the conventional batch-type single crystal silicon growth method.

이방법은 삼염화에틸렌 용액을 70 -80℃로 비등시켜 10-25분 동안 다결정 실리콘을 1차 청정처리하는 단계: 상기 1차 청정처리된 다결정 실리콘을 초순수 탈이온수로 세척하는 단계: 상기 세척된 다결정 실리콘을 부피비로 70-120: 1인 초순수탈이온수와 불산의 혼합 용액에 침적하여 3-10분 동안 2차 청정하는 단계: 상기 2차 청정된 다결정 실리콘을 초순수탈이온수로 세척하는 단계를 포함한다.The method comprises first cleaning the polycrystalline silicon for 10-25 minutes by boiling the ethylene trichloride solution at 70-80 ° C .: washing the primary clean treated polycrystalline silicon with ultrapure deionized water: the washed polycrystalline Immersing the silicon in a mixed solution of ultrapure deionized water and hydrofluoric acid at a volume ratio of 70-120: 1 for 3 to 10 minutes; washing the secondary purified polycrystalline silicon with ultrapure deionized water. .

이 방법에 따라 다결정 실리콘 표면의 오염물을 효과적으로 제거함으로써 이로부터 제조되는 웨이퍼의 전기적 성질 특히 소수전하의 확산거리및 수명을 연장할수 있다.This method effectively removes contaminants on the surface of the polycrystalline silicon, thereby extending the electrical properties of the wafers produced therefrom, especially the diffusion distance and lifetime of minority charges.

Description

표면금속오염제거를 위한 과립형태의 다결정 실리콘 청정방법Granular polycrystalline silicon cleaning method for surface metal contamination removal

제1도는 종래의 과립형태 다결정 실리콘을 사용하여 성장시킨 실리콘 단결정으로 제조한 웨이퍼에 대한 소수전하 확산거리의 분포도.1 is a distribution diagram of minority charge diffusion distances for a wafer made of a silicon single crystal grown using conventional granular polycrystalline silicon.

제2도는 본발명의 방법에 따라 금속불순물이 제거된 다결정실리콘으로 제조된 웨이퍼에 대한 소수전하 확산거리의 분포도이다.2 is a distribution diagram of minority charge diffusion distance for a wafer made of polycrystalline silicon from which metal impurities are removed according to the method of the present invention.

본발명은 다결정실리콘 청정방법에 관한 것이며, 보다 상세히는 반도체 웨이퍼를 제조하기 위하여 종래의 배치방식의 성장방법 대신 생산성을 높일 수 있는 연속 성장방법을 이용하는 경우 과립형태의 다결정 실리콘의 표면 금속오염을 제거하는 다결정 실리콘 청정 방법에 관한 것이다.The present invention relates to a method for cleaning polycrystalline silicon, and more particularly, to remove the surface metal contamination of granular polycrystalline silicon in the case of using a continuous growth method to increase productivity instead of a conventional batch growth method for manufacturing a semiconductor wafer. It relates to a polycrystalline silicon cleaning method.

종래의 단결정 성장법으로 이용되던 쵸크랄스키 결정성장법은 배치방식으로 행해지기 때문에 몇가지 단점을 갖고 있었다. 즉,The Czochralski crystal growth method used in the conventional single crystal growth method has some disadvantages because it is performed in a batch method. In other words,

첫째, 결정성장이 끝난후 냉각중에 석영도가니가 균열되기 때문에 매 공정마다 석영도가니를 교체하여야하며,First, because the quartz crucible cracks during cooling after crystal growth is finished, the quartz crucible must be replaced at every process.

둘째, 성장이 완료된 결정의 최상부와 최하부 사이의 도핑농도 차이가 크며,Second, the difference in doping concentration between the top and bottom of the grown crystal is large,

셋째, 매공정마다 공정이 끝난 도가니를 분리하고 새로운 도가니를 설치하는데 소요되는 시간이 길다는 것이다.Third, the time required to separate the crucible and install a new crucible for each process is long.

이러한 단점들을 보완하기 위하여 개발된 것이 연속결정 성장법이다.The continuous crystal growth method was developed to overcome these shortcomings.

지금까지 몇가지 형태의 연속결정 성장법이 개발되었지만 그 대부분은 기존의 덩어리 형태의 다결정 실리콘 대신 과립형태의 다결정 실리콘을 도가니에 연속적으로 공급하여 결정성장이 연속적으로 이루어지게 하고 있다.Several types of continuous crystal growth methods have been developed so far, but most of them continuously supply granule-shaped polycrystalline silicon to the crucible instead of the conventional agglomerate-type polycrystalline silicon to allow continuous crystal growth.

이같은 과립형태의 다결정 실리콘을 공급함에 있어서는 금속불순물이 오염될 가능성이 큰것이다. 즉, 과립형 다결정 실리콘 표면은 덩어리 형태의 다결정 실리콘보다 체적당 표면적 비가 크기 때문에 표면에 오염될수 있는 금속불순물의 양은 덩어리 형태의 다결정 실리콘에 오염되는 금속불순물양의 수배에서 수십배에 달하는 것이다.In supplying such granular polycrystalline silicon, metal impurities are likely to be contaminated. That is, since the granular polycrystalline silicon surface has a larger surface area ratio per volume than the lumped polycrystalline silicon, the amount of metal impurities that may be contaminated on the surface is several to several tens of times the amount of metal impurities that are contaminated with the lumped polycrystalline silicon.

이와같은 이유로 단결정 잉곳에 유입된 금속 불순물은 그 특성상, 매우 낮은 분포계수를 갖고 있어 연속 성장의 횟수가 많아질수록 남은 용탕속에는 금속 불순물의 양이 매우 높아지게 된다. 이같은 금속 불순물은 웨이퍼의 전기적 성질, 특히 전하의 수명을 감소시키는 작용을 한다. 전하의 수명은 전기적으로 웨이퍼의 효율성을 나타내는 지표로서, 낮은 전하 수명을 갖는 웨이퍼로 제조한 반도체 소자는 부품에 적용될때 매우 열악한 성능을 나타내게 하는 것이다.For this reason, the metal impurities introduced into the single crystal ingot have a very low distribution coefficient due to their characteristics, and as the number of continuous growth increases, the amount of metal impurities in the remaining molten metal becomes very high. Such metal impurities serve to reduce the electrical properties of the wafer, in particular the life of the charge. The life of charge is an indicator of the wafer's efficiency electrically, and semiconductor devices made from wafers with low charge life have very poor performance when applied to components.

이에 본발명의 목적은 과립형태의 다결정 실리콘을 연속 단결정 성장장치에 공급하기 전에 그 표면으로부터 금속불순물을 제거하기 위한 청정방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide a cleaning method for removing metal impurities from the surface of the granular polycrystalline silicon before feeding it to the continuous single crystal growth apparatus.

본발명에 의한 청정방법은, 3염화에틸렌(trichloroethylene, TCE)용액을 비등시켜 70- 80℃온도에서 10 -25분간 과립형태의 다결정실리콘을 1차 청정처리하는 단계; 상기 1차 청정처리된 다결정 실리콘을 초순수 탈이온수로 세척하는 단계; 상기 세척된 다결정 실리콘을 부피비로 70- 120:1인 초순수탈이온수와 불산의 혼합용액에 3-10분간 침적시켜 2차 청정처리하는 단계;및 상기 2차 청정처리된 다결정 실리콘을 초순수 탈이온수로 세척하는 단계;를 포함한다.The cleaning method according to the present invention comprises the steps of firstly treating the granular polysilicon in granule form at a temperature of 70-80 ° C. by boiling a trichloroethylene (TCE) solution; Washing the first purified polycrystalline silicon with ultrapure deionized water; Immersing the washed polycrystalline silicon in a mixed solution of ultrapure deionized water and hydrofluoric acid at a volume ratio of 70-120: 1 for 3-10 minutes for secondary clean treatment; and the second pure polycrystalline silicon with ultrapure deionized water. It comprises a; washing.

이하 본발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본발명에서는 과립형태의 다결정 실리콘 표면의 금속불순물을 2회에 걸쳐 처리하는바, 1차로는 표면에 존재하는 유기물등의 전체적인 오염원을 3염화에틸렌으로 처리하고, 이어서 2차로 잔류하는 표면 오염원 및 자연 산화막을 불산혼합용액으로 제거함으로서 후공정인 단결정 성장 과정에서의 금속 오염원을 미리 제거하는 것이다.In the present invention, the metal impurities on the surface of granular polycrystalline silicon are treated twice. Firstly, the entire source of contamination such as organic matter present on the surface is treated with ethylene trichloride, and then the second surface contamination source and natural By removing the oxide film with a hydrofluoric acid mixture solution, the metal contamination source in the post-crystal single crystal growth process is removed in advance.

1차 청정제로 사용하는 3염화에틸렌용액은 트리클로로에틸렌을 탈이온수로 1.5: 1- 4:1비율로 희석시킨 용액을 사용하는 것이 적당하다. 3염화에틸렌에 대한 탈이온수의 부피비가 1.5:1 이하가 되면 역오염의 위험이 있으며, 반면 4:1 이상이 되면 다결정실리콘을 청정하는데 시간이 많이 소요될뿐만 아니라 청정자체의 효과가 떨어지는 문제점이 있게 된다.For the ethylene trichloride solution used as the primary cleaning agent, it is appropriate to use a solution of trichloroethylene diluted with deionized water at a ratio of 1.5: 1 to 4: 1. If the volume ratio of deionized water to ethylene trichloride is 1.5: 1 or less, there is a risk of reverse contamination. On the other hand, if the ratio is more than 4: 1, it is not only time-consuming to clean polycrystalline silicon, but also has a problem that the effect of the clean self is inferior. do.

또한, 1차 청정 처리온도는 70- 80℃의 범위에서 10 -25분 동안 유지함이 바람직한데, 그 이유는 처리 온도를 70℃이하로 하여 10분 미만으로 청정하면 청정 효과가 불완전하여 이물질이 표면에 잔존하기 쉬우며, 80℃ 이상에서 25분 이상으로 청정하면 다결정 실리콘에 과다한 열이 전달되어 다결정 실리콘 표면으로 화학약품 성분이 확산해들어갈 가능성이 있기 때문이다. 상기 1차 청정 처리된 다결정 실리콘은 증류수를 여과하여 저항치가 18 ㏁ 이상인 초순수로 세척한다. 그리고, 상기 세척된 다결정 실리콘을 부피비로 70 - 120: 1인 초순수 탈이온수와 불산의 혼합용액에 침적하여 3 - 10분 동안 2차 청정하므로써 표면의 금속 오염물질을 제거하는 것이 바람직한데, 이때, 상기 침적용액의 초순수 탈이온수: 불산의 부피비가 120:1 이하로 혼합된 용액에서 3분 미만으로 청정하게 되면 다결정 실리콘의 표면에 이물질이 잔존하기 쉬우며, 부피비가 70:1 이상으로 혼합된 용액에서 10분 이상으로 청정하게 되면 다결정 실리콘의 표면으로 혼합용액의 성분이 확산하여 이물질이 분포할수 있는 가능성이 있다.In addition, the primary clean treatment temperature is preferably maintained for 10-25 minutes in the range of 70-80 ℃, because the cleaning effect is incomplete when the cleaning temperature is less than 10 minutes with the treatment temperature below 70 ℃, foreign matter surface This is because it is easy to remain on the surface, and if it is cleaned for more than 25 minutes at 80 ° C. or higher, excessive heat is transferred to the polycrystalline silicon, and chemical components may diffuse to the polycrystalline silicon surface. The first purified polycrystalline silicon is filtered with distilled water and washed with ultrapure water having a resistance of 18 kPa or more. In addition, it is preferable to remove the metal contaminants on the surface by immersing the washed polycrystalline silicon in a mixed solution of ultra-pure deionized water and hydrofluoric acid in a volume ratio of 70 to 120: 1 for 3 to 10 minutes, wherein, Ultrapure deionized water of the immersion solution: when the volume ratio of hydrofluoric acid is less than 3 minutes in a solution mixed with less than 120: 1, it is easy to remain foreign substances on the surface of the polycrystalline silicon, the volume ratio of more than 70: 1 solution If it is cleaned for more than 10 minutes, the components of the mixed solution may diffuse to the surface of the polycrystalline silicon and foreign matter may be distributed.

이하, 본발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

[실시예]EXAMPLE

삼염화메틸렌 용액을 사용하여 과립 형태의 다결정 실리콘을 75 의 온도에서 15분간 청정한후, 초순수 탈이온수로 3분간 세척한 다음, 표면 금속 불순물 제거를 위하여 불산과 초순수탈이온수가 1:100의 부피비로 혼합된 용액으로 7분간 담그었다가 다시 초순수탈이온수로 세척하여 건조하였다.After washing the granular polycrystalline silicon for 15 minutes at a temperature of 75 using methylene trichloride solution, washing with ultrapure deionized water for 3 minutes, and then mixing hydrofluoric acid and ultrapure deionized water in a volume ratio of 1: 100 to remove surface metal impurities. The solution was immersed for 7 minutes and then washed with ultrapure deionized water and dried.

이상과같은 방법을 거쳐 청정처리된 다결정 실리콘은, 기존의 다결정 실리콘을 그대로 단결정 성장장치에 공급하여 단결정 잉곳을 성장시킨후, 제작된 웨이퍼의 소수전하 확산거리 분포값은 제1도와 같이 낮은 값을 갖는데 반하여, 제2도에서와 같이 높은 값을 갖고 있어 표면에서의 금속 불순물이 상당히 제거되어 확산거리 값을 낮추는 효과가 줄어들었음을 알 수 있다.The polycrystalline silicon cleaned through the above method is supplied with the existing polycrystalline silicon to the single crystal growth apparatus as it is to grow the single crystal ingot, and then the small charge diffusion distance distribution value of the fabricated wafer has a low value as shown in FIG. On the contrary, it has a high value as shown in FIG. 2, and it can be seen that metal impurities on the surface are substantially removed, thereby reducing the effect of lowering the diffusion distance value.

상기한 바와같이 본발명의 방법에 의하면 연속성장법에 따라 과립형태의 다결정 실리콘을 이용시 다결정 실리콘 표면에 오염된 금속 불순물을 효율적으로 청정 함으로써, 이를 이용하여 제조된 웨이퍼의 효율을 최대한 유지할수 있게 하는 것이다. 특히 웨이퍼의 전기적 성질 특히 소수전하의 확산거리 및 수명을 연장할 수 있다.As described above, according to the method of the present invention, when the granular polycrystalline silicon is used according to the continuous growth method, the metal impurities contaminated on the surface of the polycrystalline silicon are efficiently cleaned, thereby maintaining the efficiency of the wafer manufactured using the same. . In particular, the electrical properties of the wafer, in particular, the diffusion distance and lifetime of minority charges can be extended.

Claims (2)

3염화 에틸렌(trichloroethylene, TCE)용액을 비등시켜 70-80 ℃ 온도에서 10- 25분간 과립형태의 다결정 실리콘을 1차 청정처리하는 단계; 상기 1차 청정처리된 다결정실리콘을 초순수 탈이온수로 세척하는 단계; 상기 세척된 다결정 실리콘을 부피비로 70 -120:1인 초순수 탈이온수와 불산의 혼합용액에 3-10분간 침적시켜 2차 청정 처리하는 단계; 및 상기 2차 청정처리된 다결정 실리콘을 초순수 탈이온수로 세척하는 단계;를 포함하는 표면금속 오염제거를 위한 과립형태의 다결정 실리콘 청정방법.Firstly treating the granular polycrystalline silicon in a granular form at a temperature of 70-80 ° C. by boiling the trichloroethylene (TCE) solution; Washing the first purified polycrystalline silicon with ultrapure deionized water; Immersing the washed polycrystalline silicon in a mixed solution of ultrapure deionized water and hydrofluoric acid at a volume ratio of 70 -120: 1 for 3-10 minutes to perform a second clean treatment; And washing the secondary cleansed polycrystalline silicon with ultrapure deionized water. 제1항에 있어서, 상기 3염화 에틸렌용액은 3염화에틸렌에 대한 탈이온수의 비가 1.5:1 - 4:1 이되도록 3염화에틸렌을 탈이온수에 용해시킨 용액임을 특징으로 하는 방법.The method of claim 1, wherein the ethylene trichloride solution is a solution in which ethylene trichloride is dissolved in deionized water so that the ratio of deionized water to ethylene trichloride is 1.5: 1-4: 1.
KR1019950066221A 1995-12-29 1995-12-29 The multicrystal silicon cleaning method of granulate type for surface metal contamination KR100217851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950066221A KR100217851B1 (en) 1995-12-29 1995-12-29 The multicrystal silicon cleaning method of granulate type for surface metal contamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950066221A KR100217851B1 (en) 1995-12-29 1995-12-29 The multicrystal silicon cleaning method of granulate type for surface metal contamination

Publications (2)

Publication Number Publication Date
KR970043308A KR970043308A (en) 1997-07-26
KR100217851B1 true KR100217851B1 (en) 1999-09-01

Family

ID=19447288

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950066221A KR100217851B1 (en) 1995-12-29 1995-12-29 The multicrystal silicon cleaning method of granulate type for surface metal contamination

Country Status (1)

Country Link
KR (1) KR100217851B1 (en)

Also Published As

Publication number Publication date
KR970043308A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
KR100223695B1 (en) Method and apparatus for cleaning electronic parts
JP2012224541A (en) Polycrystalline silicon chunk of silicon for semiconductor material
JPH06232141A (en) Manufacture of semiconductor substrate and solid-state image pick up device
DE19833257C1 (en) Semiconductor wafer production process especially to produce a silicon wafer for fabricating sub-micron line width electronic devices
US6153014A (en) Method of cleaning a silicon wafer using a standard cleaning solution
US6620743B2 (en) Stable, oxide-free silicon surface preparation
KR101919122B1 (en) Apparatus and method treating substrate for seperation process
KR100217851B1 (en) The multicrystal silicon cleaning method of granulate type for surface metal contamination
JP3298467B2 (en) Manufacturing method of epitaxial wafer
CN111095487B (en) Method for manufacturing epitaxial wafer
KR101023143B1 (en) Device for texturing silicon wafer for solar cell
WO2021182341A1 (en) Device for cleaning silicon raw material
KR100230484B1 (en) Method for reusing of waste silicon wafer
JP4259881B2 (en) Cleaning method of silicon wafer
JPH05166777A (en) Washing of semiconductor wafer
US7749869B2 (en) Crystalline silicon substrates with improved minority carrier lifetime including a method of annealing and removing SiOx precipitates and getterning sites
US7674695B1 (en) Wafer cleaning system
KR102368657B1 (en) Method for measuring defect of silicon wafer and wafer
JP2007095774A (en) Cleaning and removing method for transition metal impurity
KR20030052817A (en) Method for preprocessing a gate oxidation layer of a semiconductor device
SU924776A1 (en) Method of manufacturing semiconductor devices, mainly on the base of single-crystal silicium
JP2001284309A (en) Treatment method of container
JPS6151928A (en) Etching device for semiconductor thin film
JP2004140126A (en) Method of drying semiconductor substrate after cleaning
Roy et al. Comparison of solar cells from nonsingle and single crystalline silicon in a pilot production line

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030603

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee