KR100213831B1 - Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method - Google Patents

Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method Download PDF

Info

Publication number
KR100213831B1
KR100213831B1 KR1019960004660A KR19960004660A KR100213831B1 KR 100213831 B1 KR100213831 B1 KR 100213831B1 KR 1019960004660 A KR1019960004660 A KR 1019960004660A KR 19960004660 A KR19960004660 A KR 19960004660A KR 100213831 B1 KR100213831 B1 KR 100213831B1
Authority
KR
South Korea
Prior art keywords
thin film
cds
cdte
solar cell
manufacturing
Prior art date
Application number
KR1019960004660A
Other languages
Korean (ko)
Other versions
KR970063794A (en
Inventor
신성호
김범수
박광자
박정일
염근영
Original Assignee
이승배
대한민국(관리부서 : 국립품질기술원)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승배, 대한민국(관리부서 : 국립품질기술원) filed Critical 이승배
Priority to KR1019960004660A priority Critical patent/KR100213831B1/en
Publication of KR970063794A publication Critical patent/KR970063794A/en
Application granted granted Critical
Publication of KR100213831B1 publication Critical patent/KR100213831B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 IPO(In2O3·SnO2)또는 SnO2 :F 투명전도성 유리기판에 특정조건의 용액성장법으로 CdS 박막을 제조하여 열처리한 다음, EB(Electron Beam)법, 가열증착(Thermal Evaporation)법, 스퍼터링(Sputtering)법등의 방법으로 CdTe 박막을 CdS 박막위에 형성시킨 후, 열처리를 하고 2∼20%의 크롬산용액으로 화학적 식각처리를 행하고 히드라진 수화물로 산화막을 제거한 다음, 세정하고 건조하여 Au 또는 Cu/Au를 증착시킨 후 열처리함을 특징으로 하는 용액성장법 CdS박막을 이용한 CdTe/CdS 태양전지의 제조방법에 관한 것으로, 에너지 변환 효율이 7%이상을 나타내고 저렴한 제조원가가 소요되는 Cds 박막을 이용한 CdTe/Cds 태양전지를 용이하게 제조할 수 있었다.In accordance with the present invention, a CdS thin film is prepared by heat treatment by a solution growth method under a specific condition on an IPO (In 2 O 3 · SnO 2 ) or SnO 2: F transparent conductive glass substrate, and then subjected to an EB (Electron Beam) method and thermal deposition. After forming the CdTe thin film on the CdS thin film by the method of evaporation, sputtering, etc., heat treatment, chemical etching with 2-20% chromic acid solution, removing the oxide film with hydrazine hydrate, washing and drying CdTe / CdS solar cell manufacturing method using a solution growth method CdS thin film characterized by depositing Au or Cu / Au and heat treatment, Cds thin film that exhibits an energy conversion efficiency of more than 7% and low cost Using CdTe / Cds solar cells it could be easily manufactured.

Description

용액성장법 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법Method for manufacturing CdTe / CdS solar cell using solution growth method CdS thin film

제1도는 본 발명에 따라 제조된 CdTe/CdS 태양전지의 단면도이다.1 is a cross-sectional view of a CdTe / CdS solar cell manufactured according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 유리기판 2 : ITO(In2O3ㆍSnO2)또는 SnO2: F층1 Glass substrate 2 ITO (In 2 O 3 ㆍ SnO 2 ) or SnO 2 : F layer

3 : CdS박막층 4 : CdTe 박막층3: CdS thin film layer 4: CdTe thin film layer

5 : 배선금속층5: wiring metal layer

본 발명은 용액성장법 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법에 관한 것으로서, 좀 더 구체적으로는 ITO(In2O3ㆍSnO2)또는 SnO2: F투명전도성 유리기판에 특정조건의 용액성장법으로 CdS 박막을 제조하여 열처리한 다음, EB (Electron Beam)법, 가열증착(Thermal Evaporation)법, 스퍼터링(Sputtering)법 등의 방법으로 CdTe 박막을 CdS 박막 위에 형성시킨 후, 열처리를 하고 2∼20%의 크롬산용액으로 화학적 식각처리를 행하고 히드라진 수화물로 산화막을 제거한 다음, 세정하고 건조하여 Au 또는 Cu/Au를 증착시킨 후 열처리함을 특징으로 하는 용액성장법 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a CdTe / CdS solar cell using a solution growth method CdS thin film, and more specifically, to ITO (In 2 O 3 ㆍ SnO 2 ) or SnO 2 : F transparent conductive glass substrate After the CdS thin film is manufactured and heat-treated by the solution growth method, the CdTe thin film is formed on the CdS thin film by EB (Electron Beam), Thermal Evaporation, Sputtering, etc., and then heat-treated. CdTe / CdS using a solution growth method CdS thin film characterized by chemical etching with 2-20% chromic acid solution, removal of oxide film with hydrazine hydrate, washing and drying, deposition of Au or Cu / Au and heat treatment It relates to a method for manufacturing a solar cell.

현재 태양전지의 대부분은 결정계 Si 태양전지가 사용되고 있으나 Si 태양전지는 Si 웨이퍼(wafer)공급의 한계성 및 제조단가가 높은 문제점이 있어 저가격, 고효율 박막형 태양전지 개발에 대한 연구가 지속적으로 이루어지고 있는 실정이다.Currently, most of solar cells are using crystalline Si solar cells, but Si solar cells have a problem of developing low-cost, high-efficiency thin-film solar cells due to the limitation of Si wafer supply and high manufacturing cost. to be.

이중에서 CdTe/CdS 박막태양전지가 개발진척 및 경제성이 있어 가장 주목 받고 있다.Among them, CdTe / CdS thin film solar cell is attracting the most attention because of development progress and economic feasibility.

일반적으로 CdTe/CdS 다층 박막형태의 태양전지는 ITO, SnO2: F등의 투명전극층이 코팅(coating)된 유리기판위에 n형의 CdS, p형의 CdTe, Au 등의 금속배선전극층을 차례로 적층시켜 제조되고 있다.In general, a CdTe / CdS multilayer thin film solar cell laminates metal wiring electrode layers such as n-type CdS, p-type CdTe, and Au on a glass substrate coated with a transparent electrode layer such as ITO, SnO 2 : F, etc. Is manufactured.

그러나, CdTe/CdS 다층박막형태의 태양전지에 있어서 CdS는 CdTe에 의해 흡수되는 빛의 파장영역을 투과시키는 창문용 재료로 사용되고 있으므로 광투과율이 높고 전기저항이 낮아야 에너지 변환효율이 높은 전지를 제조할 수 있다.However, in the CdTe / CdS multilayer thin film type solar cell, CdS is used as a window material that transmits the wavelength range of light absorbed by CdTe. Therefore, high light transmittance and low electrical resistance require high energy conversion efficiency. Can be.

또한, CdS는 가결정 형태로 증착되므로 이 결정의 크기, 결정성장방향 및 결정결함 등이 태양에너지 변환효율이 영향을 미치며, 결정립의 크기 및 거칠기(roughness)정도가 이어 증착되는 CdTe 박막층에 영향을 미친다.In addition, since CdS is deposited in the form of temporary crystals, the crystal size, crystal growth direction, and crystal defects affect solar energy conversion efficiency, and grain size and roughness affect subsequent deposition of CdTe thin film layer. Crazy

상기와 같이 창문용 재료로 사용되는 CdS는 n형 반도체로서 p형 반도체인 CdTe와 p-n접합을 이루는데, n형의 CdS제조방법으로는 진공증착법, 스퍼터링법, 스프레이 열분해법, 화학증착법, 용액성장법 둥이 있다. 이들 방법 중에서 용액성장(Chemical Solution Deposition)법은 간편하고 경제적이며 면적이 큰 곳에 적용하기에 용이한 방법으로 CdS, CdSe, PbS와 같은 박막형 화합물반도체를 만드는 방법으로 공지되어 있으며 [I. Kaur, D. K. Pandya and K. L. Chopra, J. Electrochem,. Soc. 127, 943(1980)], 최근 용액성장법으로 제조한 CdS 박막을 창문용 재료로 이용한 CuInSe2계 태양전지와 CdTe계 태양전지가 높은 에너지 변환 효율을 나타내는 것으로 보고되고 있다.As described above, CdS used as a window material is an n-type semiconductor, which forms a pn junction with a p-type semiconductor, CdTe. The manufacturing method of the n-type CdS includes vacuum deposition, sputtering, spray pyrolysis, chemical vapor deposition, and solution growth. There is a law bar. Among these methods, the chemical solution deposition method is simple, economical, and easy to apply in large areas, and is known as a method of making thin-film compound semiconductors such as CdS, CdSe, and PbS. Kaur, DK Pandya and KL Chopra, J. Electrochem ,. Soc. 127, 943 (1980)], recently reported that CuInSe 2 solar cells and CdTe solar cells using CdS thin films manufactured by the solution growth method as window materials exhibit high energy conversion efficiency.

따라서, 에너지 변환 효율이 높으면서도 제조원가가 싼 CdTe/CdS계 태양전지의 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a CdTe / CdS-based solar cell with high energy conversion efficiency and low manufacturing cost.

상기 목적 뿐만 아니라 용이하게 표출될 수 있는 또 다른 목적을 달성하기 위하여 본 발명에서는 ITO(In2O3ㆍSnO2)또는 SnO2: F 투명전도성 유리기판에 특정반응 조건의 용액성장법으로 CdS 박막을 제조한 후, 질소분위기하, 300∼500。C에서 30분간 로열처리한 다음, EB(Electron Beam)법, 가열증착(Thermal Evaporation)법, 스퍼터링(Sputtering)법 들의 방법으로 CdTe박막을 CdS 박막 위에 형성시킨 후, 열처리를 하고 2∼20%의 크롬산용액으로 화학적 식각처리를 행하고 히드라진수화물로 산화막을 제거한 다음, 세정하고 건조하여 Au또는 Cu/Au를 증착시킨 후 열처리 하므로써 에너지 변환 효율이 7%이상을 나타내고 저렴한 제조원가가 소요되는 용액성장법 CdS 박막을 이용한 CdTe/CdS 태양전지를 용이하게 제조할 수 있었다.In order to achieve the above object as well as another object that can be easily expressed in the present invention CdS thin film by the solution growth method of the specific reaction conditions on ITO (In 2 O 3 ㆍ SnO 2 ) or SnO 2 : F transparent conductive glass substrate After the preparation, the CdTe thin film was subjected to a thermal treatment at 300 to 500 ° C. for 30 minutes under nitrogen atmosphere, followed by EB (Electron Beam), Thermal Evaporation, and Sputtering. After forming on the above, heat treatment, chemical etching treatment with 2-20% chromic acid solution, removal of oxide film with hydrazide, washing and drying, deposition of Au or Cu / Au and heat treatment, the energy conversion efficiency is 7% The CdTe / CdS solar cell using the solution growth method CdS thin film exhibiting the above and inexpensive manufacturing cost could be easily manufactured.

본 발명을 첨부도면에 의거하여 좀 더 구체적으로 설명하면 다음과 같다.The present invention will be described in more detail based on the accompanying drawings.

제1도는 본 발명의 방법에 따라 제조된 CdTe/CdS 태양전지의 단면도로서, 본 발명의 CdTe/CdS 태양전지는 ITO(In2O3ㆍSnO2)또는 SnO2: F 투명전도성 유리기판에 특정 반응조건의 용액성장법으로 CdS 박막을 제조한 후, 질소분위기하, 300∼500。C에서 30분간 로열처리한 다음, CdS 박막층 위에 CdTe 박막을 제조하고 로열처리 및 급속령처리(400∼600。C)를 한 다음에 CdTe 박막의 표면 상에 존재하는 불순물을 제거하고 표면 조성비를 변화시키기 위해 2∼20%의 크롬산용액으로 화학적 식각처리를 행하고 환원제인 히드라진 수화물로 산화막을 제거한 다음, 증류수로 세정하고 질소가스 중에서 건조시킨 후, 배선금속으로 Au 또는 Cu/Au를 증착시키고 열처리하므로서 제조된다.FIG. 1 is a cross-sectional view of a CdTe / CdS solar cell manufactured according to the method of the present invention, wherein the CdTe / CdS solar cell of the present invention is characterized by ITO (In 2 O 3 ㆍ SnO 2 ) or SnO 2 : F transparent conductive glass substrate. After the CdS thin film was prepared by the solution growth method under the reaction conditions, the mixture was subjected to a thermal treatment at 300 to 500 ° C for 30 minutes under a nitrogen atmosphere, and then a CdTe thin film was prepared on the CdS thin film layer. After C), chemical etching treatment is performed with 2-20% chromic acid solution to remove impurities present on the surface of the CdTe thin film and change the surface composition ratio, and the oxide film is removed with hydrazine hydrate as a reducing agent, followed by washing with distilled water. After drying in nitrogen gas, Au or Cu / Au is deposited as a wiring metal and manufactured by heat treatment.

창문용 재료인 CdS 박막은 진공증착법, 스퍼터링법, 스프레이 열분해법, 화학증착법, 용액성장법 등의 방법으로 제조될 수 있으나, 본 발명에서는 간편하고 경제적이며 면적이 큰 곳에 적용하기 용이한 용액성장법(Chemical Solution Deposition Method)을 사용하였으며, CdS 박막의 용액성장은 알카리수용액 내에서 ITO(In2O3ㆍSnO2)또는 SnO2: F 투명전도성 유리기판에 카드뮴염(Cd(Ac)2, CdCl2, CdSO4,Cd(NO3)2등), 황화물((NH2)2CS) 및 착화제(NH4OH, NH4Ac)를 반응시켜 행하였다.CdS thin film as a window material may be manufactured by a vacuum deposition method, sputtering method, spray pyrolysis method, chemical vapor deposition method, solution growth method, etc., but in the present invention, a solution growth method that is simple, economical and easy to apply to a large area (Chemical Solution Deposition Method) was used, and solution growth of CdS thin film was carried out in cadmium salt (Cd (Ac) 2 , CdCl) on ITO (In 2 O 3 ㆍ SnO 2 ) or SnO 2 : F transparent conductive glass substrate in alkaline aqueous solution. 2 , CdSO 4, Cd (NO 3 ) 2, etc.), sulfides ((NH 2 ) 2 CS) and complexing agents (NH 4 OH, NH 4 Ac) were reacted.

여기에서, 카드뮴염(Cd(Ac)2) 및 NH4Ac에서 보이는 Ac 는 Actate의 약자로서 이들 화합물을 정식으로 표기하면 각각 Cd(CH3COO)2및 CH3COONH4로 표기된다.Here, Ac as seen in cadmium salt (Cd (Ac) 2 ) and NH 4 Ac is an abbreviation of Actate, and when these compounds are formally expressed, they are represented as Cd (CH 3 COO) 2 and CH 3 COONH 4 , respectively.

CdS 박막 제조시 용액의 ph조정은 암모니아(NH4OH)로 조절하게 되는데, 반응 온도가 상승하면 암모니아가 쉽게 증발하여 pH가 급격하게 감소하여 석출되는 CdS의 상태가 달라지게 되는 큰 문제점이 발생한다. pH 조절 물질이 증가하거나 감소하여도 pH의 급격한 변화를 억제하는 물질을 pH 완충제라 하는데, CdS 박막성장용 출발물질 Cd(CH3COO)2및 착화제 CHCOONH4에 있어 Acetate(-CH3COOH) 가 암모니아(NH4OH)와 작용하여 pH 완충 역할을 하게 된다.In the preparation of CdS thin film, the pH of the solution is controlled by ammonia (NH 4 OH). When the reaction temperature rises, ammonia is easily evaporated and the pH rapidly decreases, resulting in a big problem that the state of precipitated CdS changes. . A pH buffer is a substance that suppresses a sudden change in pH even if the pH adjusting substance is increased or decreased. Acetate (-CH 3 COOH) is used in the starting material Cd (CH 3 COO) 2 and the complexing agent CHCOONH 4 for CdS thin film growth. Reacts with ammonia (NH 4 OH) to act as a pH buffer.

따라서 이등 물질을 사용함으로서 반응중 조성이나 막질 상태의 변화가 없는 물성이 우수한 CdS 박막을 제조 할 수 있게 된다.Therefore, by using a second material it is possible to manufacture a CdS thin film having excellent physical properties without changes in composition or film quality during the reaction.

이때 CdS의 형성은 용액 내에 존재하는 Cd와 S의 이온곱이 Cd와 S의 용해도 곱보다 클 때 만들어지며, 온도가 일정할 때 CdS의 형성속도는 Cd(NH3)4 ++에 의해 공급되는 Cd 농도와 (NH2)2CS의 가수분해로 만들어지는 S-의 농도에 의존한다. 또한, (NH2)2CS의 가수분해속도는 온도와 pH에 영향을 받는데, 온도와 pH가 높을수록 가수분해가 빠르게 진행된다. 과량의 암모니아 첨가는 용액의 pH를 증가시켜서 S-의 농도를 증가시키는데 반하여 Cd(NH3)4 ++의 생성을 촉진시켜 Cd++농도를 적게 하여 CdS의 형성속도가 늦추게 된다.In this case, the formation of CdS is made when the ion product of Cd and S present in the solution is larger than the product of solubility of Cd and S. When the temperature is constant, the formation rate of CdS is supplied by Cd (NH 3 ) 4 ++ . It depends on the concentration and the concentration of S produced by the hydrolysis of (NH 2 ) 2 CS. In addition, the hydrolysis rate of (NH 2 ) 2 CS is affected by temperature and pH. The higher the temperature and pH, the faster the hydrolysis. Excessive ammonia addition increases the pH of the solution to increase the concentration of S , while promoting the production of Cd (NH 3 ) 4 ++ and lowering the concentration of Cd ++ to slow down the formation of CdS.

따라서, 용액 내의 카드뮴염의 농도와 암모니아의 농도, NH4염의 농도와 온도를 적절히 조절함으로서 CdS의 형성속도를 조절할 수 있으며, 용액 내에서 이루어지는 파우더(powder)성 CdS를 형성 즉, 밀착성을 나쁘게 하는 균일계(homogeneous) 반응을 억제할 수 있다.Therefore, by appropriately adjusting the concentration of cadmium salt, ammonia, NH 4 salt and temperature in the solution, it is possible to control the formation rate of CdS, and to form a powdery CdS in the solution, that is, uniformity that degrades adhesion. It can suppress homogeneous reactions.

본 발명에서는 반복 실험을 통하여 최적의 조건이 6.3∼50×106M의 Cd(Ac)2,(NH2)2CS 와 NH4OH 0.6∼0.9M, NH4Ac 0.1M이 포함되어 있으며 반응 온도는 65∼85。C, 반응 시간은 (NH2)2CS를 첨가한 후 20∼250분 임을 확인할 수 있었다.In the present invention, the optimal conditions are repeated 6.3 ~ 50 × 10 6 M Cd (Ac) 2, (NH 2 ) 2 CS and NH 4 OH 0.6 ~ 0.9M, NH 4 Ac 0.1M is included in the reaction The temperature was 65 to 85 ° C., and the reaction time was confirmed to be 20 to 250 minutes after the addition of (NH 2 ) 2 CS.

상기와 같은 최적 조건 하에서 CdS를 제작한 후, 막 내부의 결함을 제거하기 위하여 질소분위기 하, 300∼500。C에서 열처리를 한다.After producing CdS under the optimum conditions as described above, heat treatment is performed at 300 to 500 ° C. under a nitrogen atmosphere to remove defects in the film.

이때, 열처리 온도가 300。C미만일 경우에는 열처리 효과가 미약하고 500。C를 초과하는 경우에는 유리기판의 변형이 일어날 수 있는 단점이 있다.At this time, when the heat treatment temperature is less than 300 ° C., the heat treatment effect is weak, and when the temperature exceeds 500 ° C, there is a disadvantage that the deformation of the glass substrate may occur.

CdS 박막층 위에 공지의 EB(Electron Beam)법, 스퍼터링(Sputtering)법, 가열증착법(Thermal Evaporation)을 이용하여 CdTe 박막을 제조하였다.On the CdS thin film layer, a CdTe thin film was manufactured using a known EB (Electron Beam) method, a sputtering method, and a thermal evaporation method.

제조된 CdTe 박막의 결정성을 향상시키고 막의 저항값을 낮추기 위하여 CdCl2를 CH3OH에 포화시킨 용액으로 처리한 후, 로열처리(300∼500。C)하거나CdCl2를 CH3OH에 포화시킨 용액으로 처리하지 않고 급속열처리(400∼600。C)를 실시하였다. CdTe 박막 표면의 불순물을 제거하고 표면 조성비를 변화시키기 위해 2∼20%의 크롬산 용액으로 화학적 식각 처리를 행하고, 환원제로 히드라진 수화물을 사용하여 상기 공정중에서 생성된 산화막층을 제거하였다.Treated with a saturated CdCl 2 to lower improve the crystallinity of the produced thin film CdTe film and the resistance to the CH 3 OH solution and then, Royal treatment (300~500.C) saturated or a CdCl 2 in CH 3 OH Rapid heat treatment (400-600 ° C.) was performed without treatment with a solution. In order to remove impurities on the surface of the CdTe thin film and to change the surface composition ratio, a chemical etching treatment was performed with a 2-20% chromic acid solution, and an oxide layer formed in the process was removed using a hydrazine hydrate as a reducing agent.

산화막을 제거한 다음, 유기용제로 제거하고 질소가스로 건조한 후, Au또는 Cu/Au를 통상의 방법으로 배선금속층을 증착하고 최종 열처리(150。C, 1시간)하여 태양전지를 제조하였다.After removing the oxide film, and then removed with an organic solvent, dried with nitrogen gas, Au or Cu / Au was deposited in a conventional metal wiring layer by a conventional method and the final heat treatment (150 ° C, 1 hour) to prepare a solar cell.

본 발명의 방법으로 제조된 CdTe/Cds태양전지는 7% 이상의 에너지 변환 효율을 나타내었다.The CdTe / Cds solar cell produced by the method of the present invention showed an energy conversion efficiency of 7% or more.

다음의 실시예는 본 발명을 좀 더 상세히 설명하는 것이지만, 본 발명이 이에 한정되는 것은 아니다.The following examples illustrate the invention in more detail, but the invention is not limited thereto.

실시예에서 제조된 태양전지의 특성평가는 태양광 시뮬레이터를 이용하여 광량을 100mw/cm2, AM 1.0 조건으로 조절한 후 전류-전압특성을 측정하여 평가하였다.Evaluation of the characteristics of the solar cell manufactured in Example was evaluated by measuring the current-voltage characteristics after adjusting the amount of light to 100mw / cm 2 , AM 1.0 conditions using a solar simulator.

[실시예 1]Example 1

ITO(In2O3ㆍSnO2) 박막이 코팅된 유리기판을 전처리한 후 건조하고, 0.05M의 Cd(Ac)2,0.05M의 (NH2)2CS와 0.6M 의 NH4OH, 0.1M 의 NH4Ac가 포함되어 있는 수용액을 6구 비이커에 넣고 ITO(In2O3ㆍSnO2)박막이 코팅된 유리기판을 투입한 후 임펠러(Impeller)로 교반하여 용액의 흐름이 시편 전체에 균일하도록 하였다.The glass substrate coated with ITO (In 2 O 3 ㆍ SnO 2 ) thin film was pretreated and dried, 0.05M Cd (Ac) 2, 0.05M (NH 2 ) 2 CS and 0.6M NH 4 OH, 0.1 M aqueous solution containing NH 4 Ac was placed in a six-neck beaker, a glass substrate coated with an ITO (In 2 O 3 ㆍ SnO 2 ) thin film was added, and stirred with an impeller to flow the solution throughout the specimen. It was made uniform.

이때, 반응 온도는 75。C로 유지하여 주었고, 반응 시간은 (NH2)2CS를 첨가한 후 100분으로 하여 2000Å두께를 갖는 다결정 CdS 박막을 제조하였다.At this time, the reaction temperature was maintained at 75 ° C., the reaction time was 100 minutes after the addition of (NH 2 ) 2 CS to prepare a polycrystalline CdS thin film having a 2000kPa thickness.

제조된 CdS 박막의 결정성을 향상시키고 태양전지에 응용시 열적 안정성을 얻고자 질소분위기하, 400。C의 온도에서 30분간 로열처리하였다.In order to improve the crystallinity of the prepared CdS thin film and to obtain thermal stability when applied to solar cells, it was heated for 30 minutes at a temperature of 400 ° C under a nitrogen atmosphere.

상술한 방법으로 제조된 CdS 박막을 태양전지로 응용하고자 CdTe 박막을 증착하였다. CdTe 박막증착은 공지의 방법으로 가열형 증착기(Tthermal evaporator)를 사용하여 행하였으며 증착시 기판 온도는 280。C로 하였고 증착 두께는 2∼3㎛로 하였다.The CdTe thin film was deposited in order to apply the CdS thin film manufactured by the above method to a solar cell. CdTe thin film deposition was carried out using a thermal evaporator by a known method, the substrate temperature during deposition was 280 ° C. and the deposition thickness was 2 ~ 3㎛.

증착된 CdTe 박막을 CdCl2로 처리한 후, 400。C에서 30분간 로열처리하고, 크롬산염 및 히드라진으로 처리한 다음Cu/An를 배선금속층으로 증착하고 150。C에서 1시간 동안 열처리하여 본 발명의 p-CdTe/n-CdS태양전지를 제조하였다.After the deposited CdTe thin film was treated with CdCl 2 , heat treated at 400 ° C. for 30 minutes, treated with chromate and hydrazine, and then deposited Cu / An as a wiring metal layer and heat-treated at 150 ° C. for 1 hour. P-CdTe / n-CdS solar cells were prepared.

제조된 태양전지의 전지특성평가는 태양광 대신 태양광 시뮬레이터(Solar simulator)를 이용하여 광량을 미리 포토센서(photo sensor)로 수동 측정한 다음,컴퓨터를 이용하여 광조사(AM1.0)한 후 전류-전압특성을 측정하였다.In the evaluation of the battery characteristics of the manufactured solar cell, instead of the solar light, the solar light (Solar simulator) was used to measure the amount of light manually using a photo sensor, and then irradiated with a computer (AM1.0). The current-voltage characteristic was measured.

전지측성 평가결과, 10% 이상의 에너지 변환 효율을 나타내었다.As a result of cell side evaluation, energy conversion efficiency of 10% or more was shown.

[실시예 2]Example 2

ITO(In2O3ㆍSnO2)박막 대신 SnO2: F 박막이 코팅된 유리기판을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 태양전지를 제조하였으며, 실시예 1과 동일한 방법으로 전지특성을 평가한 결과 10% 이상의 에너지 변환 효율을 나타내었다.A solar cell was manufactured in the same manner as in Example 1, except that a glass substrate coated with a SnO 2 : F thin film was used instead of an ITO (In 2 O 3 ㆍ SnO 2 ) thin film. As a result of the evaluation, the energy conversion efficiency was more than 10%.

[실시예 3]Example 3

배선금속층으로 Cu/Au대신 Au를 증착한 것을 제외하고는 실시예 1과 동일한 방법으로 태양전지를 제조하였으며, 실시예 1과 동일한 방법으로 진지특성을 평가한 결과 10% 이상의 에너지 변환 효율을 나타내었다.A solar cell was manufactured in the same manner as in Example 1, except that Au was deposited instead of Cu / Au. The evaluation of the displacement characteristics in the same manner as in Example 1 showed energy conversion efficiency of 10% or more. .

[실시예 4∼6][Examples 4 to 6]

CdS와 CdTe 박막 제조후 열처리를 로열처리 대신 550。C에서 2분간의 급속 열처리 방법을 사용하고, 배선금속 증착 후 최종 열처리로 250。C에서 4분간의 급속 열처리 방법을 사용한 것을 제외하고는 실시예 1∼3과 동일한 방법으로 태양전지를 제조하였으며, 실시예 1과 동일한 방법으로 전지특성을 평가한 결과, 10%이상의 에너지 변환 효율을 나타내었다.Except that the heat treatment after the CdS and CdTe thin film was manufactured using a rapid heat treatment method of 2 minutes at 550 ° C instead of the royal treatment, and the rapid heat treatment method of 4 minutes at 250 ° C as a final heat treatment after wiring metal deposition. The solar cell was manufactured by the same method as 1 to 3, and as a result of evaluating the battery characteristics by the same method as Example 1, it showed energy conversion efficiency of 10% or more.

[실시예 7∼9]EXAMPLES 7-9

CdTe 박막을 전자빔증착법을 이용하여 제조하되 기판 온도를 300。C 로 하고 3∼4㎛의 두께로 다결정 CdTe 박막을 제조한 것을 제외하고는 실시예 1∼3과 동일한 방법으로 태양전지를 제조하였으며, 실시예 1과 동일한 방법으로 전지특성을 평가한 결과, 7% 이상의 에너지 변환 효율을 나타내었다.A CdTe thin film was manufactured by using an electron beam deposition method, but a solar cell was manufactured in the same manner as in Examples 1 to 3, except that a polycrystalline CdTe thin film was manufactured with a substrate temperature of 300 ° C and a thickness of 3 to 4 μm. As a result of evaluating the battery characteristics in the same manner as in Example 1, it showed an energy conversion efficiency of 7% or more.

[실시예 10∼12][Examples 10-12]

CdTe 박막을 제외하고는 스퍼터링법을 이용하여 제조하되 기판 온도는 300。C 로 하고 50-100W의 파워(power)에서 2∼3㎛의 두께로 CdTe 박막을 제조한 것을 제외하고는 실시예 1∼3과 동일한 방법으로 태양전지를 제조하였으며, 실시예 1과 동일한 방법으로 전지 특성을 평가한 결과, 7% 이상의 에너지 변환 효율을 나타내었다.Except for the CdTe thin film was prepared by the sputtering method, except that the substrate temperature is 300 ° C and the CdTe thin film was produced in a thickness of 2-3㎛ at a power of 50-100W Example 1 ~ The solar cell was manufactured by the same method as in Example 3. As a result of evaluating the battery characteristics in the same manner as in Example 1, it showed an energy conversion efficiency of 7% or more.

Claims (8)

ITO(In2O3ㆍSnO2)또는 SnO2: F 투명전도성 유리기판에 용액성장법으로 CdS 박막을 제조하며, 상기 CdS 박막을 6.3∼50*106M의 Cd(Ac)2, 0.6∼0.9M의 (NH2)2CS와 NH4OH, 0.1M의 NH4Ac가 포함된 용액에서 65∼85。C의 온도로 (NH2)2CS를 첨가한 후에 20∼250분간 반응시켜서 제조하는 공정; 제조된 CdS 박막의 열처리 공정; CdS 박막 위에 CdTe 박막을 제조하는 공정; 제조된 CdTe 박막의 열처리 공정; 제조된 CdTe 박막 표면의 불순물을 제거하고 표면 조성비를 변화시키기 위해 2∼20%의 크롬산용액으로 화학적 식각처리를 행하고 환원제로서 히드라진수화물로 산화막을 제거하는공정; 유기 용제로 세정한 후 N2가스로 건조시키는 공정; Au 또는 Cu/Au를 배선금속으로 증착하고 열처리하는 공정으로 구성됨을 특징으로 하는 용액성장법 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조 방법.A CdS thin film is prepared by ITO (In 2 O 3 ㆍ SnO 2 ) or SnO 2 : F transparent conductive glass substrate by solution growth method, and the CdS thin film is 6.3-50 * 10 6 M Cd (Ac) 2 , 0.6∼ Prepared by adding (NH 2 ) 2 CS at a temperature of 65 to 85 ° C in a solution containing 0.9 M (NH 2 ) 2 CS, NH 4 OH, and 0.1 M NH 4 Ac, and reacting for 20 to 250 minutes. Process of doing; Heat treatment process of the prepared CdS thin film; Manufacturing a CdTe thin film on the CdS thin film; Heat treatment process of the prepared CdTe thin film; Chemically etching with 2-20% chromic acid solution to remove impurities from the surface of the prepared CdTe thin film and changing the surface composition ratio, and removing an oxide film with hydrazine hydrate as a reducing agent; Washing with an organic solvent and then drying with N 2 gas; A method of manufacturing a CdTe / CdS solar cell using a solution growth method CdS thin film, characterized in that the step of depositing Au or Cu / Au as a wiring metal and heat treatment. 제1항에 있어서, CdS 박막의 열처리는 질소분위기하, 300∼500。C의 온도에서 로열처리함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조 방법.The method of manufacturing a CdTe / CdS solar cell using a CdS thin film according to claim 1, wherein the heat treatment of the CdS thin film is carried out at a temperature of 300 to 500 ° C. under a nitrogen atmosphere. 제1항에 있어서, CdTe 박막은 가열증착법으로 제조함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법.The CdTe / CdS solar cell manufacturing method using a CdS thin film according to claim 1, wherein the CdTe thin film is manufactured by heat deposition. 제1항에 있어서 CdTe 박막은 전자빔증착법으로 제조함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법.The method of manufacturing a CdTe / CdS solar cell using a CdS thin film according to claim 1, wherein the CdTe thin film is manufactured by electron beam deposition. 제1항에 있어서, CdTe 박막은 스프트링법으로 제조함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법.The method of manufacturing a CdTe / CdS solar cell using a CdS thin film according to claim 1, wherein the CdTe thin film is manufactured by a springing method. 제1항에 있어서, CdTe 박막의 열처리는 CdCl2처리후 300∼500。C에서 로열처리함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법.The method of manufacturing a CdTe / CdS solar cell using a CdS thin film according to claim 1, wherein the CdTe thin film is thermally treated at 300 to 500 ° C after CdCl 2 treatment. 제1항에 있어서, CdTe 박막의 열처리는 CdCl2처리없이 400∼600。C에서 1∼2분동안 금속열처리함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법.The method of manufacturing a CdTe / CdS solar cell using a CdS thin film according to claim 1, wherein the CdTe thin film is heat treated for 1 to 2 minutes at 400 to 600 ° C without CdCl 2 treatment. 제1항에 있어서, 최종 열처리는 150。C에서 1시간동안 행함을 특징으로 하는 CdS 박막을 이용한 CdTe/CdS 태양전지의 제조방법.The method of manufacturing a CdTe / CdS solar cell using a CdS thin film according to claim 1, wherein the final heat treatment is performed at 150 ° C. for 1 hour.
KR1019960004660A 1996-02-26 1996-02-26 Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method KR100213831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960004660A KR100213831B1 (en) 1996-02-26 1996-02-26 Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960004660A KR100213831B1 (en) 1996-02-26 1996-02-26 Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method

Publications (2)

Publication Number Publication Date
KR970063794A KR970063794A (en) 1997-09-12
KR100213831B1 true KR100213831B1 (en) 1999-08-02

Family

ID=19451791

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960004660A KR100213831B1 (en) 1996-02-26 1996-02-26 Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method

Country Status (1)

Country Link
KR (1) KR100213831B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010107798A (en) * 2001-09-04 2001-12-07 재 형 이 Preparation method of the low resistive Cd1-xZnxS thin films using solution growth

Also Published As

Publication number Publication date
KR970063794A (en) 1997-09-12

Similar Documents

Publication Publication Date Title
Reddy et al. Development of sulphurized SnS thin film solar cells
JP3753739B2 (en) CuxInyGazSen (x = 0-2, y = 0-2, z = 0-2, n = 0-3) precursor thin film production method by electrodeposition for high-efficiency solar cell production
US7179677B2 (en) ZnO/Cu(InGa)Se2 solar cells prepared by vapor phase Zn doping
JP5635497B2 (en) Solar cell layer system
KR101245371B1 (en) Solar cell and method of fabricating the same
JP4012957B2 (en) Method for producing compound thin film solar cell
US8187913B2 (en) Process for producing photoelectric conversion devices
JP2010512647A (en) Doping technology for IBIIIAVIA group compound layer
JP5450294B2 (en) CIGS solar cell and manufacturing method thereof
US4909863A (en) Process for levelling film surfaces and products thereof
CN108807145B (en) Method for preparing efficient copper indium selenide and copper indium gallium selenide thin-film solar cell
Chavez et al. Physical and electrical characterization of CdS films deposited by vacuum evaporation, solution growth and spray pyrolysis
JP2003318424A (en) Thin film solar battery and method of manufacturing same
CN112289932A (en) Perovskite thin film and preparation method and application thereof
KR100213831B1 (en) Fabricating method of cdte/cds solar cells using cds thin film made by chemical solution deposition method
JP2000332273A (en) Solar battery and manufacture thereof
Sugiyama et al. Sulfurization growth of SnS films and fabrication of CdS/SnS heterojunction for solar cells
US20120309125A1 (en) Buffer layer deposition methods for group ibiiiavia thin film solar cells
CA2284826C (en) Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells
Ghosh et al. A novel back-contacting technology for thin films
Anuar et al. Effect of deposition period and bath temperature on the properties of electrodeposited Cu4SnS4 films
JP2001196611A (en) Method for manufacturing solar battery
CN107623047A (en) A kind of preparation method and applications of amorphous carbon CZTS Ag composite double layer films
Madugu et al. Synthesis and characterisation of CdTe thin films
CN105679881A (en) Preparation method of copper-indium-sulfur thin-film solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
EXPY Expiration of term