KR100201545B1 - Aluminum-manganes alloy with high strength - Google Patents

Aluminum-manganes alloy with high strength Download PDF

Info

Publication number
KR100201545B1
KR100201545B1 KR1019960077641A KR19960077641A KR100201545B1 KR 100201545 B1 KR100201545 B1 KR 100201545B1 KR 1019960077641 A KR1019960077641 A KR 1019960077641A KR 19960077641 A KR19960077641 A KR 19960077641A KR 100201545 B1 KR100201545 B1 KR 100201545B1
Authority
KR
South Korea
Prior art keywords
alloy
strength
aluminum
present
heat exchanger
Prior art date
Application number
KR1019960077641A
Other languages
Korean (ko)
Other versions
KR19980058317A (en
Inventor
조형호
조훈
정원영
Original Assignee
이종구
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종구, 한국생산기술연구원 filed Critical 이종구
Priority to KR1019960077641A priority Critical patent/KR100201545B1/en
Publication of KR19980058317A publication Critical patent/KR19980058317A/en
Application granted granted Critical
Publication of KR100201545B1 publication Critical patent/KR100201545B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

본 발명은 공냉식 열교환기의 소재인 고강도, 고전도도 Al-Mn계 합금에 관한 것으로서 특히 튜브와 핀이 일체형으로 구성되어 있는 공랭식 열교환기를 제작하기위한 고강도, 고전도도, 고절삭성 알루미늄 합금 소재에 관한 것이다.The present invention relates to a high-strength, high-conductivity Al-Mn-based alloy which is a material of an air-cooled heat exchanger. It is about.

본 발명의 목적은 핀-튜브 일체형에 따른 성형성, 절삭성, 내식성등을 동시에 만족시키는 새로운 알루미늄 합금소재의 개발이다.An object of the present invention is the development of a new aluminum alloy material that satisfies the formability, cutting properties, corrosion resistance, etc. according to the pin-tube integrated at the same time.

따라서, 본 발명에서는 Al-Mn계 A3003합금을 기본조성으로 하여 강도의 향상에 의한 박육화를 꾀할 목적으로 Cu, Mn, Ti을 첨가하였고 절삭성을 향상시키기 위하여 Pb를 첨가하였다.Therefore, in the present invention, Al, Mn-based A3003 alloy was used as a basic composition, and Cu, Mn, and Ti were added for the purpose of thinning due to the improvement of strength, and Pb was added to improve the machinability.

Description

열교환기용 고강도, 고전도도 알루미늄-망간계 합금High strength, high conductivity aluminum-manganese alloy for heat exchangers

본 발명은 공냉식 열교환기의 소재인 고강도, 고전도도 Al-Mn계 합금에 관한 것으로서 특히 튜브와 핀이 일체형으로 구성되어 있는 공랭식 열교환기를 제작하기 위한 고강도, 고전도도, 고절삭성 알루미늄 합금 소재에 관한 것이다.The present invention relates to a high-strength, high-conductivity Al-Mn-based alloy, which is a material of an air-cooled heat exchanger. It is about.

일반적으로 알루미늄 합금의 재료별 용도를 선정하는데에는 강도, 내식성, 가공성등의 제성질을 종합하여 검토할 필요가 있다.In general, in selecting the use of aluminum alloys by material, it is necessary to comprehensively examine the properties such as strength, corrosion resistance, and workability.

이러한 항목의 모든 것을 만족시키기는 어려우며 또한 반드시 필요한 특성 및 우선순위를 결정하여 검토하여야 한다.It is difficult to satisfy all of these items, and the necessary characteristics and priorities must be determined and reviewed.

강도만을 놓고 재료를 선정할 때는 일반적으로 순 알루미늄, Al-Mg계, Al-Mg-Si계, Al-Cu계, Al-Zn-Mg계의 순으로 강도가 높아지는데 Al-Mn계의 A3003합금의 경우에는 알루미늄의 순도가 99.0%이상인 일반적인 합금 A1100보다 약 10%정도의 강도향상을 기대할 수 있다.When selecting materials only for strength, the strength is generally increased in the order of pure aluminum, Al-Mg, Al-Mg-Si, Al-Cu, and Al-Zn-Mg. Al-Mn-based A3003 alloy In the case of, it can be expected to improve the strength by about 10% compared to the general alloy A1100, which has a purity of 99.0% or more.

내식성의 측면에서 알루미늄 합금소재를 선정한다면 약품, 식품의 용기와 플랜트에 사용되는 합금재는 순Al계의 합금을 사용하고 더욱 내식성을 요구하는 경우에는 고순도 알루미늄 합금을 사용할 수 있다.If the aluminum alloy material is selected in terms of corrosion resistance, the alloy material used in medicine and food containers and plants may use pure Al-based alloys, and high purity aluminum alloys may be used when more corrosion resistance is required.

한편 담수중에서는 일반적으로 순 Al보다는 오히려 Al-Mn계의 A3003합금이 좋은 결과를 얻는 경우가 있다.In freshwater, on the other hand, Al-Mn-based A3003 alloys, rather than pure Al, generally produce good results.

가공성의 측면에서는, 가정용 기물과 같이 복잡한 형상을 필요로 하는 곳에는 A1100, A3003, A3004계 합금이 일반적으로 사용되고 있다.In terms of processability, A1100, A3003, and A3004 alloys are generally used where a complicated shape is required, such as household articles.

이러한 재료는 형상이 복잡하므로 성분과 제조공정에 특별한 고려가 필요하다.These materials are complex in shape and require special consideration in the components and manufacturing process.

알루미늄 합금은 열간 가공성이 우수하기 때문에 압출가공에 의해 여러 가지 단면형상을 갖는 재료의 제작이 가능하다.Since aluminum alloy has excellent hot workability, it is possible to produce a material having various cross-sectional shapes by extrusion processing.

열전도도를 고려하여 재료를 선정하는 경우에는 66%IACS를 나타내는 순 Al, A1060, 55%IACS를 나타내는 고강도 A6101이 사용된다.When the material is selected in consideration of the thermal conductivity, high Al A6101 representing 66% IACS, A1060, and high strength A6101 representing 55% IACS are used.

반면에 A3003 합금의 경우에는 약 50∼55%IACS의 값을 갖는다.On the other hand, the A3003 alloy has a value of about 50-55% IACS.

상기의 기준을 고려하여 볼 때 튜브-핀 일체형 열교환기용 알루미늄 합금소재가 갖추어야 할 특성은 다음과 같이 요약할 수 있다.Considering the above criteria, the characteristics of the aluminum alloy material for the tube-fin integral heat exchanger can be summarized as follows.

첫째, 튜브 안쪽에는 냉각수가 순환하므로 항상 부식환경에 노출되어 있어서 높은 내식성을 갖는 합금이어야 하며, 둘째, 튜브와 핀이 일체형으로 된 열교환기를 제작하기 위해서는 튜브 외측에 핀의 살부위를 미리 덧붙인 상태로 브리지 다이스(Bridge Dies)를 이용하여 압출가공을 행하여야 하므로 열간 가공성이 우수하여야 하고, 셋째, 제품의 박육화 및 고효율화를 기하기 위해서는 인장강도가 약 13Kg/㎟ 이상의 고강도 합금이어야 하며, 넷째, 튜브 외부에 미리 덧붙여 압출가공된 핀 부위를 쉐이빙(Shaving)공정을 거쳐 절삭 및 성형공정을 거쳐야 하므로 우수한 절삭성을 갖는 합금이어야 한다.First, the cooling water circulates inside the tube, so it is always exposed to the corrosive environment and must be an alloy having high corrosion resistance. Second, in order to manufacture a heat exchanger in which the tube and the fin are integrated, the flesh of the fin is added to the outside of the tube in advance. Extrusion should be performed using bridge dies, so hot workability should be excellent. Third, in order to make the product thinner and more efficient, it should be a high-strength alloy with a tensile strength of about 13Kg / mm2 or more. In addition to the pre-extruded pin portion to be cut and shaved through a shaving process, it must be an alloy having excellent machinability.

본 발명에서는 상기의 요구조건을 모두 만족시키는 합금을 개발하기 위하여 Al-Mn계 A3003 합금을 기본합금으로 채택하였다.In the present invention, Al-Mn-based A3003 alloy was adopted as a base alloy in order to develop an alloy that satisfies all the above requirements.

A3003합금은 A1100합금과 더불어 내식성, 응력부식균열 저항성, 성형성, 용접성등이 매우 우수한 알루미늄 합금이며 강도가 약 10%이상 높은 수치를 나타내는 합금이다.The A3003 alloy is an aluminum alloy that has excellent corrosion resistance, stress corrosion cracking resistance, formability, and weldability along with A1100 alloy.

그러나 A3003합금은 절삭성의 측면에서는 A2014 합금이나 A7075합금에 비해서 상당히 떨어지는 약점을 갖고 있으며, 이러한 단점은 튜브-핀 일체형 열교환기의 쉐이빙공정에 지장을 초래하므로 절삭성을 향상시킬 필요가 있다.However, the A3003 alloy has a weakness compared to the A2014 alloy or the A7075 alloy in terms of machinability, and this disadvantage causes a problem in the shaving process of the tube-fin integral heat exchanger.

본 발명의 목적은 핀-튜브 일체형에 따른 성형성, 절삭성, 내식성등을 동시에 만족시키는 새로운 알루미늄 합금소재의 개발이다.An object of the present invention is the development of a new aluminum alloy material that satisfies the formability, cutting properties, corrosion resistance, etc. according to the pin-tube integrated at the same time.

따라서, 본 발명에서는 Al-Mn계 A3003합금을 기본조성으로 하여 강도의 향상에 의한 박육화를 꾀할 목적으로 Cu, Mn, Ti을 첨가하였고 절삭성을 향상시키기 위하여 Pb를 첨가하였다.Therefore, in the present invention, Al, Mn-based A3003 alloy was used as a basic composition, and Cu, Mn, and Ti were added for the purpose of thinning due to the improvement of strength, and Pb was added to improve the machinability.

본 발명의 알루미늄 합금소재의 화학조성을 표 1에 나타내었으며 기존의 상용합금인 A3003합금의 화학조성을 참고로 표 2에 표시하였다.The chemical composition of the aluminum alloy material of the present invention is shown in Table 1 and shown in Table 2 with reference to the chemical composition of the conventional commercial alloy A3003 alloy.

Al에 Mn을 첨가함으로써 고용강화현상과 미세석출물 분산효과에 의해서 재료의 경화를 유도할 수 있으며 Ti의 첨가는 합금의 석출물을 더욱 미세하고 고루게 분포시키는 역할을 한다.By adding Mn to Al, hardening of the material can be induced by the solid solution strengthening effect and the dispersion of fine precipitates, and the addition of Ti serves to distribute the precipitates of the alloy more finely and evenly.

이하 본 발명의 구성을 그 공정 실시예로서 설명한다.Hereinafter, the configuration of the present invention will be described as the process examples.

표 1에 기재한 합금 1, 합금 2, 합금 3의 조성을 갖는 합금을 일반적인 주조법에 의해 빌렛(Billet)으로 제작하고 550℃에서 12시간동안 균질화 처리한 후 470℃, 500℃, 530℃로 예열하고 열간 압출을 행하였다.Alloys having the composition of Alloy 1, Alloy 2, and Alloy 3 shown in Table 1 were prepared into billets by a general casting method, homogenized at 550 ° C. for 12 hours, and then preheated to 470 ° C., 500 ° C., and 530 ° C. Hot extrusion was performed.

핀-튜브 일체형 열교환기를 제작하기 위해 설계된 브리지 다이스를 이용하였으며 압출가공 후 교정작업을 거쳐 튜브 외부에 핀을 성형하기 위한 쉐이빙(절삭)공정을 수행하였으며 이때의 절삭속도는 0.2m/min 이었다.A bridge die designed to fabricate a fin-tube integral heat exchanger was used, and after shaping, the shaving process was carried out to form a fin on the outside of the tube after calibration. The cutting speed was 0.2m / min.

쉐이빙 공정후 튜브 측면부위를 약 90°의 굽힘각도로 절곡하였으며 굽힘방식은 프레스식 이었다.After the shaving process, the tube side was bent at a bending angle of about 90 ° and the bending method was press.

프레스에 가해지는 압력은 약 35Kgf이었다.The pressure on the press was about 35 Kgf.

압출가공을 행한 결과 본 발명합금은 튜브 내부의 살두께를 약 1㎜까지도 압축할 수 있을 정도로 성형성이 매우 우수함을 알 수 있었고 절삭과정에서도 절삭날의 마모를 유발하거나 불량한 절삭면을 유발하지 않는 등의 특성을 나타내었다.As a result of the extrusion process, the alloy of the present invention was found to have a very good moldability so that the thickness of the inner tube can be compressed to about 1 mm, and the cutting process does not cause the wear of the cutting edge or the bad cutting surface. And the like.

표 3에는 본 발명에서 개발된 각 합금의 기계적 성질을 나타내었다.Table 3 shows the mechanical properties of each alloy developed in the present invention.

Claims (3)

0.6중량%의 Si, 0.5중량%의 Fe, 0.1중량%의 Cu, 0.5중량%의 Mn, 0.25중량%의 Ti, 0.4중량%의 Zn, 0.2중량%의 Pb와 나머지는 알루미늄 및 불가피한 불순물로 이루어지고 인장강도가 15Kg/㎟, 항복강도가 7.0Kg/㎟, 연신율이 24% 이상 브린넬 경도가 38 이상이면서 절삭성이 우수한 것을 특징으로 하는 열교환기용 고강도, 고전도도 알루미늄-망간계 합금.0.6 wt% Si, 0.5 wt% Fe, 0.1 wt% Cu, 0.5 wt% Mn, 0.25 wt% Ti, 0.4 wt% Zn, 0.2 wt% Pb and the remainder consists of aluminum and inevitable impurities High strength, high conductivity aluminum-manganese alloy for heat exchanger, characterized by high tensile strength of 15Kg / mm2, yield strength of 7.0Kg / mm2, elongation of 24% or more, Brinnel hardness of 38 or more, and excellent machinability. 0.6중량%의 Si, 0.5중량%의 Fe, 0.1중량%의 Cu, 0.1중량%의 Mn, 0.25중량%의 Ti, 0.4중량%의 Zn, 0.2중량%의 Pb와 나머지는 알루미늄 및 불가피한 불순물로 이루어지고 인장강도가 16Kg/㎟, 항복강도가 8.0Kg/㎟, 연신율이 24% 이상, 브린넬 경도가 38 이상이면서 절삭성이 우수한 것을 특징으로 하는 열교환기용 고강도, 고전도도 알루미늄-망간계 합금.0.6 wt% Si, 0.5 wt% Fe, 0.1 wt% Cu, 0.1 wt% Mn, 0.25 wt% Ti, 0.4 wt% Zn, 0.2 wt% Pb and the rest consists of aluminum and inevitable impurities High strength, high strength aluminum-manganese alloy for heat exchanger, characterized by high tensile strength of 16Kg / mm2, yield strength of 8.0Kg / mm2, elongation of 24% or more, Brinnel hardness of 38 or more, and excellent machinability. 0.6중량%의 Si, 0.5중량%의 Fe, 0.1중량%의 Cu, 0.1중량%의 Mn, 0.4중량%의 Ti, 0.4중량%의 Zn, 0.2중량%의 Pb와 나머지는 알루미늄 및 불가피한 불순물로 이루어지고 인장강도가 15Kg/㎟, 항복강도가 7.0Kg/㎟, 연신율이 21% 이상, 브린넬 경도가 39 이상이면서 절삭성이 우수한 것을 특징으로 하는 열교환기용 고강도, 고전도도 알루미늄-망간계 합금.0.6 wt% Si, 0.5 wt% Fe, 0.1 wt% Cu, 0.1 wt% Mn, 0.4 wt% Ti, 0.4 wt% Zn, 0.2 wt% Pb and the rest consists of aluminum and inevitable impurities High strength, high strength aluminum-manganese alloy for heat exchanger, characterized by high tensile strength of 15Kg / mm2, yield strength of 7.0Kg / mm2, elongation of 21% or more, Brinnel hardness of 39 or more, and excellent machinability.
KR1019960077641A 1996-12-30 1996-12-30 Aluminum-manganes alloy with high strength KR100201545B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960077641A KR100201545B1 (en) 1996-12-30 1996-12-30 Aluminum-manganes alloy with high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960077641A KR100201545B1 (en) 1996-12-30 1996-12-30 Aluminum-manganes alloy with high strength

Publications (2)

Publication Number Publication Date
KR19980058317A KR19980058317A (en) 1998-09-25
KR100201545B1 true KR100201545B1 (en) 1999-06-15

Family

ID=19492631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960077641A KR100201545B1 (en) 1996-12-30 1996-12-30 Aluminum-manganes alloy with high strength

Country Status (1)

Country Link
KR (1) KR100201545B1 (en)

Also Published As

Publication number Publication date
KR19980058317A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
EP1034318A1 (en) Corrosion resistant and drawable aluminum alloy, article thereof and process of making article
CN100425719C (en) High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
US5522950A (en) Substantially lead-free 6XXX aluminum alloy
US10000828B2 (en) Aluminum alloy having an excellent combination of strength, extrudability and corrosion resistance
JP2005504890A (en) Aluminum alloy for fin material production
RU2203767C2 (en) Method of aluminum alloy strips manufacture by thin-walled continuous casting between rollers
EP0907757A1 (en) Corrosion resistant aluminum alloy
CA3022456C (en) Corrosion resistant alloy for extruded and brazed products
JP2002180171A (en) Aluminum alloy material for piping excellent in corrosion resistance and workability
JPH11217647A (en) High corrosion resistant aluminum alloy excellent in machinability
JP2004124166A (en) Aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability, and production method therefor
FR2819525B1 (en) LAMINATED OR ALUMINUM AL-Mn ALLOY PRODUCTS WITH IMPROVED CORROSION RESISTANCE
KR100201545B1 (en) Aluminum-manganes alloy with high strength
JP2010196089A (en) Extruded pipe of aluminum alloy having high strength and superior stress corrosion cracking resistance for hydroforming process
US20230099382A1 (en) Al-si-fe casting alloys
JPH11152552A (en) Method for working aluminum-zinc-silicon alloy
JP3230685B2 (en) Copper base alloy for heat exchanger
JP3065269B2 (en) Manufacturing method of aluminum alloy tool
US20030196733A1 (en) Cooking utensil made from aluminum alloy strips produced by continuous thin gauge twin roll casting
JPH04354843A (en) Copper base alloy for heat exchanger
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
KR0165927B1 (en) Al-alloy processing superior strength and manufacturing method for the same
Ali Heat Treating of Brasses
JPH101733A (en) Brazing sheet made of aluminum alloy
JPS61136650A (en) Medium strength aluminum alloy having superior extrudability and bendability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050311

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee