KR100197152B1 - 텅스텐-니켈-망간계 중합금의 소결방법 - Google Patents

텅스텐-니켈-망간계 중합금의 소결방법 Download PDF

Info

Publication number
KR100197152B1
KR100197152B1 KR1019960013835A KR19960013835A KR100197152B1 KR 100197152 B1 KR100197152 B1 KR 100197152B1 KR 1019960013835 A KR1019960013835 A KR 1019960013835A KR 19960013835 A KR19960013835 A KR 19960013835A KR 100197152 B1 KR100197152 B1 KR 100197152B1
Authority
KR
South Korea
Prior art keywords
manganese
tungsten
nickel
sintering
temperature
Prior art date
Application number
KR1019960013835A
Other languages
English (en)
Other versions
KR970069198A (ko
Inventor
홍문희
백운형
노준웅
송홍섭
이성
김은표
Original Assignee
배문한
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 배문한, 국방과학연구소 filed Critical 배문한
Priority to KR1019960013835A priority Critical patent/KR100197152B1/ko
Priority to GB9708718A priority patent/GB2312681B/en
Priority to US08/841,717 priority patent/US5970307A/en
Publication of KR970069198A publication Critical patent/KR970069198A/ko
Application granted granted Critical
Publication of KR100197152B1 publication Critical patent/KR100197152B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • B22F3/101Changing atmosphere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases

Abstract

본 발명은 텅스텐-니켈-망간계 중합금의 소결방법에 관한 것으로, 종래에는 800℃에서 60분간 유지하며 텅스텐, 니켈 및 망간의 산화물을 수소 분위기에서 환원하였으나, 망간히 환원되지 못하고 산화물을 형성하여 기공이 발생하므로서 기계적인 강도가 현저히 낮아지는 문제점이 있었던 바, 본 발명의 텅스텐-니켈-망간계 중합금의 소결 방법은 불활성 분위기를 유지하여 텅스텐과 니켈의 환원을 억제하고, 망간이 환원되는 온도에서 수소 분위기로 전환하여 텅스텐, 니켈 및 망간을 동시에 환원시킨 다음, 온도를 올려서 액상소결함으로서 비이론 밀도가 100%인 소결합금을 얻는 효과가 있다.

Description

텅스텐-니켈-망간계 중합금의 소결방법
제1도는 일반적인 텅스텐-니켈-망간계 중합금의 주사현미경(SEM) 미세조직(MICRO-STRUCTURE)사진.
제2도는 단열전단변형(ADIABATIC SHEAR BAND)이 어려운 재료의 고속변형 거동을 나타내는 개념도.
제3도는 단열전단변형이 용이한 재료의 고속변형 거동을 나타내는 개념도.
제4도는 종래 텅스텐-니켈-망간계 중합금의 소결방법을 나타내는 공정도.
제5도는 종래의 소결방법에 의해 제조된 텅스텐-니켈-망간계 중합금의 주사현미경 미세조직사진.
제6도는 본 발명 텅스텐-니켈-망간계 중합금의 소결방법을 나타내는 공정도.
제7도(a)(b)(c)는 본 발명의 소결방법에 의해 제조된 텅스텐-니켈-망간계 중합금의 주사현미경 미세조직사진.
(a)(b)는 질소분위기에서 소결하고, 직정온도에서 수소분위기로 환원하는 경우.
(c)는 수소분위기에서 계속 소결을 진행한 경우.
본 발명은 텅스텐-니켈-망간(W-Ni-Mn)계 중합금의 소결방법에 관한 것으로, 특히 기공(PORE)이 없는 100%의 비이론밀도를 갖는 텅스텐-니켈-망간계 중합금을 제조하기 위한 소결방법에 관한 것이다.
텅스텐-니켈-망간계 중합금은 90%중량% 텅스텐, 0.5중량% 이상의 망간 및 니켈로 구성되어 있다.
이러한 텅스텐-니켈-망간계 중합금은 제1도인 주사현미경 미세조직에 나타낸 바와 같이 구형에 가까운 텅스텐 입자와, 그 텅스텐의 일부가 녹아 있는 니켈-망간-텅스텐의 기지상(matrix phase)으로 구성되어 있다. 텅스텐-니켈-망간계 중합금은 기존의 중합금인 텅스텐-니켈-철(W-Ni-Fe)와 텅스텐-니켈-동(W-Ni-Cu)계 중합금의 철(Fe)과 구리(Cu)대신에 열전전도도(thermal conductivity)가 낮은 망간(Mn)을 첨가함으로써 단열전단변형(adiabatic shear band)이 극대화되도록 설계된 최신의 중합금 재료로서, 군수분야인 운동에너지탄(kinetic energy penetraror)의 관통자 재료로 이용될 수 있다.[A Belhadjhamida and R. M. German, The Effects of Atmosphere, Temperature, and Composition on the Densification and properties of Tungsten-Nickel-Manganese, compiled by J. M. Capus and R. M. German, VOL. 3, MPIF, Princeton, NJ, 1992, pp 47-55.]
한편 운동에너지탄의 관통력과 단열전단변형의 상관관계는 제2도와 제3도에 나타낸 개략도에 의하여 잘 설명될 수 있다[L. S. Magness and T. G. Farrand, Defor mation Behavior and its Relationship to the Penetration Performance of High Density Penetration Materials, Proc. 1990 Army Science Conf., Durham, N. C., May 1990, pp 149-164.]. 단열전단변형이 용이하지 않은 재료는 제2도에 나타낸 바와 같이 관통자가 목표물과 충돌할 때 버섯 모양으로 변형되어(이러한 현상을 mushrooming이라 함), 운동에너지가 상대적으로 넓은 부위로 분산된다. 반면에 제3도에 나타낸 것처럼 관통자가 쉽게 단열전단변형을 하면, 운동에너지가 좁은 부위에 집중되게 된다. 이러한 에너지 집중도의 차이는 관통력과 직접적인 관계가 있으므로, 단열전단변형이 잘 일어나는 관통자 재료의 개발이 필수적이다.
단열전단변형 현상에 영향을 주는 인자로는 열용량(specific heat), 가공경화지수(strain hardening exponent), 열연화 현상(thermal softening), 용융 온도(melting point), 및 열전도도(thermal conductivity) 등이 있다. 이러한 인자들중에 가장 중요한 것은, 단열전단변형이 열전달현상(heat transfer phenomenon)과 밀접한 관계가 있으므로 열전도도로 알려져 있다[A. Bose, H. Couque, J. Lankford, Jr., Influence of Microstructure on Shear Localization in Tungsten Heavy Alloys, ed. by A. Bose and R. J. Dowding, Proc. Tungsten and Tungsten Alloys, MPIF, Princeton, NJ, 1992, pp 291-298.]. 따라서 최근에 열전도도가 극히 낮은 망간(Mn)을 함유한 텅스텐-니켈-망간계 중합금은 큰 관심의 대상이 되고 있으며, 단열전단변형이 용이한 것으로 알려져 있다.
텅스텐-니켈-망간계 중합금은 텅스텐-니켈-철계와 텅스텐-니켈-동계의 중합금과 마찬가지로 분말야금법(power metallurgy)으로 제조되는데, 이와 같은 일반적인 종래 소결방법이 제4도에 도시되어 있는바, 이를 간단히 설명하면 다음과 같다.
제4도에 도시된 바와 같이, 통상적으로 수소 분위기(hydrogen environment)에서 액상소결법(liquid phase sintering)에 의하여 제조되고 있다.
즉, 소결 공정 중 800℃에서 60분간 유지하는 것은 텅스텐-니켈-망간계 중합금의 원료분말들의 표면에 있는 텅스텐, 니켈, 망간의 산화물들을 수소분위기에서 환원하기 위한 것이다.
그러나, 상기와 같은 각 원소들의 산화/환원에 관한 열역학(thermodynamic) 자료에 의하면, 텅스텐과 니켈의 경우에는 이 온도 범위에서 쉽게 환원되는데 비하여 망간은 환원되지 못할 뿐만 아니라, 산화물이 이 안정한 상태에 있게 된다. 이는 텅스텐과 니켈의 환원시에 떨어져 나온 산소가 망간과 반응하여 망간산화물을 형성함을 의미한다. 이 망간산화물은 열역학적으로 안정(stable)하여 쉽게 환원되지 않음으로서, 소결시에 제5도인 주사현미경 미세 조직에 나타낸 바와 같이 잔류 기공들(pores)이 형성되는 단점이 있다.
이러한 잔류 기공은 텅스텐-니켈-망간계 중합금의 기계적 강도를 현저히 낮추어 운동에너지탄의 관통자 소재로 사용되는데는 한계를 갖게 한다.
따라서, 텅스텐-니켈-망간계 중합금을 운동에너지탄에 이용하기 위해서는 기공의 형성을 극소화시켜야 한다. 이를 위하여 기존의 연구자들은 액상소결법이 아닌 VHP(vacuum hot press)법을 사용하거나, 액상소결 후에 HIP(hot isostatic pressin g)이나 열가공처리(thermal mechanical treatment)와 같은 공정을 도입하여 약간의 기공을 줄이는 연구를 수행하고 있다. 그러나 위의 공정을 수행하였음에도 불구하고 비이론 밀도(relative theoretical density)로 98% 이상의 밀도를 얻고 있지 못한 실정이며, VHP법이나 액상소결후 HIP 공정의 경우에는 많은 비용이 드는 단점이 있다.
이에 따라 본 발명은 잔류기공이 없는 100%의 비이론 밀도를 갖는 텅스텐-니켈-망간계 중합금의 소결방법을 제공하는데 그 목적이 있다.
상기와 같은 본 발명의 목적을 달성하기 위하여 90중량% 이상의 텅스텐과 0.1중량% 이상의 망간 및 니켈 분말을 혼합하여 성형한 성형체를 불활성가스가 공급되는 소결노의 내측에 위치시킨 상태에서 온도를 1050℃~1240℃까지 상승시켜서 텅스텐과 니켈의 환원에 의한 망간의 산화를 억제시키는 단계와, 소결노의 분위기를 수소로 변환시켜 10분~24시간 유지하여 텅스텐, 니켈, 망간을 동시에 환원시키는 단계와, 소결노의 온도를 1250℃~1450℃로 상승시켜 10분~24시간동안 유지하여 액상소결을 행하는 단계를 진행함으로써 잔류기공의 생성을 억제함을 특징으로 하는 텅스텐-니켈-망간계 중합금의 소결방법이 제공된다.
여기서, 수소분위기의 전환온도를 1050℃~1240℃로 한정한 이유는 1050℃ 이하에서 분위기를 변화시켜 시편을 제조하는 경우에는 비이론 밀도(표 1의 시편2)가 90%을 나타내는 것을 실험적으로 알 수 있었고, 이와 같은 시편의 경우에 10% 이상의 잔류기공이 존재함을 의미하므로, 이 시편의 경우에는 실용화될 수 없을 것으로 생각되어 배제하였으며, 1240℃로 제한한 이유는 망간의 용융온도가 1246℃이므로 1240℃ 이상에서는 망간의 환원보다는 용융이 일어날 가능성이 있기 때문이다.
수소분위기에서 온도를 10분~24시간으로 한정한 이유는 유지시간이 0.5시간으로 짧은 경우(표 2의 시편11)에는 비이론 밀도가 95% 정도로 낮아짐을 실험적으로 알 수 있었으며, 24시간으로 제한한 이유는 경제적인 면을 고려한 것이다.
액상소결온도를 1250℃~1450℃로 제한한 이유는 망간의 용융온도가 1246℃이므로 액상소결이 효과적으로 일어나기 위해서는 충분한 망간의 용융이 일어나는 1250℃ 이상의 온도가 유지되어야 하며, 망간의 증기압이 매우 높아서 1450℃ 이상의 온도가 유지되면 망간이 휘발되어 조성의 변화가 생길뿐만 아니라 잔류기공이 생성되기도 한다.
액상소결시간을 10분~24시간으로 한정한 이유는 소결시간이 10분 이하로 짧은 경우에는 시편의 각 부위가 평형상태에 도달하지 못하여 불균일 조직의 염려가 있으며, 24시간으로 제한한 것은 경제적인 측면과 망간의 높은 증기압으로 인한 휘발의 가능성이 있기 때문에 실제 적용시 어려움이 있기 때문이다.
이하, 상기와 같은 방법으로 제조된 본 발명 텅스텐-니켈-망간계 중합금의 소결방법을 첨부된 도면의 실시예를 참고하여 보다 상세히 설명하면 다음과 같다.
제6도는 본 발명 텅스텐-니켈-망간계 중합금의 소결방법을 나타내는 공정도로서, 도시된 바와 같이, 본 발명을 90중량% 이상의 텅스텐, 1중량% 이상의 망간 및 니켈 분말을 적절한 비율이 되도록 혼합(mixing), 성형(compacting)하고, 성형체를 불활성 분위기(질소, 헬륨, 알곤)에서 1050-1240℃의 온도까지 상승시킨 후, 소결 분위기를 환원성 분위기(수소)로 교체하여 10분-24시간동안 유지하여 텅스텐, 니켈 및 망간 분말을 동시에 환원하고, 온도를 상승시켜 1250-1450℃에서 액상소결한 다음, 노냉을 하는 방법으로 제조된다.
상기와 같은 공정을 진행하는데 있어서, 가장 바람직하기로는 1100-1240℃의 수소 분위기에서 2-4시간 유지하고, 1270-1400℃에서 30분-2시간 소결한 다음, 노냉한 경우이다.
이와 같은 소결법을 통하여 얻어진 텅스텐-니켈-망간계 중합금은 100%의 비이론 밀도를 나타내며 제7도의 (a)(b)와 같이 기공이 거의 없는 미세조직을 나타낸다.
이상과 같은 본 발명에 있어서, 분위기 가스 및 환원온도에 따른 비이론 밀도의 변화를 실험한 내용을 설명한다.
중량%로서 90%텅스텐-6%니켈-4%망간의 분말조성이 되도록 평량하여 혼합, 성형한 후, 직경 10mm, 두께 20mm의 원통형 성형품을 얻은 다음, 제6도에 도시된 본 발명의 소결방법을 실시하여 아래 표 1의 시편 4를 제조하였다.
위의 시편4와 동일한 소결과정을 수행하되 다만 환원온도를 표 1과 같이 변화시켜 텅스텐, 니켈 및 망간 분말의 환원을 유도하여 시편 2,3,5,6을 제조하였다. 또한 제6도와 같은 소결공정을 수행하되 전체 공정을 수소 분위기에서 유지하여 시편 7을 제조하였다.
상기와 같은 조건에서의 소결을 실시하여 얻어진 시편들에 대한 비이론 밀도의 측정결과를 상기 표 1에 나타내었다.
여기서, 밀도의 측정은 수중부유법(Archimedean method)에 의하여 측정하였으며, 각 조건당 5개 이상의 시험결과로부터 평균값을 구하였다.
표 1에서 보는 바와 같이 본 발명의 소결법을 통하여 얻어진 시편들은 종래의 방법에 의하여 얻어진 시편(시편1)에 비하여 밀도가 증가되어 1150℃ 이상의 환원온도에서는 100%의 비이론 밀도를 나타내고 있음을 알 수 있다. 또한 전체 분위기를 수소분위기로 유지한 경우(시편 7)에는 낮은 소결밀도를 나타내고 있음을 알 수 있다. 이는 승온 분위기가 수소인 경우에는 텅스텐과 니켈이 환원되면서 망간을 산화시키지만, 질소인 경우에는 텅스텐과 니켈의 환원이 억제되어 망간이 산화되지 않기 때문이다.
위의 과정에 의하여 소결된 시편의 미세조직사진은 분위기의 영향을 보다 명확하게 보여준다. 제7도의 (a)(b)(c)는 각각 시편 4,3,7에 대한 미세조직을 나타낸 사진이다. 제7도의 (c)에서 보는 바와 같이 수소 분위기에서 승온한 경우에는(시편7) 미환원된 망간에 의한 기공(흰부분)이 관찰되는데 비하여, 질소 분위기를 유지하다가 적절한 환원온도에 수소로 변화시킨 경우에는 제7도의 (a)(b)에서와 같이 기공이 거의 없음을 알 수 있다(시편3과 4).
다음은 본 발명에서 환원 온도까지의 승온 속도의 영향을 알아보기 위하여 상기 표 1에서 시편4와 동일한 소결을 수행하되 단기 환원온도까지의 승온속도를 분당 5℃와 10℃의 두가지로 변화시켜 시편을 제조하여 비이론 밀도를 조사하였다.
또한 환원온도에서의 유지시간의 영향을 알아보기 위하여 상기 표 1에서 시편4와 동일한 소결을 수행하되 단지 유지시간을 30분과 1시간의 두가지로 변화시켜 시편을 제조하여 비이론 밀도를 조사하였다.
이와 같은 실험을 통하여 얻어진 연구결과를 표 2에 나타내었다.
표 2에서와 같이 승온 속도가 분당 5에서 10℃로 변화하여도 비이론 밀도는 100%로 동일한 값을 나타냄을 알 수 있다. 그러나, 환원온도에서의 유지시간은 소결된 시편의 비이론 밀도에 큰 영향을 미치고 있음을 알 수 있다. 즉, 표 1에서 시편4와 표 2에서 시편10과 11을 비교하면 환원온도에서 유지시간이 증가함에 따라 비이론 밀도가 증가함을 알 수 있다. 이는 100%의 비이론 밀도를 갖는 소결체를 제조하기 위해서는 환원온도에서 충분한 시간을 유지하여야함을 의미한다.
다음은 조성이 다른 중합금에 본 발명인 소결법의 효과를 알아보기 위해, 중량%로서 90%텅스텐-4%니켈-6%망간, 93%텅스텐-1.4%니켈-5.6%망간, 93%텅스텐-2.1%니켈-4.9%망간의 조성을 갖는 텅스텐-니켈-망간계 중합금을 상기 표 1에서 시편 4와 동일한 방법으로 혼합, 성형 및 소결을 행하여 얻은 비이론 밀도의 값을 표 3에 나타내었다.
표 3에서와 같이 텅스텐-니켈-망간계 중합금의 조성에 거의 무관하게 본 발명의 소결법에 의하여 거의 100%의 비이론 밀도를 갖는 소결체가 제조됨을 알 수 있다.
이와 같은 소결법은 텅스텐-니켈-망간계 중합금의 소결에만 한정되는 것은 아니며, 망간과 같이 환원이 쉽게 되지 않는 크롬(Cr)과 같은 원소가 포함되어 있는 합금계의 소결에도 적용될 수 있으며, W-Ni-Mn, W-Ni-Cr, W-Ni-Fe-Cr, W-Ni-Mn-Cr계 중합금이 그 예가 될 것이다.

Claims (2)

  1. 90중량% 이상의 텅스텐 0.1중량% 이상의 망간 및 니켈 분말을 혼합하여 성형한 성형체를 불활성가스가 공급되는 소결노의 내측에 위치시킨 상태에서 온도를 1050℃~1240℃까지 상승시켜서 텅스텐과 니켈의 환원에 의한 망간의 산화를 억제시키는 단계와, 소결노의 분위기를 수소로 변환시켜 10분~24시간 유지하여 텅스텐, 니켈, 망간을 동시에 환원시키는 단계와, 소결노의 온도를 1250℃~1450℃로 상승시켜 10분~24시간동안 유지하여 액상소결을 행하는 단계를 진행함으로써 잔류기공의 생성을 억제함을 특징으로 하는 텅스텐-니켈-망간계 중합금의 소결방법.
  2. 제1항에 있어서, 상기 불활성 분위기의 가스로는 질소(N2), 알곤(Ar), 헬륨(He)중 어느 하나를 사용하는 것을 특징으로 하는 텅스텐-니켈-망간계 중합금의 소결방법.
KR1019960013835A 1996-04-30 1996-04-30 텅스텐-니켈-망간계 중합금의 소결방법 KR100197152B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019960013835A KR100197152B1 (ko) 1996-04-30 1996-04-30 텅스텐-니켈-망간계 중합금의 소결방법
GB9708718A GB2312681B (en) 1996-04-30 1997-04-29 Sintering method for tungsten-nickel-manganese type heavy alloy
US08/841,717 US5970307A (en) 1996-04-30 1997-04-30 Sintering method for tungsten-nickel-manganese type heavy alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960013835A KR100197152B1 (ko) 1996-04-30 1996-04-30 텅스텐-니켈-망간계 중합금의 소결방법

Publications (2)

Publication Number Publication Date
KR970069198A KR970069198A (ko) 1997-11-07
KR100197152B1 true KR100197152B1 (ko) 1999-06-15

Family

ID=19457329

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960013835A KR100197152B1 (ko) 1996-04-30 1996-04-30 텅스텐-니켈-망간계 중합금의 소결방법

Country Status (3)

Country Link
US (1) US5970307A (ko)
KR (1) KR100197152B1 (ko)
GB (1) GB2312681B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322264B1 (en) * 2007-02-13 2012-12-04 The United States Of America As Represented By The Secretary Of The Army Controlled plastic venting for low-recoil gun systems
CN102965532B (zh) * 2012-11-28 2014-10-08 中南大学 一种全致密W-Ni-Mn重合金的制造方法
CN102974823B (zh) * 2012-12-12 2015-05-20 广汉川冶新材料有限责任公司 一种高比重合金的烧结方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292651A (en) * 1969-01-17 1972-10-11 Atomic Energy Authority Uk Improvements in or relating to sintering
US3988118A (en) * 1973-05-21 1976-10-26 P. R. Mallory & Co., Inc. Tungsten-nickel-iron-molybdenum alloys
US4986961A (en) * 1988-01-04 1991-01-22 Gte Products Corporation Fine grain tungsten heavy alloys containing additives
US5145512A (en) * 1989-01-03 1992-09-08 Gte Products Corporation Tungsten nickel iron alloys
US5603073A (en) * 1991-04-16 1997-02-11 Southwest Research Institute Heavy alloy based on tungsten-nickel-manganese
US5342573A (en) * 1991-04-23 1994-08-30 Sumitomo Electric Industries, Ltd. Method of producing a tungsten heavy alloy product
US5334341A (en) * 1992-05-27 1994-08-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for controlling carbon content of injection molding steels during debinding
US5338506A (en) * 1992-12-21 1994-08-16 Valenite Inc. Process for making non-magnetic nickel tungsten carbide cemented carbide compositions and articles made from the same
JP3443175B2 (ja) * 1993-07-23 2003-09-02 アスラブ・エス アー 焼結によるチタン部品の製造方法およびこの種の製造方法を用いて作られる装飾品

Also Published As

Publication number Publication date
GB2312681B (en) 2000-05-17
US5970307A (en) 1999-10-19
KR970069198A (ko) 1997-11-07
GB9708718D0 (en) 1997-06-18
GB2312681A (en) 1997-11-05

Similar Documents

Publication Publication Date Title
He et al. Full-density nanocrystalline Fe–29Al–2Cr intermetallic consolidated from mechanically milled powders
Igharo et al. Compaction and sintering phenomena in titanium—nickel shape memory alloys
McNeese et al. Processing of TiNi from elemental powders by hot isostatic pressing
Bram et al. Powder metallurgical fabrication processes for NiTi shape memory alloy parts
Niu et al. Breaking through the strength-ductility trade-off dilemma in powder metallurgy Ti–6Al–4V titanium alloy
US5000779A (en) Palladium based powder-metal alloys and method for making same
Bhaumik et al. Reaction sintering of NiAl and TiB2–NiAl composites under pressure
Rabin et al. Microstructure and tensile properties of Fe 3 Al produced by combustion synthesis/hot isostatic pressing
US5269830A (en) Process for synthesizing compounds from elemental powders and product
Ishijima et al. Microstructure and bend ductility of W-0.3 mass% TiC alloys fabricated by advanced powder-metallurgical processing
Paransky et al. Pressure-assisted reactive synthesis of titanium aluminides from dense 50Al-50Ti elemental powder blends
KR100197152B1 (ko) 텅스텐-니켈-망간계 중합금의 소결방법
Murray et al. Reactive Sintering and Reactive Hot Isostatic Compaction of Niobium Aluminide NbAl3
Livne et al. Consolidation of nanoscale iron powders
CL et al. Microstructures and mechanical properties of Nb/Nb-silicide in-situ composites synthesized by reactive hot pressing of ball milled powders
Zhang et al. Deformability and microstructure transformation of PM TiAl alloy prepared by pseudo-HIP technology
Pérez et al. Influence of the powder particle size on tensile properties of Ni3Al processed by rapid solidification and hot isostatic pressing
US2947068A (en) Aluminum base powder products
Wang Properties of high density powder forged iron based alloy
KR20040091627A (ko) 안정화된 입자 크기의 난융 금속 분말 야금 밀 제품
Islam Variation of the mechanical properties of tungsten heavy alloys tested at different temperatures
KR100186931B1 (ko) 텅스텐 중합금의 제조방법
Ferreira et al. Dynamic compaction of titanium aluminides by explosively generated shock waves: Microstructure and mechanical properties
CN115961166B (zh) 利用Ti2Ni、TiNi3中间合金制备TiNi合金的方法
Yoon et al. Mechanical alloying of dispersion-hardened Ni3Al-B from elemental powder mixtures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140204

Year of fee payment: 16