KR0184509B1 - Thin film transistor and its fabrication method - Google Patents

Thin film transistor and its fabrication method Download PDF

Info

Publication number
KR0184509B1
KR0184509B1 KR1019960017528A KR19960017528A KR0184509B1 KR 0184509 B1 KR0184509 B1 KR 0184509B1 KR 1019960017528 A KR1019960017528 A KR 1019960017528A KR 19960017528 A KR19960017528 A KR 19960017528A KR 0184509 B1 KR0184509 B1 KR 0184509B1
Authority
KR
South Korea
Prior art keywords
conductive layer
insulating film
insulating
thin film
film transistor
Prior art date
Application number
KR1019960017528A
Other languages
Korean (ko)
Other versions
KR970077363A (en
Inventor
정규철
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019960017528A priority Critical patent/KR0184509B1/en
Publication of KR970077363A publication Critical patent/KR970077363A/en
Application granted granted Critical
Publication of KR0184509B1 publication Critical patent/KR0184509B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78678Polycrystalline or microcrystalline silicon transistor with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • H10B10/125Static random access memory [SRAM] devices comprising a MOSFET load element the MOSFET being a thin film transistor [TFT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

[청구범위에 기재된 발명이 속한 기술분야][Technical field to which the invention described in the claims belong]

본 발명은 박막 트랜지스터에 관한 것이다.The present invention relates to a thin film transistor.

[발명이 해결하려고 하는 기술적 과제][Technical Challenges to Invent]

본 발명은 하부 게이트 TFT의 채널 도전층을 채널 영역과 소오스 및 드레인 영역을 분리 형성하여 부정합을 제거하여 안정된 특성을 가지며 또한 오프셋 영역을 게이트 도전층과 수직으로 형성하여 SRAM 쎌의 고집적화를 가질 수 있는 TFT 및 그 제조 방법을 제공한다.According to the present invention, the channel conduction layer of the lower gate TFT is formed by separating the channel region and the source and drain regions to remove mismatches, and the offset region is formed perpendicularly to the gate conduction layer to achieve high integration of the SRAM. Provided are a TFT and a method of manufacturing the same.

[발명의 해결방법의 요지][Summary of the solution of the invention]

본 발명은 게이트 도전층 상부에 채널을 가지는 박막 트랜지스터에 있어서, 상기 게이트 도전층 상부표면 양끝단의 소정거리의 안쪽부분과 상기 게이트 도전층을 제외한 기판 상부표면에, 상기 기판으로부터 상기 게이트 도전층 상부표면 높이에서 소정 높이까지 형성된 제1절연막과, 상기 게이트 도전층 상부표면과 상기 제1절연막 측벽을 따라 소정 두께를 가지며 오프셋 영역의 길이만큼 상기 제1절연막의 상부표면 높이와 동일한 높이로 형성된 제2절연막과, 상기 제2절연막의 상부표면 및 측벽을 따라 소정 두께로 형성된 제1도전층과, 상기 제1채널 도전층의 상부표면 및 측벽을 따라 상기 제1절연막의 상부표면 높이와 동일한 높이까지 채워져 형성된 제3절연막과, 상기 제3절연막을 사이에 두고 상기 제1절연막 양쪽 상부표면에서 상기 제3절연막 상부표면의 소정 부분까지 소정 두께로 각각 분리 형성된 제2도전층을 가짐을 특징으로 한다.According to an aspect of the present invention, there is provided a thin film transistor having a channel on an upper portion of a gate conductive layer, wherein the gate conductive layer is disposed on the upper surface of the substrate except for the gate conductive layer and the inner portion of a predetermined distance at both ends of the upper surface of the gate conductive layer. A first insulating film formed from a surface height to a predetermined height, a second thickness formed along a top surface of the gate conductive layer and sidewalls of the first insulating film, and a second thickness formed at the same height as the upper surface height of the first insulating film by a length of an offset region; An insulating film, a first conductive layer formed to a predetermined thickness along the upper surface and sidewalls of the second insulating film, and filled to the same height as the upper surface height of the first insulating film along the upper surface and sidewalls of the first channel conductive layer; The third insulating film formed on both upper surfaces of the first insulating film and the third insulating film formed therebetween; It characterized by up to a predetermined portion of the surface portion having a second conductive layer formed separately from each other to a desired thickness.

[발명의 중요한 용도][Important Uses of the Invention]

본 발명은 박막 트랜지스터에 적합하게 사용된다.The present invention is suitably used for thin film transistors.

Description

박막 트랜지스터 및 그 제조 방법Thin film transistor and method of manufacturing the same

제1도는 종래 기술의 일실시예에 따른 하부 게이트 TFT를 보여주는 단면도.1 is a cross-sectional view showing a lower gate TFT according to an embodiment of the prior art.

제2a∼f도는 본 발명의 일실시예에 따른 TFT 제조 공정 순서를 보여주는 공정 단면도.2A to 2F are cross-sectional views showing a TFT manufacturing process sequence according to an embodiment of the present invention.

본 발명은 박막 트랜지스터에 관한 것으로, 특히 스태틱 램(Static Random Access Memory: 이하 SRAM이라 칭함)의 부하소자로 사용되는 박막 트랜지스터(Thin Film Transistor: 이하 TFT라 칭함) 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to thin film transistors, and more particularly, to thin film transistors (hereinafter referred to as TFTs) used as load elements of static random access memories (hereinafter referred to as SRAMs) and methods of manufacturing the same.

일반적으로, SRAM은 다이나믹 램(Dynamic Random Access Memory: 이하 DRAM이라 칭함)에 비하여 집적도가 떨어지는 반면, 리프레쉬(Refresh) 과정이 필요없어 동작 속도가 빠를 뿐만 아니라 소비 전력이 작다는 잇점이 있다. 따라서 반도체 메모리 분야에서 널리 이용되고 있다. 반도체 메모리 장치에서 SRAM의 부하 소자로써 사용되는 TFT의 제조는 4메가(Mega)급 이상의 저전력 소비 및 고집적 제품군에서는 필수적인 요소 기술이다. TFT는 그 구조에 따라 실리콘 게이트(Silicon Gate) 도전층이 채널 도전층 예를들면 제1 및 제2도전층 상부에 위치하게 되면 상부 게이트(Top Gate) TFT라 하며, 실리콘 게이트 도전층이 채널 도전층 하부에 위치하게 되면 하부 게이트(Bottom Gate) TFT라 한다. 일반적으로 공정 아키텍쳐 구현이 용이한 하부 게이트 TFT가 널리 실용화되고 있다. 그러나 TFT는 채널 도전층이 일반적인 실리콘 단결정(Single Crystal)으로 사용되는 벌크(Bulk) 트랜지스터와는 달리, 비정질(Amorphous) 실리콘으로 구성되어 있어 적절한 공정 조건에서만 최적의 트랜지스터 특성을 구현할 수 있다. 이와 같은 특성 최적화는 대기시 낮은 소비전력을 얻기 위해 낮은 오프(Off) 전류와 메모리 쎌(Memory Cell)의 데이터를 안정되게 유지하기 위해 높은 온(On) 전류특성을 동시에 만족시켜야 한다. 특성 최적화를 위해 즉, 낮은 오프전류를 얻기 위해 박막 트랜지스터에 오프셋(Offset) 영역을 형성시키는 방법과 채널 두께를 줄이는 방법등이 이용되고 있으며, 높은 온(On) 전류를 얻기 위해서 오프셋 영역을 도핑(Doping)시키는 방법과 박막 트랜지스터의 게이트 절연막 두께를 줄이는 방법등이 시도되고 있다.In general, while SRAM has a lower density than Dynamic Random Access Memory (DRAM), it does not require a refresh process, and thus, the operation speed is fast and power consumption is low. Therefore, it is widely used in the field of semiconductor memory. The manufacture of TFTs used as load elements of SRAMs in semiconductor memory devices is an essential element technology for low power consumption and high integration products of more than 4 Mega class. The TFT is called a top gate TFT when the silicon gate conductive layer is positioned above the channel conductive layer, for example, the first and second conductive layers, according to the structure thereof. The silicon gate conductive layer is a channel conductive layer. When positioned below the layer, it is called a bottom gate TFT. In general, a lower gate TFT having an easy process architecture implementation has been widely used. However, unlike bulk transistors in which the channel conductive layer is used as a single silicon, the TFT is composed of amorphous silicon, so that the optimal transistor characteristics can be realized only under appropriate process conditions. This characteristic optimization must satisfy both the low off current and the high on current characteristics in order to keep the data of the memory cell stable in order to obtain low power consumption during standby. In order to optimize the characteristics, that is, a method of forming an offset region in a thin film transistor to obtain a low off current and a method of reducing a channel thickness, etc., doping an offset region to obtain a high on current Doping) and a method of reducing the thickness of the gate insulating film of the thin film transistor have been attempted.

제1도는 종래 기술의 일실시예에 따른 하부 게이트 TFT를 보여주는 단면도이다. 제1도를 참조하면, 채널 도전층 3의 형성 후 TFT의 소오스(Source) 영역 9-1 및 드레인(Drain) 영역 9-2를 주입 마스크(Implant Mask)를 사용하여 형성시키므로, 소오스 9-1 및 드레인 9-1 영역과 하부 채널 도전층간에 부정합(Misalign)이 발생하기 쉬운 문제점이 있다. 이로 인하여 오프셋 길이도 일정하게 유지하기 힘들게 되어, TFT의 문턱전압(Vt) 변화 및 쎌 내의 TFT 특성의 비조화(Mismatch)와 같은 SRAM 쎌의 특성 저하가 발생하는 문제점이 있다. 또한 종래의 하부 게이트 TFT에서는 오프셋 영역이 게이트 도전층 영역 3과 나란히 형성되어 반도체 메모리 장치를 고집적화 하는데 불리한 문제점이 있다.1 is a cross-sectional view showing a lower gate TFT according to an embodiment of the prior art. Referring to FIG. 1, since the source region 9-1 and the drain region 9-2 of the TFT are formed using the implant mask after the formation of the channel conductive layer 3, the source 9-1 is formed. And misalignment between the drain 9-1 region and the lower channel conductive layer. This makes it difficult to keep the offset length constant, resulting in a problem of deterioration of the characteristics of the SRAM fin such as a change in the threshold voltage Vt of the TFT and mismatch of TFT characteristics in the fin. In addition, in the conventional lower gate TFT, an offset region is formed in parallel with the gate conductive layer region 3, which is disadvantageous in high integration of the semiconductor memory device.

따라서, 본 발명의 목적은 하부 게이트 TFT의 채널 도전층을 채널 영역과 소오스 및 드레인 영역을 분리 형성하여 부정합을 제거하여 안정된 특성을 가지는 TFT 및 그 제조 방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a TFT having a stable characteristic by forming a channel conductive layer of a lower gate TFT separately from a channel region and a source and drain region to remove mismatches, and a method of manufacturing the same.

본 발명의 다른 목적은 주입 마스크를 사용하여 소오스 및 드레인 영역을 형성시키지 않음으로써 소오스 및 드레인 영역 형성시 발생하는 부정합을 제거하여 안정된 특성을 가지는 TFT 및 그 제조 방법을 제공함에 있다.Another object of the present invention is to provide a TFT and a method of manufacturing the same, which do not form a source and a drain region by using an injection mask, thereby eliminating mismatches generated when the source and drain regions are formed.

본 발명의 또다른 목적은 오프셋 영역이 게이트 도전층과 수직으로 형성되게 하여 SRAM 쎌의 고집적화를 유리하게 하는 TFT 및 그 제조 방법을 제공함에 있다.It is still another object of the present invention to provide a TFT and a method for manufacturing the same, in which an offset region is formed perpendicular to the gate conductive layer, which favors high integration of the SRAM fin.

상기한 목적들을 달성하기 위한 본 발명의 기술적 사상에 따르면, 게이트 도전층 상부에 채널을 가지는 박막 트랜지스터에 있어서, 상기 게이트 도전층 상부표면 양끝단의 소정거리의 안쪽부분과 상기 게이트 도전층을 제외한 기판 상부표면에, 상기 기판으로부터 상기 게이트 도전층 상부표면 높이에서 소정 높이까지 형성된 제1절연막과, 상기 게이트 도전층 상부표면과 상기 제1절연막 측벽을 따라 소정 두께를 가지며 오프셋 영역의 길이만큼 상기 제1 절연막의 상부표면 높이와 동일한 높이로 형성된 제2절연막과, 상기 제2절연막의 상부표면 및 측벽을 따라 소정 두께로 형성된 제1도전층과, 상기 제1채널 도전층의 상부표면 및 측벽을 따라 상기 제1절연막의 상부표면 높이와 동일한 높이까지 채워져 형성된 제3절연막과, 상기 제3절연막을 사이에 두고 상기 제1절연막 양쪽 상부표면에서 상기 제3절연막 상부표면의 소정 부분까지 소정 두께로 각각 분리 형성된 제2도전층을 가지는 것을 특징으로 한다.According to the technical idea of the present invention for achieving the above objects, in the thin film transistor having a channel on the gate conductive layer, the substrate excluding the inner portion of the predetermined distance of both ends of the upper surface of the gate conductive layer and the gate conductive layer A first insulating film formed on an upper surface of the gate conductive layer from an upper surface of the gate conductive layer to a predetermined height from the substrate, and having a predetermined thickness along the upper surface of the gate conductive layer and the sidewall of the first insulating film and having a predetermined thickness along the length of the offset region; A second insulating film formed at the same height as an upper surface of the insulating film, a first conductive layer formed to a predetermined thickness along the upper surface and sidewalls of the second insulating film, and along the upper surface and sidewalls of the first channel conductive layer; A third insulating film filled with the same height as the upper surface of the first insulating film, and the third insulating film And to the first side of the top surface in the first insulating film characterized by having a second conductive layer formed, each separated by a predetermined thickness to the predetermined portion of the top surface of the third insulating film.

이하 본 발명의 바람직한 실시예들의 상세한 설명이 첨부된 도면들을 참조하여 설명된다.DETAILED DESCRIPTION A detailed description of preferred embodiments of the present invention will now be described with reference to the accompanying drawings.

도면들중 동일한 구성요소 및 부분들은 가능한한 어느곳에서든지 동일한 부호들을 나타내고 있음을 유의하여야 한다.It should be noted that like elements and parts in the figures represent the same numerals wherever possible.

제2a∼f도는 본 발명의 일실시예에 따른 TFT 제조 공정 순서를 보여주는 공정 단면도이다. 제 2a∼f도를 참조하면, 폴리 실리콘(Poly Silicon) 또는 비정질 실리콘으로 게이트 도전층 3을 형성한 후 제1절연막 5를 상기 게이트 도전층 3 및 기판 상부에 침적(Deposition)하고 게이트 형성할 부분을 소정 부분 식각하여 접촉구(Contact)를 형성한다(a). 여기서 침적한 절연막의 두께로 오프셋 길이가 결정된다. 상기 형성된 접촉구에 제2절연막 예를들면 게이트 절연막 7을 침적한 후 폴리 실리콘이나 비정질 실리콘으로 제1도전층 9를 상기 게이트 절연막 7의 상부에 침적하고, TFT의 특성 최적화를 위해 채널 이온 주입을 위하여 채널을 형성한다(b). 상기 형성된 제1도전층 9의 상부에 제3절연막 11을 두껍게 침적한다(c). 이후 기계 및 화학적 폴리싱(Chemical Mechanical Polishing: 이하 CMP이라 칭함) 공정으로 게이트 절연막 7 하부에 위치하는 제1절연막 5의 상부표면이 노출될때 까지 폴리싱한다(d). 또한 상기 CMP의 양으로 오프셋 길이를 조절할 수 있다. 이후 전술한 바와 같이 형성한 패턴(Pattern) 위에 폴리 실리콘이나 비정질 실리콘으로 제2도전층 13을 전체 상부 표면에 침적시키고 그 위에서 소오스 13-1 및 드레인 13-2를 형성하기 위한 이온 주입을 한다(e). 그리고 나서 채널의 패턴을 상기 제3절연막 11이 노출되도록 사진 식각을 통하여 형성한다(f).2A to 2F are cross-sectional views illustrating a TFT manufacturing process sequence according to an embodiment of the present invention. Referring to FIGS. 2A through F, a portion in which a gate conductive layer 3 is formed of polysilicon or amorphous silicon, and a first insulating layer 5 is deposited on the gate conductive layer 3 and the substrate, and the gate is formed. Etching a predetermined portion to form a contact (At contact) (a). Here, the offset length is determined by the thickness of the deposited insulating film. A second insulating layer, for example, a gate insulating layer 7 is deposited on the formed contact hole, and then a first conductive layer 9 is deposited on the upper portion of the gate insulating layer 7 with polysilicon or amorphous silicon, and channel ion implantation is performed to optimize the characteristics of the TFT. To form a channel (b). The third insulating layer 11 is thickly deposited on the formed first conductive layer 9 (c). Subsequently, by performing a mechanical mechanical polishing (CMP) process, polishing is performed until the upper surface of the first insulating film 5 positioned below the gate insulating film 7 is exposed (d). It is also possible to adjust the offset length by the amount of CMP. Subsequently, the second conductive layer 13 is deposited on the entire upper surface of the pattern formed as described above with polysilicon or amorphous silicon and ion implanted to form the source 13-1 and the drain 13-2 thereon ( e). Then, the channel pattern is formed by photolithography to expose the third insulating layer 11 (f).

결과적으로, SRAM에 있어서 메모리 쎌의 데이터를 안정되게 유지하고, 대기시 소비전류를 낮게 억제하기 위해서 메모리 쎌의 로드(Load) 소자로 TFT 소자를 사용하게 된다.As a result, the TFT element is used as the load element of the memory V to keep the data of the memory V stable in the SRAM and to suppress the standby current consumption.

따라서 상기한 본 발명에 따르면, 주입 마스크를 사용하여 소오스 및 드레인 영역을 형성하지 않음으로써 소오스 및 드레인 영역 형성시 발생하는 미스얼라인 문제를 근본적으로 해결하고, 또한 오프셋 영역을 게이트 도전층과 수직으로 형성하여 SRAM 쎌의 고집적화에도 유리한 효과가 있다.Therefore, according to the present invention described above, the source and drain regions are not formed using the implant mask, thereby fundamentally solving the misalignment problem generated when the source and drain regions are formed, and the offset region is perpendicular to the gate conductive layer. It also has a beneficial effect on high integration of SRAM fins.

상기한 본 발명은 도면을 중심으로 예를들어 한정되었지만, 그 동일한 것은 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러가지 변화와 변형이 가능함이 본 분야의 숙련된 자에게 있어 명백할 것이다.Although the present invention described above has been limited to, for example, the drawings, the same will be apparent to those skilled in the art that various changes and modifications can be made without departing from the technical spirit of the present invention.

Claims (11)

게이트 도전층 상부에 채널을 가지는 박막 트랜지스터에 있어서, 상기 게이트 도전층 상부표면 양끝단의 소정거리의 안쪽부분과 상기 게이트 도전층을 제외한 기판 상부표면에, 상기 기판으로부터 상기 게이트 도전층 상부표면 높이에서 소정 높이까지 형성된 제1절연막과, 상기 게이트 도전층 상부표면과 상기 제1절연막 측벽을 따라 소정 두께를 가지며 오프셋 영역의 길이만큼 상기 제1절연막의 상부표면 높이와 동일한 높이로 형성된 제2절연막과, 상기 제2절연막의 상부표면 및 측벽을 따라 소정 두께로 형성된 제1도전층과, 상기 제1채널 도전층의 상부표면 및 측벽을 따라 상기 제1절연막의 상부표면 높이와 동일한 높이까지 채워져 형성된 제3절연막과, 상기 제3절연막을 사이에 두고 상기 제1절연막 양쪽 상부표면에서 상기 제3절연막 상부표면의 소정 부분까지 소정 두께로 각각 분리 형성된 제2도전층을 포함함을 특징으로 하는 박막 트랜지스터.A thin film transistor having a channel over a gate conductive layer, the thin film transistor having a channel on an inner surface of a predetermined distance at both ends of an upper surface of the gate conductive layer and an upper surface of the substrate excluding the gate conductive layer at a height above the gate conductive layer from the substrate. A first insulating film formed to a predetermined height, a second insulating film formed along the upper surface of the gate conductive layer and the sidewall of the first insulating film, and having a predetermined thickness and the same height as that of the upper surface of the first insulating film by the length of the offset region; A first conductive layer having a predetermined thickness along the upper surface and sidewalls of the second insulating layer, and a third formed by filling up to the same height as the upper surface of the first insulating layer along the upper surface and sidewalls of the first channel conductive layer; The upper surface of the third insulating film on both upper surfaces of the first insulating film with an insulating film and the third insulating film interposed therebetween; And a second conductive layer, each of which is formed to a predetermined portion and has a predetermined thickness. 제1항에 있어서, 상기 오프셋 영역이 상기 제2, 제3절연막 및 제1도전층으로 수직 형성됨을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1, wherein the offset region is vertically formed with the second and third insulating layers and the first conductive layer. 제2항에 있어서, 상기 오프셋 영역이 상기 폴리싱된 양에 의해 길이가 결정됨을 특징으로 하는 박막 트랜지스터.3. The thin film transistor of claim 2, wherein the offset region is determined by a length of the polished amount. 제1항에 있어서, 상기 제1도전층 및 제2도전층이 상기 게이트 도전층과 동일한 도핑물질로써 이온 주입된 폴리 실리콘 또는 비정질 실리콘으로 이루어짐을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1, wherein the first conductive layer and the second conductive layer are made of polysilicon or amorphous silicon ion-implanted with the same doping material as the gate conductive layer. 제1항 또는 제4항에 있어서, 상기 제1 및 제2도전층이 도우너 또는 억셉터 물질로 이온 주입됨을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1 or 4, wherein the first and second conductive layers are ion implanted with a donor or acceptor material. 제1항에 있어서, 상기 제1, 제2 및 제3절연막이 실리콘 산화막으로 이루어짐을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1, wherein the first, second, and third insulating films are formed of a silicon oxide film. 제1항에 있어서, 상기 제1, 제2 및 제3절연막이 실리콘 질화막으로 이루어짐을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1, wherein the first, second, and third insulating films are made of a silicon nitride film. 제1항에 있어서, 상기 제2도전층이 소오스 영역 및 드레인 영역으로 각각 분리됨을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1, wherein the second conductive layer is divided into a source region and a drain region, respectively. 박막 트랜지스터의 제조 방법에 있어서, 게이트 도전층 상부표면과 기판 상부표면을 오프셋 영역의 길이만큼 소정 두께로 제1절연막을 침적하며, 상기 제1절연막을 상기 게이트 도전층 상부표면까지 상기 게이트 도전층 길이만큼 식각하여 접촉구를 형성하는 과정과, 상기 제1절연막의 상부표면과 상기 게이트 도전층 상부표면에 걸쳐 소정 두께로 제2절연막을 침적하는 과정과, 상기 제2절연막의 상부표면상에 제1도전층을 침적하며 도전물질로써 이온 주입을 통하여 소정 두께의 채널을 형성하는 과정과, 상기 제1도전층 상부표면상에 소정 두께로 제3절연막을 형성하는 과정과, 상기 제1절연막 상부표면까지 소정 부분을 폴리싱하여 상기 제1, 2, 3 절연막 및 제1도전층의 상부표면을 노출시키는 과정과, 상기 노츨된 제1, 2, 3 절연막 및 제1도전층의 상부표면상에 제2도전층을 상기 도전물질로써 이온 주입을 통하여 형성하는 과정과, 상기 형성된 제2도전층을 상기 제3절연막 상부표면중 양끝단에서 소정거리 이전까지만 상기 제3절연막 상부표면중 일부가 노출되도록 식각하는 과정을 포함함을 특징으로 하는 박막 트랜지스터의 제조 방법.A method of manufacturing a thin film transistor, comprising: depositing a first insulating layer on a top surface of a gate conductive layer and a top surface of a substrate by a length of an offset region, and extending the first insulating layer to an upper surface of the gate conductive layer. Etching to form a contact hole; depositing a second insulating film to a predetermined thickness over the upper surface of the first insulating film and the upper surface of the gate conductive layer; and forming a first opening on the upper surface of the second insulating film. Depositing a conductive layer to form a channel having a predetermined thickness through ion implantation as a conductive material, forming a third insulating film with a predetermined thickness on the upper surface of the first conductive layer, and up to an upper surface of the first insulating layer Polishing a predetermined portion to expose the upper surfaces of the first, second, and third insulating layers and the first conductive layer, and the upper portions of the exposed first, second and third insulating layers and the first conductive layer. Forming a second conductive layer on the surface by ion implantation as the conductive material, and forming the second conductive layer on the surface of the third insulating layer only up to a predetermined distance from both ends of the upper surface of the third insulating layer; A method of manufacturing a thin film transistor comprising the step of etching so that is exposed. 제9항에 있어서, 상기 폴리싱이 기계 및 화학적 폴리싱임을 특징으로 하는 박막 트랜지스터의 제조 방법.10. The method of claim 9, wherein the polishing is mechanical and chemical polishing. 제9항에 있어서, 상기 제1절연막, 제1도전층 및 제2절연막의 두께가 기계 및 화학적 폴리싱을 하여 상기 폴리싱의 양에 따라 상기 오프셋 영역의 길이를 결정함을 특징으로 하는 박막 트랜지스터의 제조 방법.The thin film transistor of claim 9, wherein the thickness of the first insulating layer, the first conductive layer, and the second insulating layer is mechanically and chemically polished to determine the length of the offset region according to the amount of polishing. Way.
KR1019960017528A 1996-05-22 1996-05-22 Thin film transistor and its fabrication method KR0184509B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960017528A KR0184509B1 (en) 1996-05-22 1996-05-22 Thin film transistor and its fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960017528A KR0184509B1 (en) 1996-05-22 1996-05-22 Thin film transistor and its fabrication method

Publications (2)

Publication Number Publication Date
KR970077363A KR970077363A (en) 1997-12-12
KR0184509B1 true KR0184509B1 (en) 1999-04-15

Family

ID=19459554

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960017528A KR0184509B1 (en) 1996-05-22 1996-05-22 Thin film transistor and its fabrication method

Country Status (1)

Country Link
KR (1) KR0184509B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256060B2 (en) 2004-11-12 2007-08-14 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of fabricating the same
US7396765B2 (en) 2004-11-12 2008-07-08 Lg Display Co., Ltd. Method of fabricating a liquid crystal display device
US7407842B2 (en) 2004-11-12 2008-08-05 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7414691B2 (en) 2004-08-12 2008-08-19 Lg Display Co., Ltd. Liquid crystal display device with prevention of defective disconnection of drain/pixel electrodes by forming two conductive layers on top of entire pixel electrode and then removing a portion of both therefrom
US7474362B2 (en) 2004-12-22 2009-01-06 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7492432B2 (en) 2004-12-31 2009-02-17 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7595859B2 (en) 2004-12-31 2009-09-29 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7632722B2 (en) 2004-12-24 2009-12-15 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7638801B2 (en) 2004-08-13 2009-12-29 Lg Display Co., Ltd. Liquid crystal display device and fabrication method thereof
US7830476B2 (en) 2004-12-31 2010-11-09 Lg Display Co., Ltd. Electroluminescence display device comprising a drain electrode being directly contacted with the upper surface of the first transparent conductive layer and the side surface of the second conductive layer and fabricating methods thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048998B1 (en) 2004-08-26 2011-07-12 엘지디스플레이 주식회사 LCD and its manufacturing method
KR101048903B1 (en) 2004-08-26 2011-07-12 엘지디스플레이 주식회사 LCD and its manufacturing method
KR101073403B1 (en) 2004-09-09 2011-10-17 엘지디스플레이 주식회사 Liquid crystal display device and method of fabricating thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414691B2 (en) 2004-08-12 2008-08-19 Lg Display Co., Ltd. Liquid crystal display device with prevention of defective disconnection of drain/pixel electrodes by forming two conductive layers on top of entire pixel electrode and then removing a portion of both therefrom
US7638801B2 (en) 2004-08-13 2009-12-29 Lg Display Co., Ltd. Liquid crystal display device and fabrication method thereof
US7927930B2 (en) 2004-08-13 2011-04-19 Lg Display Co., Ltd. Method for fabricating a liquid crystal display device
US7407842B2 (en) 2004-11-12 2008-08-05 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7396765B2 (en) 2004-11-12 2008-07-08 Lg Display Co., Ltd. Method of fabricating a liquid crystal display device
US7619286B2 (en) 2004-11-12 2009-11-17 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7256060B2 (en) 2004-11-12 2007-08-14 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of fabricating the same
US7474362B2 (en) 2004-12-22 2009-01-06 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7632722B2 (en) 2004-12-24 2009-12-15 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7999267B2 (en) 2004-12-24 2011-08-16 Lg Display Co., Ltd. Liquid crystal display device
US7492432B2 (en) 2004-12-31 2009-02-17 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7595859B2 (en) 2004-12-31 2009-09-29 Lg Display Co., Ltd. Liquid crystal display device and method of fabricating the same
US7830476B2 (en) 2004-12-31 2010-11-09 Lg Display Co., Ltd. Electroluminescence display device comprising a drain electrode being directly contacted with the upper surface of the first transparent conductive layer and the side surface of the second conductive layer and fabricating methods thereof

Also Published As

Publication number Publication date
KR970077363A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
KR100310800B1 (en) Dram cell with three-sided-gate transfer device
US5489791A (en) Field effect transistor having impurity regions of different depths and manufacturing method thereof
US7489002B2 (en) Memory having a vertical transistor
US5811283A (en) Silicon on insulator (SOI) dram cell structure and process
US5936262A (en) Thin film transistors
KR960012560A (en) Insulated gate device (IG device) with narrow bandgap source structure and manufacturing method
KR0184509B1 (en) Thin film transistor and its fabrication method
US20070004107A1 (en) Methods for fabricating integrated circuit field effect transistors including channel-containing fin having regions of high and low doping concentrations
US20030008461A1 (en) Flash memory with ultra thin vertical body transistors
US7381612B2 (en) Method for manufacturing semiconductor device with recess channels and asymmetrical junctions
JPH0587188B2 (en)
US20160268372A1 (en) Method For Achieving Uniform Etch Depth Using Ion Implantation And A Timed Etch
US6333533B1 (en) Trench storage DRAM cell with vertical three-sided transfer device
US20010000074A1 (en) Thin film transistor and method of manufacturing the same
US5612546A (en) Thin film transistor structure
US5466619A (en) Method for fabricating a thin film transistor
US5942778A (en) Switching transistor and capacitor for memory cell
US5904515A (en) Method for fabricating a thin film transistor with the source, drain and channel in a groove in a divided gate
US20230328959A1 (en) Semiconductor structure and manufacturing method thereof and memory
KR100200701B1 (en) Thin film transistor and manufacturing method thereof
KR100557927B1 (en) method for forming contact in SRAM device
KR0147474B1 (en) The manufacture of semiconductor device
KR940009624B1 (en) Structure & manufacturing method of semiconductor memory device
CN117500263A (en) Semiconductor structure and forming method thereof
KR100294692B1 (en) Device isolation layer of semiconductor device and formation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051109

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee