KR0179735B1 - Method of preparing dimethyldichlorosilane - Google Patents

Method of preparing dimethyldichlorosilane Download PDF

Info

Publication number
KR0179735B1
KR0179735B1 KR1019960012958A KR19960012958A KR0179735B1 KR 0179735 B1 KR0179735 B1 KR 0179735B1 KR 1019960012958 A KR1019960012958 A KR 1019960012958A KR 19960012958 A KR19960012958 A KR 19960012958A KR 0179735 B1 KR0179735 B1 KR 0179735B1
Authority
KR
South Korea
Prior art keywords
dimethyldichlorosilane
copper
halide
silicon
cadmium
Prior art date
Application number
KR1019960012958A
Other languages
Korean (ko)
Other versions
KR970070010A (en
Inventor
조철군
한기도
김종수
장길상
Original Assignee
김용구
주식회사한화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김용구, 주식회사한화 filed Critical 김용구
Priority to KR1019960012958A priority Critical patent/KR0179735B1/en
Publication of KR970070010A publication Critical patent/KR970070010A/en
Application granted granted Critical
Publication of KR0179735B1 publication Critical patent/KR0179735B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/16Preparation thereof from silicon and halogenated hydrocarbons direct synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 디메틸디클로로실란의 제조방법에 관한 것으로, 좀 더 상세하게는 실리콘에 염화메틸을 반응시켜 디메틸디클로로실란을 제조하는 방법에 있어서, 상기 실리콘에 구리 또는 구리의 할로겐화물, 주석 또는 주석의 할로겐화물, 아연 또는 아연의 할로겐화물, 및 카드뮴 또는 카드뮴의 할로겐화물로 이루어진 촉매계 구성물질을 첨가하는 것으로 구성됨으로써, 디메틸디클로로실란을 합성하는데 있어서 종래의 기술이 갖는 장애요소를 크게 경감시키고 궁극적으로 목적화합물인 디메틸디클로로실란의 수율을 크게 증가시킬 수 있으며, 보다 경제적이고 경쟁력이 있는 디메틸디클로로실란 생산기술로의 적용이 가능하다.The present invention relates to a method for producing dimethyldichlorosilane, and more particularly, to a method of preparing dimethyldichlorosilane by reacting methyl chloride with silicon, wherein the silicon halide, tin or tin halide By adding a catalyst-based component consisting of a cargo, a zinc or zinc halide, and a cadmium or cadmium halide, greatly reducing the obstacles of the prior art in synthesizing dimethyldichlorosilane and ultimately the target compound. The yield of phosphorus dimethyldichlorosilane can be greatly increased, and it can be applied to more economical and competitive dimethyldichlorosilane production technology.

Description

디메틸디클로로실란의 제조방법Method for preparing dimethyldichlorosilane

본 발명은 디메틸디클로로실란의 제조방법에 관한 것으로, 좀 더 상세하게는 금속실리콘 분말과 염화메틸을 반응시켜 디메틸디클로로실란을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing dimethyldichlorosilane, and more particularly, to a method for producing dimethyldichlorosilane by reacting metal silicon powder with methyl chloride.

일반적으로, 유기염화실란, 특히 디메틸디클로로실란을 제조하는 산업적 공정은 매우 잘 알려져 있으며, 그러한 공정은 미합중국 특허 제 2,380,995호에 명백히 기술되어 있다.In general, the industrial processes for preparing organochlorinated silanes, in particular dimethyldichlorosilanes, are very well known and such processes are clearly described in US Pat. No. 2,380,995.

직접합성법(Direct Synthesis) 또는 라카오 합성법(Synthesis of Rochow)으로 지칭되는 합성공정에 따라 유기염화실란이 직접적으로 제조된다. 특히 촉매로서 구리가 작용하여 금속실리콘 분말과 염화메틸을 반응시켜 디메틸디클로로실란을 얻는 화학반응식은 다음과 같다.Organochlorinated silanes are prepared directly according to a synthesis process called Direct Synthesis or Synthesis of Rochow. In particular, the chemical reaction of copper to act as a catalyst to react the metal silicon powder and methyl chloride to obtain dimethyldichlorosilane is as follows.

그러나, 실제로 상기 반응식에서는 목적화합물인 디메틸더클로로실란 뿐만 아니라 모노메틸트러클로로실란, 트리메틸모노클로로실란, 디클로로메틸실란 등이 함께 생성되며 이외에도 분자량이 크고 비등점이 높은 디실란류 화합물이 생성된다.However, in the above reaction scheme, not only dimethyl dechlorosilane, which is a target compound, but also monomethyl trlochlorosilane, trimethyl monochlorosilane, dichloromethylsilane, etc. are produced together, and in addition, disilane compounds having high molecular weight and high boiling point are produced.

직접합성법을 통해 얻어진 모든 생성물 가운데 디메틸디클로로실란은 가장 중요한 화합물이다. 디메틸디클로로실란을 가수분해하고 중합하면 실리콘 제조를 위한 기본물질인 오일과 고무상의 실리콘 중합체를 얻을 수 있다. 디메틸디클로로실란을 단량체로 사용하여 유기실록산 수지를 제조하는 방법은 미합중국 특허 제 2,258,218호에서 제시되었다. 또한, 미합중국 특허 제 2,469,888호와 제 2,469,830호에는 유기실록산 오일을 제조하는 방법이, 미합중국 특허 제 2,448,756호에는 유기실록산 고무를 제조하는 방법이 각각 제시되었다.Of all the products obtained through direct synthesis, dimethyldichlorosilane is the most important compound. By hydrolyzing and polymerizing dimethyldichlorosilane, it is possible to obtain an oil and rubbery silicone polymer which is a basic material for the preparation of silicone. A process for preparing organosiloxane resins using dimethyldichlorosilane as a monomer has been presented in US Pat. No. 2,258,218. Further, US Pat. Nos. 2,469,888 and 2,469,830 disclose methods for preparing organosiloxane oils, and US Pat. No. 2,448,756 provide methods for preparing organosiloxane rubbers, respectively.

직접합성법으로 얻은 생성물들은 분리와 정제과정을 거쳐 각 성분별로 고순도의 최종제품을 얻을 수 있다. 그러나, 디메틸디클로로실란을 고순도로 얻는데 있어서 가장 큰 장애요소는 상기 부생성물중에서 생성량이 가장 많은 모노메틸트리클로로실란과 디메틸디클로로실란의 분리과정에 있다는 점은 잘 알려진 사실이다.The products obtained by the direct synthesis method are separated and purified to obtain a high purity final product for each component. However, it is well known that the biggest obstacle to obtaining dimethyldichlorosilane with high purity is the separation process of monomethyltrichlorosilane and dimethyldichlorosilane, which have the highest yield among the byproducts.

이를 위해, 디메틸클로로실란의 생산효율을 높힐 수 있도록 구리 이 외에 다양한 첨가물을 부가할 것이 이미 제안되었다. 그 첨가물로는 아연이나 아연의 할로겐화물(미합중국 특허 제 2,464,033호), 알루미늄(미 합중국 특허 제 2,403,370호 및 제 2,427,605호), 주석, 망간, 니켈과 은(영국특허 제 1,207,466호), 코발트(영국특허 제 907,161호), 염화칼륨(소련특허 제 307,650호), 인 또는 인계 화합물(미합중국 특허 제 4,602,101호), 비소 또는 비소계 화합물(미합중국 특허 제 4,762,940호), 바륨과 스트론튬(프랑스 특허 제 85 02549호), 카드뮴 또는 카드뮴의 할로겐화물(미합중국 특허 제 3,446,829호), 아연과 카드뮴(미합중국 특허 제 3,555,064호), 주석과 안티몬(프랑스 특허 제 950,448호), 란타나이드계 화합물(유럽특허 제 0 470 020호, Al), 아연과 주석(미합중국 특허 제 4,500,724호)등이 있다.To this end, it has already been proposed to add various additives in addition to copper to increase the production efficiency of dimethylchlorosilane. Additives include zinc or zinc halides (US Pat. No. 2,464,033), aluminum (US Pat. Nos. 2,403,370 and 2,427,605), tin, manganese, nickel and silver (British patent 1,207,466), cobalt (UK Patent 907,161, potassium chloride (USSR 307,650), phosphorus or phosphorus compounds (US Pat. No. 4,602,101), arsenic or arsenic compounds (US Pat. No. 4,762,940), barium and strontium (French Patent No. 85 02549) ), Cadmium or cadmium halides (US Pat. No. 3,446,829), zinc and cadmium (US Pat. No. 3,555,064), tin and antimony (French 950,448), lanthanide compounds (European Patent 0 470 020) , Al), zinc and tin (US Pat. No. 4,500,724).

그러나, 상기 첨가물을 작용시킴으로써 직접합성법에 의한 디메틸디클로로실란 합성반응의 수율 및 목적화합물의 순도를 개선할 수 있었으나, 그럼에도 불구하고 상기 공정들은 다음의 문제점들중 적어도 하나를 나타내었다;However, by acting the additives, it was possible to improve the yield of the dimethyldichlorosilane synthesis reaction and the purity of the target compound by the direct synthesis method, but nevertheless the processes exhibited at least one of the following problems;

i) 생성된 모노메틸트리클로로실란과 디메틸디클로로실란의 평균중량비(이하 T/D라 칭함)와 얻어진 실란합성물 전체에 대한 디메틸디클로로실란의 물농도로 평가되는 디메틸디클로로실란의 선택성이 불충분하다;i) the selectivity of the average weight ratio of the produced monomethyltrichlorosilane and dimethyldichlorosilane (hereinafter referred to as T / D) and the dimethyldichlorosilane evaluated as the water concentration of dimethyldichlorosilane relative to the entire silane compound obtained is insufficient;

ii) 반응유도시간과 반응온도가 매우 높아진다;ii) reaction induction time and reaction temperature become very high;

iii) 원료인 실리콘의 투입량과 반응시간당 얻어지는 메틸염화실란(목적화합물과 부산물의 혼합물 형태)의 중량으로 정의되는 반응속도가 저하되고 실리콘의 최대 전환율이 저하된다. 즉, 구리와 첨가물로 구성 되는 촉매계의 평균활성이 불충분하다; 및iii) The reaction rate, which is defined as the input amount of silicon as the raw material and the weight of methyl chloride silane obtained in the reaction time (in the form of a mixture of the target compound and the byproduct), is lowered and the maximum conversion rate of the silicon is lowered. That is, the average activity of the catalyst system composed of copper and additives is insufficient; And

iv) 부산물, 특히 디실란류 화합물이 많이 생성된다. 따라서, 본 발명의 목적은 상술한 종래의 기술이 가지는 문제점을 해결하고 궁극적으로 목적화합물인 디메틸디클로로실란의 수율을 크게 증가시킬 수 있는 디메틸디클로로실란의 개선된 제조방법을 제공하는데 있다.iv) Many by-products, especially disilane compounds, are produced. Accordingly, an object of the present invention is to solve the problems of the prior art described above and to provide an improved method for preparing dimethyldichlorosilane, which can ultimately increase the yield of dimethyldichlorosilane, which is a target compound.

상기 목적을 달성하기 위한 본 발명의 디메틸디클로로실란의 제조방법은, 실리콘에 염화메틸을 반응시켜 디메틸디클로로실란을 제조하는 방법에 있어서 상기 실리콘에 구리 또는 구리의 할로겐화물, 주석 또는 주석의 할로겐화물, 아연 또는 아연의 할로겐화물, 및 카드뮴 또는 카드뮴의 할로겐화물로 이루어진 촉매계 구성물질을 첨가하는 것을 특징으로 한다.Method for producing dimethyldichlorosilane of the present invention for achieving the above object, in the method for producing dimethyldichlorosilane by reacting methyl chloride with silicon, the halide of copper or copper, tin or halide of tin, It is characterized by the addition of a catalyst-based component consisting of a halide of zinc or zinc and a halide of cadmium or cadmium.

이하 본 발명의 디메틸디클로로실란의 제조방법을 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the method for preparing dimethyldichlorosilane of the present invention will be described in more detail.

전술한 바와 같이, 직접합성법에 의한 디메틸디클로로실란의 제조시에는 목적화합물인 디메틸디클로로실란 뿐만 아니라 모노메틸트리클로로실란, 트리메틸모노클로로실란, 디클로로메틸실란 등이 함께 생성되며 이외에도 분자량이 크고 비등점이 높은 디실란류 화합물이 생성되었다.As described above, in the preparation of dimethyldichlorosilane by the direct synthesis method, not only dimethyldichlorosilane, which is a target compound, but also monomethyltrichlorosilane, trimethyl monochlorosilane, dichloromethylsilane, etc. are produced together with high molecular weight and high boiling point. Disilane compounds were produced.

그중에서도 가장 큰 장애요소는 상기 부생성물중에서 생성량이 가장 많은 모노메틸트리클로로실란과 목적 화합물인 디메틸디클로로실란의 분리과정에 있었는데, 이를 위해 디메틸디클로로실란의 생산효율을 높힐 수 있도록 구리 이외에 다양한 첨가물을 부가할 것이 이미 제안되었다. 그러나, 디메틸디클로로실란의 선택성의 불충분, 반응시간의 장기화, 반응온도의 상승 등의 문제점을 야기시켰다.Among them, the biggest obstacle was the separation of monomethyltrichlorosilane, which is the most produced in the by-products, and dimethyldichlorosilane, the target compound. To this end, various additives in addition to copper are added to increase the production efficiency of dimethyldichlorosilane. What has already been proposed. However, problems such as insufficient selectivity of dimethyldichlorosilane, prolongation of reaction time, and rise of reaction temperature are caused.

본 발명자들은 상기한 종래기술의 문제점을 일으키지 않거나 최소화할 수 있는 공정과, 촉매계 구성물질 및 이의 제조방법을 제시하기 위하여 먼저 하기 사항의 획득을 목표로 삼았다:The present inventors first aimed at obtaining the following in order to present a process that can avoid or minimize the problems of the prior art as described above, a catalyst-based material and a method for preparing the same:

i ) 디메틸디클로로실란에 대한 평균 선택성의 증가;i) an increase in average selectivity to dimethyldichlorosilane;

ii )반응초기에 높혀진 초기 선택성이 촉매계 구성물질이 최종적인 비활성화에 이를때 까지 유지될 것;ii) the increased initial selectivity at the beginning of the reaction is maintained until the catalyst component is finally deactivated;

iii) 원료인 실리콘의 전환율을 최대화 할 것 ; 및iii) maximize the conversion of the raw material silicon; And

iv) 궁극적으로 디메틸디클로로실란에 대한 수율을 최대화할 것.iv) Ultimately maximize yield for dimethyldichlorosilane.

따라서, 상기 반응식의 직접합성법에서 나타난 종래기술의 문제점을 해결하기 위해 상술한 사항의 획득을 목표로 광범위한 연구를 수행한 결과, 촉매계를 구성하는 첨가물질의 종류와 양이 디메틸디클로로실란의 선택성과 수율을 좌우하는 핵심요인임을 인식하고 이에 기초하여 일련의 연구를 수행한 결과, 이미 제안된 구리, 아연 및 주석을 사용한 3원 촉매계에 카드뮴 또는 카드뮴의 할로겐화물을 첨가하면 디메틸디클로로실란의 선택성과 수율이 증가됨을 알아내었다.Therefore, as a result of extensive research aimed at acquiring the above-mentioned matters in order to solve the problems of the prior art shown in the direct synthesis method of the above scheme, the type and amount of additives constituting the catalyst system have a high degree of selectivity and yield. Recognizing that these factors are key factors and conducting a series of studies based on these results, the addition of cadmium or cadmium halide to the proposed three-way catalyst system using copper, zinc and tin increases the selectivity and yield of dimethyldichlorosilane. Figured out.

간략히 말해서, 본 발명의 디메틸디클로로실란의 제조방법은 실리콘에 염화메틸을 반응시켜 디메틸디클로로실란을 제조하는 방법에 있어서, 상기 실리콘에 구리 또는 구리의 할로겐화물, 주석 또는 주석의 할로겐화물, 아연 또는 아연의 할로겐화물, 및 카드뮴 또는 카드뮴의 할로겐화물로 이루어진 촉매계 구성물질을 첨가하는 것에 특징이 있다.Briefly, the method for producing dimethyldichlorosilane of the present invention is a method for producing dimethyldichlorosilane by reacting methyl chloride with silicon, wherein the silicon halide, tin or tin halide, zinc or zinc It is characterized by the addition of a halide of and a catalyst-based constituent consisting of cadmium or a halide of cadmium.

한편, 실리콘에 염화메틸을 반응시켜 디메틸디클로로실란을 제조하기위한 공정을 살펴보면 다음과 같다.Meanwhile, the process for preparing dimethyldichlorosilane by reacting methyl chloride with silicon is as follows.

먼저 원료인 실리콘에 구리 또는 구리의 할로겐화물, 주석 또는 주석의 할로겐화물, 아연 또는 아연의 할로겐화물, 및 카드뮴 또는 카드뮴의 할로겐화물로 이루어진 촉매계 구성물질을 첨가하여 유기용매인 아세톤 또는 에테르에 넣고 잘 혼합한 후, 소정의 온도와 압력에서 건조시켜 유기용매를 제거시킨다. 아세톤이 휘발되면 구리와 첨가물이 균일하게 침적된 실리콘을 얻을 수 있다. 이때 유기용매인 아세톤 또는 에테르를 사용하는 이유는 촉매계의 구성물질들인 구리성분, 아연성분, 주석성분, 카드뮴 성분들을 원료인 실리콘과 균일하게 혼합하기 위해서이다.First, the raw material silicon is added to the organic solvent acetone or ether by adding a catalyst component consisting of copper or copper halides, tin or tin halides, zinc or zinc halides, and cadmium or cadmium halides. After mixing, the organic solvent is removed by drying at a predetermined temperature and pressure. When acetone is volatilized, it is possible to obtain silicon in which copper and additives are uniformly deposited. The reason for using the organic solvent acetone or ether is to uniformly mix the copper component, zinc component, tin component, cadmium components of the catalyst system with the raw material silicon.

한편, 상기 촉매계 구성물질들은 원료인 실리콘에 대해 각각 선택적으로 첨가될 수 있다.On the other hand, the catalyst component may be selectively added to each of the raw material silicon.

구리 또는 구리의 할로겐화물의 경우, 구리 또는 구리의 할로겐화물중의 순구리의 함량은 실리콘의 함량에 대해 약 1∼20중량부가 바람직하다. 주석 또는 주석의 할로겐화물중의 순주석의 함량은 순구리의 함량에 대해 약 50∼2000ppm이 바람직하다. 카드뮴 또는 카드뮴의 할로겐화물중의 순카드뮴의 함량은 순구리의 함량에 대해 약 0.0001∼2.0중량부가 바람직하다. 아연 또는 아연의 할로겐화물중의 순아연의 함량은 순구리의 함량에 대해 0.1∼20중량부가 바람직하다.In the case of copper or copper halides, the content of pure copper in copper or copper halides is preferably about 1 to 20 parts by weight relative to the content of silicon. The content of pure tin in the tin or halide of tin is preferably about 50 to 2000 ppm with respect to the content of pure copper. The content of pure cadmium in cadmium or cadmium halide is preferably about 0.0001 to 2.0 parts by weight based on the content of pure copper. As for the content of pure zinc in zinc or a halide of zinc, 0.1-20 weight part is preferable with respect to content of pure copper.

이 실리콘을 반응기에 넣고 소정온도 및 질소분위기에서 원료를 건조시킨 다음, 소정온도에서 염화구리와 실리콘을 반응시키면 사염화실리콘이 생성된다. 이 반응이 완결되면 소정온도로 가열하여 촉매를 활성화시키고 약 250∼350℃의 온도에서 염화메틸 가스와 반응시켜 디메틸디클로로실란을 제조공정을 종료한다. 이때 디메틸디클로로실란의 합성은 교반식 반응기, 비교반식 유동층 반응기, 고정층 반응기 또는 회분식 반응기에서 수행되는 것이 바람직하다.This silicon is placed in a reactor, and the raw material is dried at a predetermined temperature and a nitrogen atmosphere. Then, silicon tetrachloride is produced by reacting copper chloride and silicon at a predetermined temperature. Upon completion of this reaction, the catalyst is heated to a predetermined temperature to activate the catalyst and reacted with methyl chloride gas at a temperature of about 250 to 350 ° C. to terminate the dimethyldichlorosilane manufacturing process. In this case, the synthesis of dimethyldichlorosilane is preferably carried out in a stirred reactor, a comparative semi-fluidized bed reactor, a fixed bed reactor or a batch reactor.

따라서, 본 발명은 상기 반응식의 직접합성법으로 고순도의 디메틸디클로로실란을 얻기 위한 새롭고도 진보된 방법으로서, 가장 광범위하게 사용되는 실리콘 산업의 기초원료인 디메틸디클로로실란의 경제적인 생산기술에 충분히 적용될 수 있다.Therefore, the present invention is a new and advanced method for obtaining high purity dimethyldichlorosilane by the direct synthesis method of the above scheme, and can be sufficiently applied to the economic production technology of dimethyldichlorosilane, which is the basic raw material of the most widely used silicon industry. .

이하 본 발명의 실시예와 종래기술의 비교예를 통하여 본 발명을 좀 더 상세히 설명하지만, 이것이 본 발명의 범주를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples of the present invention and comparative examples of the related art, but this does not limit the scope of the present invention.

[실시예 1]Example 1

실리콘 50g, 염화구리(I) 3.9g(구리의 순함량은 실리콘에 대해 5중량부임), 염화아연 0.502g(구리에 대해 10중량부임), 주석 0.OO3g(구리에 대해 1200ppm임), 염화카드뮴 0.025g(구리에 대해 0.6중량부임)을 아세톤 50ml에 넣고 잘 혼합한 후, 120℃, 5torr의 조건에서 건조하여 아세톤을 제거하였다. 아세톤이 휘발되면 구리와 첨가물이 균일하게 침적된 실리콘을 얻을 수 있다. 이 실리콘을 3중 교반날개가 설치된 내경 3.5cm, 길이 60cm의 관형 유동층 반응기에 넣고 230℃ 조건에서 질소를 흘려주며 원료를 건조시켰다. 310℃에서 염화구리와 실리콘을 반응시키면 사염화실란이 발생되었다. 이 반응이 완결되면 380℃로 가열하여 4 시간동안 촉매를 활성화시키고, 300℃에서 염화메틸 가스와 반응시켰다.50 g of silicon, 3.9 g of copper (I) chloride (the net content of copper is 5 parts by weight for silicon), 0.502 g of zinc chloride (10 parts by weight for copper), 0.OO3 g of tin (1200 ppm for copper), chloride 0.025 g of cadmium (0.6 parts by weight of copper) was added to 50 ml of acetone and mixed well, followed by drying at 120 ° C. and 5 torr to remove acetone. When acetone is volatilized, it is possible to obtain silicon in which copper and additives are uniformly deposited. The silicon was placed in a tubular fluidized bed reactor having an inner diameter of 3.5 cm and a length of 60 cm equipped with a triple stirring vane, flowing nitrogen at 230 ° C., and dried. When tetrachloride was reacted with silicon at 310 ° C, silane tetrachloride was generated. Upon completion of this reaction, the catalyst was heated to 380 ° C. to activate the catalyst for 4 hours and reacted with methyl chloride gas at 300 ° C.

염화메틸가스의 주입유량은 분당 90㎖이었으며, 총 반응시간은 40시간 이었다. 이때 얻어진 실란중의 대메틸디클로로실란의 순도(가스 크로마토그래피로 측정)는 92.0%이었으며, 트리클로로메틸실란과 디메틸디클로로실란의 생성비율 T/D는 0.03이었다. 또한 잔류하는 실리콘 양에 기준한 실리콘의 전환율은 92%이었으며, 디메틸디클로로실란의 수율은 85%이었다.The injection flow rate of methyl chloride gas was 90 ml / min, and the total reaction time was 40 hours. The purity (measured by gas chromatography) of large methyldichlorosilane in the obtained silane was 92.0%, and the production ratio T / D of trichloromethylsilane and dimethyldichlorosilane was 0.03. In addition, the conversion of silicon was 92% based on the amount of silicon remaining, and the yield of dimethyldichlorosilane was 85%.

[실시예 2]Example 2

실시예 1에 기술한 방법과 동일한 방법으로 실리콘 50g, 염화구리(I)3.9g(구리의 순함량은 실리콘에 대해 5중량부임), 염화아연 0.502g(구리에 대해 10중량부임), 주석 0.003g(구리에 대해 1600ppm임), 염화카드뮴0.025g(구리에 대해 0.6중량부임)을 아세톤 60ml 용매에서 혼합하고 건조하여 구리와 첨가물이 균일하게 침적된 실리콘을 얻었다. 이를 반응기에 넣고 230℃ 조건에서 질소를 홀려주며 원료를 건조시켰다. 310℃에서 염화구리와 실리콘을 반응시킨 후 380℃ 고온에서 2시간동안 촉매를 활성화시키고, 300℃에서 염화메틸 가스와 반응시켰다. 염화메틸 가스의 주입유량은 분당 90mℓ이었으며, 총 반응시간은 34시간이었다.In the same manner as described in Example 1, 50 g of silicon, 3.9 g of copper (I) chloride (net content of copper is 5 parts by weight for silicon), 0.502 g of zinc chloride (10 parts by weight of copper), tin 0.003 g (which is 1600 ppm for copper) and 0.025 g of cadmium chloride (0.6 parts by weight for copper) were mixed and dried in acetone 60 ml solvent to obtain silicon with copper and additives deposited uniformly. This was placed in a reactor, and nitrogen was supplied at 230 ° C. to dry the raw materials. After copper chloride and silicon were reacted at 310 ° C., the catalyst was activated at 380 ° C. for 2 hours and reacted with methyl chloride gas at 300 ° C. The injection flow rate of methyl chloride gas was 90 ml / min, and the total reaction time was 34 hours.

이때 얻어진 실란중의 디메틸디클로로실란의 순도(가스 크로마토그래피로 측정)는 92.5%이었으며, 트리클로로메틸실란과 디메틸디클로로실란의 생성비율 T/D는 0.03이었다. 실리콘의 전환율은 86%이었으며, 디메틸디클로로실란의 수율은 80.0%이었다.The purity (measured by gas chromatography) of dimethyldichlorosilane in the obtained silane was 92.5%, and the production ratio T / D of trichloromethylsilane and dimethyldichlorosilane was 0.03. The conversion of silicone was 86% and the yield of dimethyldichlorosilane was 80.0%.

[실시예 3]Example 3

실시예 1에 기술한 방법과 동일한 방법으로 실리콘 75g, 염화구리(I) 6.5g(구리의 순함량은 실리콘에 대해 6중량부임), 염화아연 0.7g(구리에 대해 8중량부임), 주석 0.005g(구리에 대해 1000ppm임), 염화카드뮴0.03g(구리에 대해 0.4중량부임)을 아세톤 100mℓ 용매에서 혼합하고 건조 하여 구리와 첨가물이 균일하게 침적된 실리콘을 얻었다.In the same manner as described in Example 1, 75 g of silicon, 6.5 g of copper (I) (the net content of copper is 6 parts by weight for silicon), 0.7 g of zinc chloride (8 parts by weight of copper), tin 0.005 g (1000 ppm for copper) and 0.03 g of cadmium chloride (0.4 parts by weight for copper) were mixed and dried in 100 ml of acetone to obtain silicon with copper and additives deposited uniformly.

이를 반응기에 넣고 230℃ 조건에서 질소를 흘려주며 원료를 건조시켰다. 310℃에서 염화구리와 실리콘을 반응시킨 후 400℃의 고온에서 7시간 동안 촉매를 활성화시키고, 300℃에서 염화메틸 가스와 반응시켰다. 염화메틸 가스의 주입유량은 분당 120mℓ이었으며, 총 반응시간은 23.5시간이었다. 이때 얻어진 실란중의 디메틸디클로로실란의 순도(가스 크로마토 그래피로 측정)는 93.6%이었으며, 트리클로로메틸실란과 디메틸디클로로실란의 생성비율 T/D는 0.02이었다. 실리콘의 전환율은 93%이었으며, 디메틸디클로로실란의 수율은 87.0%이었다.It was put in a reactor and flowed nitrogen at 230 ℃ conditions to dry the raw material. After copper chloride and silicon were reacted at 310 ° C., the catalyst was activated for 7 hours at a high temperature of 400 ° C., and reacted with methyl chloride gas at 300 ° C. The injection flow rate of methyl chloride gas was 120 ml / min, and the total reaction time was 23.5 hours. The purity of the dimethyldichlorosilane in the obtained silane (measured by gas chromatography) was 93.6%, and the production ratio T / D of trichloromethylsilane and dimethyldichlorosilane was 0.02. The conversion of silicon was 93% and the yield of dimethyldichlorosilane was 87.0%.

[비교예 1]Comparative Example 1

[유럽특허 제 0470 020호, A1][European Patent 0470 020, A1]

금속교반기와 가스분배기를 갖춘 6mm의 원통형 유동층 반응기에 하기의 성분을 구성성분으로 하는 분말상의 혼합물질을 집어 넣었다:Into a 6 mm cylindrical fluidized bed reactor equipped with a metal stirrer and a gas distributor was placed a powdered mixture consisting of the following components:

- CuCl : 16.3g(실리콘에 대해 순구리의 함량은 5중량부임)-CuCl: 16.3g (5 parts by weight of pure copper relative to silicon)

- Sn의 함량이 10%인 청동 : 0.38g-Bronze with 10% Sn content: 0.38g

- ZnCl2: 1.6g(실리콘에 대해 순아연의 함량은 0.37중량부임)-ZnCl 2 : 1.6g (the content of pure zinc relative to silicon is 0.37 parts by weight)

- Cs3LaCl6: 1.58g(CsCI과 LaCl3로 합성)Cs 3 LaCl 6 : 1.58 g (synthesized from CsCI and LaCl 3 )

질소를 흘리면서 반응기의 온도를 315℃까지 가열한 후 염화메틸가스를 주입하여 반응시켰다. 이때 얻어진 실란중의 디메틸디클로로실란의 순도는 94.3%이었으며, 트리클로로메틸실란과 디메틸디클로로실란 실리콘의 생성비율 T/D는 0.03이었다. 실리콘의 전환율은 59%이었고, 디메틸디클로로실란의 수율은 55%이었다.The reactor was heated to 315 ° C while flowing nitrogen, and then reacted by injecting methyl chloride gas. The purity of dimethyldichlorosilane in the obtained silane was 94.3%, and the production ratio T / D of trichloromethylsilane and dimethyldichlorosilane silicon was 0.03. The conversion of silicone was 59% and the yield of dimethyldichlorosilane was 55%.

그러므로, 본 발명은 디메틸디클로로실란을 합성하는데 있어서 종래의 기술이 갖는 장애요소를 크게 경감시키고 궁극적으로 목적화합물인 디메틸디클로로실란의 수율을 크게 증가시킬 수 있다. 따라서, 보다 경제적이고 경쟁력이 있는 디메틸디클로로실란 생산기술로의 적용이 가능하다Therefore, the present invention can greatly reduce the obstacles of the prior art in synthesizing dimethyldichlorosilane and ultimately increase the yield of dimethyldichlorosilane, which is a target compound. Therefore, it is possible to apply to more economical and competitive dimethyldichlorosilane production technology.

Claims (8)

실리콘에 염화메틸을 반응시켜 디메틸디클로로실란을 제조하는 방법에 있어서, 상기 실리콘에 구리 또는 구리의 할로겐화물, 주석 또는 주석의 할로겐화물, 아연 또는 아연의 할로겐화물, 및 카드뮴 또는 카드뮴의 할로겐화물로 이루어진 촉매계 구성물질을 첨가하는 것을 특징으로 하는 디메틸디클로로실란의 제조방법.A method for preparing dimethyldichlorosilane by reacting methyl chloride with silicon, the method comprising: a silicon halide of copper or copper, a halide of tin or tin, a halide of zinc or zinc, and a halide of cadmium or cadmium A process for preparing dimethyldichlorosilane, characterized by adding a catalyst component. 제1항에 있어서, 상기 촉매계 구성물질에서 구리 또는 구리의 할로겐화물중의 순구리의 함량은 실리콘의 함량에 대해 1∼20중량부인 것을 특징으로 하는 디메틸디클로로실란의 제조방법.The method for producing dimethyldichlorosilane according to claim 1, wherein the content of pure copper in the halide of copper or copper in the catalyst component is 1-20 parts by weight based on the content of silicon. 제1항에 있어서, 상기 촉매계 구성물질에서 주석 또는 주석의 할로겐화물중의 순주석의 함량은 순구리의 함량에 대해 50∼2000ppm 인 것을 특징으로 하는 디메틸디클로로실란의 제조방법.The method for preparing dimethyldichlorosilane according to claim 1, wherein the content of pure tin in the halide of tin or tin in the catalyst component is 50 to 2000 ppm with respect to the content of pure copper. 제1항에 있어서, 상기 촉매계 구성물질에서 아연 또는 아연의 할로겐화물중의 순아연의 함량은 순구리의 함량에 대해 0.1∼20중량부인 것을 특징으로 하는 디메틸디클로로실란의 제조방법.The method for producing dimethyldichlorosilane according to claim 1, wherein the content of pure zinc in the halide of zinc or zinc in the catalyst component is 0.1-20 parts by weight based on the content of pure copper. 제1항에 있어서, 상기 촉매계 구성물질에서 카드뮴 또는 카드뮴의 할로겐화물중의 순카드뮴의 함량은 순구리의 함량에 대해 0.0001~2.0중량부인 것을 특징으로 하는 디메틸디클로로실란의 제조방법.The method for preparing dimethyldichlorosilane according to claim 1, wherein the content of pure cadmium in cadmium or cadmium halide in the catalyst component is 0.0001 to 2.0 parts by weight based on the content of pure copper. 제1항에 있어서, 디메틸디클로로실란의 제조공정은 교반식 유동층 반응기, 비교반식 유동층 반응기, 고정층 반응기 및 회분식 반응기로 구성된 군으로부터 선택된 하나의 반응기에서 수행됨을 특징으로 하는 디메틸디클로로실란의 제조방법.The process for preparing dimethyldichlorosilane according to claim 1, wherein the process for preparing dimethyldichlorosilane is performed in one reactor selected from the group consisting of a stirred fluidized bed reactor, a comparative semifluidized fluidized bed reactor, a fixed bed reactor and a batch reactor. 제1항에 있어서, 디메틸디클로로실란의 합성온도는 250∼350℃임을 특징으로 하는 디메틸디클로로실란의 제조방법.The method for producing dimethyldichlorosilane according to claim 1, wherein the synthesis temperature of dimethyldichlorosilane is 250 to 350 ° C. 제 1항에 있어서, 상기 촉매계 구성물질들을 주원료인 실리콘과 균일하게 혼합하기 위하여 아세톤 또는 에테르의 유기용매로 사용함을 특징으로 하는 디메틸디클로로실란의 제조방법.The method of claim 1, wherein the catalyst component is used as an organic solvent of acetone or ether to uniformly mix the main component with silicon as the main raw material.
KR1019960012958A 1996-04-25 1996-04-25 Method of preparing dimethyldichlorosilane KR0179735B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960012958A KR0179735B1 (en) 1996-04-25 1996-04-25 Method of preparing dimethyldichlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960012958A KR0179735B1 (en) 1996-04-25 1996-04-25 Method of preparing dimethyldichlorosilane

Publications (2)

Publication Number Publication Date
KR970070010A KR970070010A (en) 1997-11-07
KR0179735B1 true KR0179735B1 (en) 1999-05-15

Family

ID=19456740

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960012958A KR0179735B1 (en) 1996-04-25 1996-04-25 Method of preparing dimethyldichlorosilane

Country Status (1)

Country Link
KR (1) KR0179735B1 (en)

Also Published As

Publication number Publication date
KR970070010A (en) 1997-11-07

Similar Documents

Publication Publication Date Title
EP0278368B1 (en) A method for producing chlorosilanes
FI77040C (en) FOERFARANDE FOER DIREKT SYNTES AV DIMETYLDIKLORSILAN.
KR100892909B1 (en) Method for the continuous production of silicon compounds carrying amino groups
US5235083A (en) Bis(silyl)alkanes and method for their preparation
US5596120A (en) Process for preparation of organosilanes
JP2002179686A (en) Method for promoting dialkyldihalosilane formation during alkylhalosilane production by direct method
JP2000154192A (en) Production of alkylhalosilane
KR0179735B1 (en) Method of preparing dimethyldichlorosilane
KR100253897B1 (en) Process for preparing alkylchlorosilanes from the residues of direct synthesis of alkylchlorosilanes
US7084206B2 (en) Process for preparing phenylorganosilicon intermediates
JPH07258272A (en) Preparation of methylchlorosilane
CN110183481A (en) The technique of catalytic pyrolysis organosilicon high-boiling product
JP2000063389A (en) Direct synthesis of methylchlorosilane
JP5295226B2 (en) Method for producing isocyanate alkylsilane
JP2003183289A (en) Improved method for producing organosilane
CA1243328A (en) Process for the manufacture of silylmetallocene compounds, and compounds obtained by this process
US5777145A (en) Removal of chlorocarbons from organochlorosilanes
CN101318974B (en) Process for synthesizing methyl tin chloride
CN111269255A (en) Preparation method of isopropenyloxysilane
EP0604112A2 (en) Process for converting chlorine end-terminated polyorganosiloxanes to polyorganocyclosiloxanes
KR100839938B1 (en) Catalyst composition for methylchlorosilane synthesis and production of methylchlorosilane using said catalyst
KR19990085368A (en) Method for producing tetraalkoxysilane
CN1166492A (en) Process for producing alkylhalogenosilanes
KR950009313B1 (en) Silylation method
KR100469945B1 (en) Manufacturing Method of Vinyl Chlorosilane

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee