KR0165416B1 - Etching method of multi-layer metal - Google Patents

Etching method of multi-layer metal Download PDF

Info

Publication number
KR0165416B1
KR0165416B1 KR1019950021389A KR19950021389A KR0165416B1 KR 0165416 B1 KR0165416 B1 KR 0165416B1 KR 1019950021389 A KR1019950021389 A KR 1019950021389A KR 19950021389 A KR19950021389 A KR 19950021389A KR 0165416 B1 KR0165416 B1 KR 0165416B1
Authority
KR
South Korea
Prior art keywords
etching
gas
tin
film
multilayer
Prior art date
Application number
KR1019950021389A
Other languages
Korean (ko)
Other versions
KR970008371A (en
Inventor
김일구
강창진
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019950021389A priority Critical patent/KR0165416B1/en
Publication of KR970008371A publication Critical patent/KR970008371A/en
Application granted granted Critical
Publication of KR0165416B1 publication Critical patent/KR0165416B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

텅스텐(W) 상층막과 티나늄나이트라이드(TiN) 하지막으로 구성되는 다층금속 박막을 동일 챔버내에서 동시에 이방성 식각하는 방법을 개시한다. 본 발명은 W/TiN 다층막을 SF6가스 및 CF4가스를 혼합한 혼합 가스를 에칭 가스로 이용하고, 전체 유량이 40~100sccm, CF4/(SF6+CF4)의 가스 분율(gas fraction)이 약 0.1~0.9, 파워가 100~500W, 압력이 100 mTorr 이하의 저압 조건에서 플라즈마 소스를 이용하여 단일 챔버내에서 인-시튜로 패터닝함으로써, 공정 단순화 및 공정 안정화를 기할 수 있으며, 매우 양호한 수직 단면 프로파일을 얻을 수 있다.A method of anisotropically etching a multilayer metal thin film composed of a tungsten (W) upper layer film and a titanium nitride (TiN) underlayer simultaneously in the same chamber. The present invention uses a mixed gas of a mixture of SF 6 gas and CF 4 gas as an etching gas using a W / TiN multilayer film, and has a total flow rate of 40 to 100 sccm and a gas fraction of CF 4 / (SF 6 + CF 4 ). ) Can be patterned in-situ in a single chamber using a plasma source at low pressures of about 0.1 to 0.9, power of 100 to 500 W, and pressures of 100 mTorr or less, resulting in process simplification and process stabilization. A vertical cross section profile can be obtained.

Description

다층금속 식각방법Multi-layer metal etching method

제1도 내지 제3도는 본 발명의 바람직한 실시예에 의한 다층금속의 에칭방법을 각 단계벼로 순차적으로 도시한 공정단면도이다.1 to 3 are process cross-sectional views sequentially showing a method of etching a multilayer metal according to a preferred embodiment of the present invention in steps.

본 발명은 반도체 장치의 제조방법에 관한 것으로서, 특히 W/TiN와 같은 다층 금속을 동일 챔버에게 식각하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of etching a multilayer metal such as W / TiN into the same chamber.

반도체장치의 제조공정이 서브마이크론(sub-micron) 레벨로 진행됨에 따라 가공치수가 미세화하여 0.4㎛ 이하 레벨의 패턴 가공이 필요하게 되었다. 따라서, 식각공정에 있어서, 하지막과의 높은 식각선택비와 미세 선폭 제어등의 요구가 강조되고 있다.As the manufacturing process of the semiconductor device proceeds to the sub-micron level, the processing dimension becomes finer, and pattern processing of 0.4 mu m or less level is required. Therefore, in the etching process, demand for high etching selectivity with the underlying film, fine line width control, and the like is emphasized.

이에 따라, 이방성 프로파일을 형성하는 건식식각 방식이 식각공정의 대다수를 차지하게 되었으며, 수직 프로파일에 대한 요구는 디자인 룰(design rule) 감소와 더불어 그 정도가 더욱 강해지고 있는 추세이다.Accordingly, the dry etching method for forming the anisotropic profile takes up the majority of the etching process, and the demand for the vertical profile is increasing with the reduction of design rules.

한편, 반도체장치의 집적도가 증가함에 따라 저저항 배선의 중요성이 증대되고 있으며, 최근에는 폴리실리콘을 대체하는 저저항 배선 구조로서 W/TiN와 같은 다층금속이 사용되고 있다. 이러한 W/TiN 구조는 또한, 256Mbit-급 DRAM에서의 비트라인으로 사용되고 있다.On the other hand, as the degree of integration of semiconductor devices increases, the importance of low-resistance wiring is increasing, and recently, multilayer metals such as W / TiN have been used as low-resistance wiring structures to replace polysilicon. This W / TiN structure is also used as a bit line in 256 Mbit-class DRAM.

이러한 텅스텐/티타늄 나이트라이드 다층박막을 이방성 방식으로 건식식각하기 위해 종래에는, 반응 부산물인 폴리머 생성 문제 및 파티클 제어 문제 등을 고려하여 각 금속막을 다른 챔버나 다른 반응기를 사용하여 개별적으로 수행하고 있다. 예를 들어 텅스텐(W) 금속막은 프루오라이드계(Fluoride base) 에칭가스(예를 들어, SF6, CFX...등)를 사용하여 이방성 식각을 수행하는데, 이때 통스텐의 과식각시 그 하지막인 TiN의 측벽에는 반응 부산물(by product)인 TiFX와 같은 폴리머가 부착되어 원하는 식각 프로파일을 얻지 못하는 문제점이 발생된다. 더욱이, 식각 공정조건의 변수인 파워를 증가시키는 경우, 포리며 발생은 더욱 가속화 된다.In order to dry-etch such a tungsten / titanium nitride multilayer thin film in an anisotropic manner, each metal film is separately performed using a different chamber or another reactor in consideration of a reaction product by-product generation problem and particle control problem. For example, a tungsten (W) metal film performs anisotropic etching using a fluoride base etching gas (for example, SF 6 , CF X ..., etc.). The sidewalls of TiN, which is a base film, have a problem such that a polymer such as TiF X , which is a by-product of reaction, is attached, thereby failing to obtain a desired etching profile. Moreover, when the power, which is a variable of the etching process conditions, is increased, poultry generation is further accelerated.

또한, 장벽금속으로 사용되는 티타늄 나이트라이드(TiN) 금속막은 클로라이드계(Chloride base) 에칭 가스 (예를 들어, Cl2, BCI3...등)를 보편적으로 사용하는데, 그 이유는 증기압이 매우 낮고 휘발성이 매우 높은 TiCl4가스를 생성하기 때문이다.In addition, titanium nitride (TiN) metal films used as barrier metals commonly use chloride-based etching gases (e.g., Cl 2 , BCI 3 ... etc.) because the vapor pressure is very high. This is because it produces low and highly volatile TiCl 4 gas.

이와 같이, 종래에는 각 금속물질에 따라 각기 다른 반응가스를 사용해야 하기 때문에, 서로 다른 챔버 및 반응기에서 식각 공정을 수행할 수 밖에 없다. 따라서, 공정이 번거러울 뿐만 아니라 여러 단계의 식각 공정을 인-시튜(in-situ)로 진행할 수 없다. 그이유는, W/TiN 다층금속을 프루오라이드계및 클로라이드계 가스를 혼용하여 사용하는 경우에 나타날 수 있는 각기 다른 화학 재반응(chemical reaction)특성으로 인하여, 식각 챔버내를 일정한 분위기로 유지하기 어렵고 상술한 폴리머 생성문제와 파티클 제어가 어렵기 때문이다.As such, in the related art, different reaction gases must be used according to each metal material, and therefore, etching processes may be performed in different chambers and reactors. Thus, not only is the process cumbersome, but the etching process of several steps cannot be carried out in-situ. The reason for this is to maintain a constant atmosphere in the etch chamber due to the different chemical reaction characteristics that can occur when the W / TiN multilayer metal is used in combination with a fluoride-based and chloride-based gas. This is because it is difficult and the above-described polymer generation problem and particle control are difficult.

따라서, 본 발명의 목적은 W/TiN 다층금속을 동일 챔버내에서 공정불량을 유발시키는 폴리머 생성없이 인-시튜로 식각할 수 있는 식각방법을 제공하는데 있다.Accordingly, an object of the present invention is to provide an etching method capable of etching a W / TiN multilayer metal in-situ without generating a polymer causing a process defect in the same chamber.

상기 목적을 달성하기 위하여 본 발명은, 텅스텐(W) 상층막과 티나늄나이트라이드(TiN) 하지막으로 구성되는 다층금속을 이방성 식각하는 방법에 있어서,In order to achieve the above object, the present invention provides a method for anisotropically etching a multilayer metal composed of a tungsten (W) upper layer film and a titanium nitride (TiN) base film,

상기 W/TiN 다층막을 SF6가스 및 CF4가스를 혼합한 혼합 가스를 에칭 가스로 이용하여 동일 챔버내에서 식각하는 것을 특징으로 하는 다층금속 식각방법을 제공한다.The W / TiN multilayer film is etched in the same chamber by using a mixed gas obtained by mixing SF 6 gas and CF 4 gas as an etching gas.

바람직하게, 상기 에칭 가스의 가스 분율(gas fraction)은 0.1≤CF4/(SF6+CF4)≤0.9의 범의를갖는다.Preferably, the gas fraction of the etching gas (gas fraction) is 0.1≤CF 4 / (SF 6+ CF 4 ) has a ≤0.9 beomui of.

보다 바람직하게, 상기 식각 조건으로 5~500 sccm의 유량 및 100mTorr 이하의 압력에서 플라즈마 소스(plasma source)를 이용한다.More preferably, a plasma source is used at a flow rate of 5 to 500 sccm and a pressure of 100 mTorr or less as the etching condition.

또한, 상기 혼합 가스중의 하나인 CF4대신에 C2F6, C3F8등과 같은 카본-프루오라이드계 가스중의 어느 하나를 사용할 수 있으며, 상기 다층금속의 하지막을 구성하는 TiN 대신에 Ti, TiW, TiSi, 등으로 이루어진 Ti-화합물 중의 어느 하나를 사용할 수 도 있다.Instead of CF 4 , which is one of the mixed gases, any one of carbon-fluoride-based gases such as C 2 F 6 , C 3 F 8, and the like may be used, and instead of TiN constituting the underlayer of the multilayer metal. Any of Ti-compounds composed of Ti, TiW, TiSi, or the like may be used.

본 발명의 바람직한 실시예에 의하면, TiN와 W이 차례로 적층된 다층막을 동일 에칭 가스를 사용하여 단일 챔버내에서 인-시튜로 패터닝함으로써, 공정 단순화 및 공정 안정화를 기할 수 있으며, 매우 양호한 수직 단면 프로파일을 얻을 수 있다.According to a preferred embodiment of the present invention, a multilayer film in which TiN and W are sequentially stacked is patterned in-situ in a single chamber using the same etching gas, thereby simplifying the process and stabilizing the process. Can be obtained.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조하여 보다 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

다층 금속막을 동일 챔버에서 인-시튜로 이방성 식각하기 위해서는, 식각대상물인 막질의 종류에 관계없이 한가지의 에칭 가스를 선택하여 사용해야 한다.In order to anisotropically etch the multilayer metal film in-situ in the same chamber, one etching gas must be selected and used regardless of the type of film to be etched.

전술한 클로라이드계 가스는 TiN에 대해서는 매우 양호한 식각 반응을 나타내는 반면, 텅스텐 막질에 대해서는 선택비가 나쁘며 수직한 단면 프로파일의 제어가 어렵다. 이에 따라, 프루오라이드계 에칭가스를 이용하여 W/TiN 다층막을 인-시튜 식각할 수 있는 최적조건을 여러 차례의 실험을 통하여 관찰하였다.The above-described chloride gas exhibits a very good etching reaction for TiN, while the selectivity is poor for tungsten film quality and it is difficult to control the vertical cross-sectional profile. Accordingly, the optimum conditions for in-situ etching of the W / TiN multilayer film using a fluoride-based etching gas were observed through several experiments.

텅스텐 막질의 에칭 가스로 유용한 프루오라이드계 가스를 사용하여 TiN 막질의 식각시, 반응 부산물인 폴리머 제어의 가능성 여부를 터진하였다. 그 결과, SF6+CF4의 혼합가스를 사용한 저압(low pressure)분위기에서, TiNX폴리머의 매우 낮은 증기압(vapor pressure) 특성에도 불구하고, 상기 폴리머의 측벽 잔류 없이 수직한 단면을 갖는 TiN 패턴을 얻을 수 있음을 발견하였다.A fluoride-based gas useful as an etching gas of tungsten film was used to etch the possibility of controlling the polymer as a reaction byproduct during etching of the TiN film. As a result, in a low pressure atmosphere using a mixed gas of SF 6+ CF 4 , despite the very low vapor pressure characteristics of the TiN X polymer, the TiN pattern has a vertical cross section without residual sidewalls of the polymer. It was found that can be obtained.

따라서, W/TiN 다층막을 상기 SF6+CF4에칭가스를 사용하여 동일 챔버에서 플라즈마 식각을 수행하여 폴리머 생성에 의한 패턴에의 재증착을 방지할 수 있는 최적조건을 얻고자 한다.Therefore, the W / TiN multilayer film is subjected to plasma etching in the same chamber using the SF 6+ CF 4 etching gas to obtain an optimal condition to prevent redeposition on the pattern due to polymer production.

제1도 내지 제3도는 본 발명의 바람직한 실시예에 의한 다층금속의 에칭방법을 각 단계별로 순차적으로 도시한 공정단면도를 나타낸 것이다.1 to 3 show a process cross-sectional view sequentially showing the etching method of the multi-layered metal according to the preferred embodiment of the present invention step by step.

제1도는 소정기판(10) 상에 TiN층(20)과 W층(30)을 순차적으로 증착한 후, 통상의 사진공정을 이용하여 감광막 패턴(PR)을 형성하는 단계를 나타낸다. 상기 TiN층(20)과 W층(30)은 CVD9Chemical Vapor Deposition) 또는 스퍼터링 방법에 의해 증착된다.FIG. 1 illustrates a step of sequentially depositing the TiN layer 20 and the W layer 30 on the predetermined substrate 10 and then forming the photoresist pattern PR using a conventional photographic process. The TiN layer 20 and the W layer 30 are deposited by CVD 9 chemical vapor deposition or sputtering.

제2도는 상기 감광막 패턴(PR)을 마스크로 이용하고, 상기 노출된 W층(30)과 TiN층(20)을 식각 대상물로 이용하며, 다음과 같은 식각조건으로 다층막을 동일 챔버내에서 인-시튜 식각하는 단계를 나타낸다.2 shows the photoresist pattern PR as a mask, the exposed W layer 30 and the TiN layer 20 as an etching target, and the multilayer film is formed in the same chamber under the following etching conditions. Situ etching step.

식각 조건은 다음과 같다. SF5가스 및 CF4가스를 혼합한 혼합가스를 에칭 가수로 사용하고, 전체 유량은 40~100sccm이며, CF4/(SF5CF4)의 가스 분율(gas fraction)은 약 0.1~0.9이고, 파워는 100~500W이며, 100mTorr의 저압에서 플라즈마 소스를 이용한다.The etching conditions are as follows. The mixed gas of SF 5 gas and CF 4 gas is used as the etching water, and the total flow rate is 40 to 100 sccm, and the gas fraction of CF 4 / (SF 5 CF 4 ) is about 0.1 to 0.9, The power ranges from 100 to 500W and uses a plasma source at a low pressure of 100mTorr.

이때, 상기 CF4대신에 C2F6, C3F8등과 같은 카본-프루오라이드계 가스중의 어느 하나의 가스를 상기 SF6와 혼합하여 사용할 수 있다. 또한 상기 다층막의 하지막막을 구성하는 TiN층(20) 대신에 Ti, TiW, TiSi과 같은 Ti-합금(alloy) 또는 화합물을 사용할 수도 있다.In this case, the CF 4, instead of carbon, such as C 2 F6, C 3 F 8 - can be used as a mixture of any of the gas in the loop fluoride-based gas and the SF 6. In addition, a Ti-alloy or a compound such as Ti, TiW, and TiSi may be used instead of the TiN layer 20 constituting the multilayer film.

상기 W층(30)의 식각 반응시 나타나는 부산물인 WFX및 TiN층(20)의 반응 부산물인 TiFX는 제2도에 도시된 바와같이, 식각 패턴과의 재반응 없이 제거되어 양호한 수직 프로파일을 얻을 수 있다.As shown in FIG. 2, WF X and by-product TiF X, which are by-products of the etching reaction of the W layer 30, are removed without re-reaction with an etching pattern, thereby forming a good vertical profile. You can get it.

제3도는 상기 감광막 패턴(PR)을 제거하기 위한 에싱(ashing)공정과 세척 공정을 수행한 후의 단면을 도시한 것이다.3 illustrates a cross section after an ashing process and a washing process for removing the photoresist pattern PR.

이상 설명한 바와같이 본 발명의 다층막 식각방법에 의하면, TiN와 W이 차례로 적층된 다층막을 동일 에칭 가스를 사용하여 단일 챔버내에서 인-시튜로 패터닝함으로써, 공정 단수화 및 공정 안정화를 기할 수 있으며, 매우 양호한 수직 단면 프로파일을 얻을 수 있는 효과를 발휘한다.As described above, according to the multilayer film etching method of the present invention, the process film can be shortened and stabilized by patterning the multilayer film in which TiN and W are sequentially stacked in-situ in a single chamber using the same etching gas. It has the effect of obtaining a very good vertical cross-sectional profile.

Claims (5)

텅스텐(W) 상층막과 티나뉴나이트라이드(TiN) 하지막으로 구성되는 다층금속을 이방성 식각하는 방법에 있어서, 상기 W/TiN 다층막을 SF6가스 및 CF4가스를 혼합한 혼합 가스를 에칭 가스로 이용하여 동일 챔버내에서 식각하는 것을 특징으로 하는 다층금속 식각방법.In the method of anisotropically etching a multi-layer metal composed of a tungsten (W) upper layer film and a tininanitride (TiN) underlayer, the mixed gas obtained by mixing the W / TiN multilayer film with SF 6 gas and CF 4 gas is etched. Using a multi-layer metal etching method characterized in that the etching in the same chamber. 제1항에 있어서, 상기 에칭 가스의 가스 분율(gas fraction)이 0.1≤CF4/(SF6+CF4)≤0.9의 범위를 갖는 것을 특징으로 하는 다층금속 식각방법.The method of claim 1, wherein a gas fraction (gas fraction) of the etching gas 0.1≤CF 4 / (SF 6+ CF 4 ) multi-layer metal etching, characterized in that in the range of ≤0.9. 제1항에 있어서, 상기 식각 조건으로 5~500 sccm의 전체 유량 및 100mTorr 이하의 압력에서 플라즈마 소스(plasma source)를 이용하는 것을 특징으로 하는 다층금속 식각방법.The method of claim 1, wherein a plasma source is used at a total flow rate of 5 to 500 sccm and a pressure of 100 mTorr or less as the etching condition. 제1항에 있어서, 상기 혼합 가스중의 하나인 CF4대신에 C2F6C3F8등과 같은 바콘 프루오라이드계 가스중의 어느 하나를 사용하는 것을 특징으로 하는 다층금속 식각방법.The method of claim 1, wherein any one of bacon fluoride gas such as C 2 F 6 C 3 F 8 is used in place of CF 4 which is one of the mixed gases. 제1항에 있어서, 상기 다층금속의 하지막을 구성하는 TiN 대신에 Ti, TiW, TiSi, 등으로 이루어진 Ti-화합물 중의 어느 하나를 사용하는 것을 특징으로 하는 다층금속 식각방법.The multilayer metal etching method according to claim 1, wherein any one of Ti-compounds made of Ti, TiW, TiSi, or the like is used instead of TiN constituting the underlayer metal of the multilayer metal.
KR1019950021389A 1995-07-20 1995-07-20 Etching method of multi-layer metal KR0165416B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950021389A KR0165416B1 (en) 1995-07-20 1995-07-20 Etching method of multi-layer metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950021389A KR0165416B1 (en) 1995-07-20 1995-07-20 Etching method of multi-layer metal

Publications (2)

Publication Number Publication Date
KR970008371A KR970008371A (en) 1997-02-24
KR0165416B1 true KR0165416B1 (en) 1999-02-01

Family

ID=19421039

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950021389A KR0165416B1 (en) 1995-07-20 1995-07-20 Etching method of multi-layer metal

Country Status (1)

Country Link
KR (1) KR0165416B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884369B2 (en) 2001-03-27 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Wiring and method of manufacturing the same, and wiring board and method of manufacturing the same
KR20230147578A (en) 2021-02-19 2023-10-23 장민우 Ad method and device based on representing advertisement of orderer using delivery case with display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100460798B1 (en) * 1997-06-19 2005-05-20 삼성전자주식회사 Semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884369B2 (en) 2001-03-27 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Wiring and method of manufacturing the same, and wiring board and method of manufacturing the same
KR20230147578A (en) 2021-02-19 2023-10-23 장민우 Ad method and device based on representing advertisement of orderer using delivery case with display

Also Published As

Publication number Publication date
KR970008371A (en) 1997-02-24

Similar Documents

Publication Publication Date Title
US5976986A (en) Low pressure and low power C12 /HC1 process for sub-micron metal etching
KR100392447B1 (en) Plasma Etching Method of Bias
CN101064244B (en) Etch methods to form anisotropic features for high aspect ratio applications
JP2915807B2 (en) Etching of molybdenum silicide using sulfur hexafluoride, hydrogen bromide and oxygen
US5024722A (en) Process for fabricating conductors used for integrated circuit connections and the like
US20070202700A1 (en) Etch methods to form anisotropic features for high aspect ratio applications
JP2956485B2 (en) Method for manufacturing semiconductor device
KR100538839B1 (en) Method for using a hard mask for critical dimension growth containment
KR100363591B1 (en) Method of dry etching
KR101224747B1 (en) Tungsten silicide etch process with reduced etch rate micro-loading
US6046114A (en) Method for producing a semiconductor device
EP0820093A1 (en) Etching organic antireflective coating from a substrate
US5200032A (en) Dry etching method
US7226867B2 (en) Method of etching a metal layer using a mask, a metallization method for a semiconductor device, a method of etching a metal layer, and an etching gas
KR0165416B1 (en) Etching method of multi-layer metal
JPH10178014A (en) Method for manufacturing semiconductor device
US7550390B2 (en) Method and apparatus for dielectric etching during integrated circuit fabrication
KR100468700B1 (en) Dry etching process for forming fine pattern of semiconduct of device
JPH1012734A (en) Manufacture of semiconductor device
JPH06163479A (en) Dry etching method
JP2006261216A (en) Method of forming semiconductor apparatus
KR20010080994A (en) Method for residue-free anisotropic etching of aluminum and its alloys
JP2762972B2 (en) Method for manufacturing semiconductor device
KR100562320B1 (en) Method for etching silicon oxide family antireflective coating in etching metal layer
JP2001284319A (en) Dry etching process and method of manufacturing semiconductor including the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060830

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee