KR0162863B1 - Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide - Google Patents

Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide Download PDF

Info

Publication number
KR0162863B1
KR0162863B1 KR1019940033313A KR19940033313A KR0162863B1 KR 0162863 B1 KR0162863 B1 KR 0162863B1 KR 1019940033313 A KR1019940033313 A KR 1019940033313A KR 19940033313 A KR19940033313 A KR 19940033313A KR 0162863 B1 KR0162863 B1 KR 0162863B1
Authority
KR
South Korea
Prior art keywords
gallium arsenide
semiconductor
ruthenium oxide
contact
barrier
Prior art date
Application number
KR1019940033313A
Other languages
Korean (ko)
Other versions
KR960026134A (en
Inventor
민석기
김은규
박용주
Original Assignee
김은영
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김은영, 한국과학기술연구원 filed Critical 김은영
Priority to KR1019940033313A priority Critical patent/KR0162863B1/en
Publication of KR960026134A publication Critical patent/KR960026134A/en
Application granted granted Critical
Publication of KR0162863B1 publication Critical patent/KR0162863B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 열적으로 안정된 반도체소자용 게이트금속(gate metal) 및 금속배선 제작을 위해 반도체와 금속 사이의 접촉베리어(contact barrier)에 대한 열적안정성을 향상시키는 방법에 관한 것으로, 특히 갈륨비소반도체 위에 쇼트키장벽을 형성하고 열처리 수행시 300 ℃정도의 낮은 온도에서도 금속과 반도체 사이의 반응에 의한 접합장벽의 열화현상을 지연시켜줌으로써 열적안정성을 실현하려는 데 그 목적이 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving thermal stability of a contact barrier between a semiconductor and a metal for manufacturing a gate metal and a metal wiring for a thermally stable semiconductor device. The purpose of the present invention is to realize thermal stability by forming a key barrier and delaying the deterioration of the junction barrier caused by the reaction between the metal and the semiconductor even at a temperature of about 300 ° C. during the heat treatment.

따라서, 본 발명 갈륨비소반도체와 산화루테늄 접촉베리어의 열적안정화방법은 갈륨비소반도체의 쇼트키접촉용 금속으로 비저항이 작고 안정된 산화물인 산화루테늄의 접촉안정성을 높이기 위하여 갈륨비소반도체의 표면에 수소화를 실시함으로써, 반도체 표면에 존재할 수 있는 결함 및 불순물들의 전기적 이온상태를 중성화시켜 접촉베리어에 영향을 미치는 계면고정효과(interface pinning effect)를 방지할 수 있고, 접촉계면의 산화반응을 억제하게 되어 열적안정성을 유지하게 되는 효과가 있다.Accordingly, the thermal stabilization method of gallium arsenide semiconductor and ruthenium oxide contact barrier is a schottky contact metal of gallium arsenide semiconductor, and hydrogenation is performed on the surface of gallium arsenide semiconductor to increase the contact stability of ruthenium oxide, which is a small resistivity and stable oxide. By neutralizing the electrical ion state of defects and impurities that may exist on the surface of the semiconductor, it is possible to prevent the interface pinning effect affecting the contact barrier, and to suppress the oxidation reaction of the contact interface to prevent thermal stability. It is effective to maintain.

Description

갈륨비소반도체와 산화루테늄 접촉베리어의 열적안정화방법Thermal stabilization of gallium arsenide semiconductor and ruthenium oxide contact barrier

제1도는 N형 갈륨비소표면 위에 산화루테늄박막을 증착시킨 단면도.1 is a cross-sectional view of depositing a ruthenium oxide thin film on an N-type gallium arsenide surface.

제2도는 본 발명에 의해 수소화된 갈륨비소표면 위에 산화루테늄박막을 증착시 단면도.2 is a cross-sectional view of depositing a ruthenium oxide thin film on a gallium arsenide surface hydrogenated by the present invention.

제3도 및 제4도는 수소화 전후의 갈륨비소반도체와 산화루테늄박막 접촉베리어에 대한 열처리에 따른 전류-전압특성을 도시한 것으로,3 and 4 show the current-voltage characteristics of the gallium arsenide semiconductor and ruthenium oxide thin film contact barrier before and after hydrogenation.

제3도는 장벽높이(barrier height)의 변화곡선 그래프.3 is a graph of the change in barrier height.

제4도는 이상지수(ideality factor)의 변화곡선 그래프이다.4 is a graph of a change curve of an ideality factor.

본 발명은 열적으로 안정된 반도체소자용 게이트금속(gate metal) 및 금속배선 제작을 위해 반도체와 금속 사이의 접촉베리어(contact barrier)에 대한 열적안정성을 향상시키는 방법에 관한 것으로, 특히 산화루테늄(RuO2)박막과 갈륨비소반도체 사이의 접촉베리어에 대한 열적안정성의 향상을 위해 갈륨비소반도체의 접촉표면을 수소화처리하여 옴접촉(ohmic contact) 형성온도까지 안정성을 유지시킬 수 있도록 한 갈륨비소반도체와 산화루테늄 접촉베리어의 열적안정화방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving thermal stability of a contact barrier between a semiconductor and a metal for manufacturing a gate metal and a metal wiring for a thermally stable semiconductor device. In particular, ruthenium oxide (RuO 2 Gallium arsenide semiconductor and ruthenium oxide to maintain stability up to ohmic contact formation temperature by hydrogenating the contact surface of gallium arsenide semiconductor to improve thermal stability of contact barrier between thin film and gallium arsenide semiconductor The present invention relates to a thermal stabilization method of a contact barrier.

일반적으로 반도체소자 제조용 전극 및 배선재료는 소자성능의 다양화 및 고집적화에 따라 중요한 반도체 재료의 하나로서, 최근 비저항 및 산화성이 작고 증착제어성 및 경제성이 우수한 금속재료 개발을 위해 많은 연구가 행해지고 있다. 이는 금속과 반도체계면에서 열적안정성이 우수하면 쇼트키접촉(Schottky contact)에 따른 전기적 장벽높이가 열적으로 안정되어 소자성능유지 및 열화방지의 역할을 하므로 훌륭한 게이트금속 및 배선으로 활용될 수 있기 때문이며, 또한 게이트금속으로서 직접 열처리시의 덮개용으로 동시에 활용이 가능하게 되므로 공정이 단축되는 잇점도 가지게 된다.BACKGROUND ART In general, electrodes and wiring materials for manufacturing semiconductor devices are one of important semiconductor materials due to diversification and high integration of device performance. Recently, many studies have been conducted to develop metal materials having low resistivity, low oxidation resistance, and excellent deposition control and economic efficiency. This is because if the thermal stability is excellent in the metal and semiconductor interface, the electrical barrier height due to Schottky contact is thermally stabilized, and thus it can be utilized as an excellent gate metal and wiring because it plays a role of maintaining device performance and preventing degradation. In addition, as the gate metal can be used simultaneously for the cover during direct heat treatment, the process has the advantage of shortening.

지금까지는 금과 알루미늄이 갈륨비소반도체의 게이트금속으로 많이 사용되고 있는 추세이나, 두 종류의 금속이 모두 열적안정성이 낮고, 금의 경우에는 경제성이 낮으며, 알루미늄은 산화막이 쉽게 형성되는 단점을 가지고 있었다.Until now, gold and aluminum have been widely used as gate metals of gallium arsenide semiconductors, but both types of metals have low thermal stability, low economical efficiency in gold, and aluminum has a disadvantage in that oxide films are easily formed. .

한편, 산화루테늄(RuO2)은 산화물로서 대기중에서 안정되고 금속과 비슷한 50 μΩ㎝정도의 비저항을 갖고 있어, 산소와 염소의 노출에도 과전위(overpotential)가 낮기 때문에 최근 게이트금속 및 금속배선재료로서 그 활용가치가 주목되고는 있지만, 루테늄(Ru)에 비해 그 열적특성이 뒤떨어지고 있는 실정이다.On the other hand, ruthenium oxide (RuO 2 ) is an oxide that is stable in the air and has a specific resistance of about 50 μΩ㎝ similar to that of metal, and has a low overpotential even when exposed to oxygen and chlorine. Although the utilization value is being noted, its thermal characteristics are inferior to ruthenium (Ru).

본 발명은 상기한 바와 같은 게이트금속 및 금속배선재료로서 최근 주목받고 있는 산화루테늄의 열적안정성을 향상시키려는 것으로, 갈륨비소반도체 위에 쇼트키장벽을 형성하고 열처리 수행시 300 ℃정도의 낮은 온도에서도 금속과 반도체 사이의 반응에 의한 접합장벽의 열화현상을 지연시켜줌으로써 열적안정성을 실현하려는 데 그 목적이 있다.The present invention is to improve the thermal stability of ruthenium oxide, which is recently attracting attention as the gate metal and metal wiring material as described above, forming a Schottky barrier on gallium arsenide semiconductor and at a low temperature of about 300 ℃ when performing heat treatment The purpose is to realize thermal stability by delaying deterioration of the junction barrier caused by the reaction between semiconductors.

이러한 본 발명의 목적을 달성하기 위하여, 산화루테늄을 직류마그테트론 스퍼터링(DC magnetron sputtering)법으로 갈륨비소반도체 표면 위에 증착함에 있어서, 상기 산화루테늄과 갈륨비소반도체의 계면상에 존재하는 각종 결함들의 전기적 활성상태를 중성화하도록 갈륨비소의 표면을 수소화처리한 후, 산화루테늄으로 박막증착함을 특징으로 하는 갈륨비소반도체와 산화루테늄 접촉장벽의 열적 안정화방법이 제공된다.In order to achieve the object of the present invention, in the deposition of ruthenium oxide on the gallium arsenide semiconductor surface by DC magnetron sputtering method, the various defects present on the interface of the ruthenium oxide and gallium arsenide semiconductor A method of thermally stabilizing a gallium arsenide semiconductor and a ruthenium oxide contact barrier is provided by hydrogenating a surface of gallium arsenide to neutralize an electrically active state and then depositing a thin film with ruthenium oxide.

상기 갈륨비소반도체의 수소화처리는 프라즈마파우어를 0.06∼0.1 W/㎠로 하고, 기판온도를 150∼250 ℃로 유지함을 특징으로 하고 있다.The hydrogenation of the gallium arsenide semiconductor is characterized in that the plasma power is 0.06 to 0.1 W / cm 2 and the substrate temperature is maintained at 150 to 250 ° C.

이하에서는 상기한 바와 같은 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention as described above will be described in more detail.

본 발명의 갈륨비소반도체와 산화루테늄 접촉장벽의 열적 안정화방법은 먼저, 운반자농도가 약 2∼3x1016-3인 n형 갈륨비소시료를 주파수 13.56 MHz의 프라즈마장치 내에 유입시켜 프라즈마 파우어밀도(power density)와 수소압력을 각각 0.08 W/㎠와 0.5 Torr로 하여 기판온도를 200℃에서 30 분간 수소화처리한다. 이러한 수소화처리공정은 갈륨비소표면의 크리닝(cleaning)뿐만 아니라 약 2 ㎛ 내의 깊이에 있는 불순물이나 결함상태들의 전기적 상태를 중성화시키는 역할을 하게 된다.The thermal stabilization method of the gallium arsenide semiconductor and the ruthenium oxide contact barrier of the present invention firstly introduces an n-type gallium arsenide sample having a carrier concentration of about 2 to 3x10 16 cm -3 into a plasma device having a frequency of 13.56 MHz to obtain plasma power density. The substrate temperature is hydrogenated at 200 ° C. for 30 minutes with density) and hydrogen pressure of 0.08 W / cm 2 and 0.5 Torr, respectively. This hydrotreating process not only cleans the gallium arsenide surface but also serves to neutralize the electrical state of impurities or defect states at a depth within about 2 μm.

이와 같이 표면이 수소화처리된 시료를 직류 마그테트론 스퍼터링장치에서 게이트금속인 루테늄 및 산화루테늄을 직경 0.8 ㎜의 샤도우마스크(shadow mask)를 이용하여 0.1 ㎛의 두께로 증착한다. 이 때 쇼트키다이오드를 위한 옴접촉은 인듐땜으로 형성한다.Thus, the surface-hydrogenated sample is deposited to a thickness of 0.1 μm using a shadow mask having a diameter of 0.8 mm and ruthenium oxides, which are gate metals, in a direct current magnetron sputtering apparatus. At this time, the ohmic contact for the Schottky diode is formed of indium solder.

이 후, 상기와 같이 표면에 수소화가 수행되고 산화루테늄 박막증착이 이루어진 갈륨비소의 루테늄 및 산화루테늄 쇼트키시료를 전기로를 사용하여 질소 또는 알곤가스 분위기내에서 약 10 분간 550 ℃의 온도까지 증가시키면서 열처리하여, 열처리된 시료에 대해서 전류-전압특성 측정을 통해 접촉베리어 장벽높이와 이상지수를 비교하여 산화루테늄에 대한 쇼트키 다이오드 특성의 열적 안정성을 확인하였는 바, 이를 첨부도면에 의거하여 설명하면 다음과 같다.Thereafter, the ruthenium and ruthenium oxide schottky samples of gallium arsenide, which were hydrogenated on the surface and deposited on the ruthenium oxide thin film, were increased to a temperature of 550 ° C. in a nitrogen or argon gas atmosphere for about 10 minutes using an electric furnace. The thermal stability of the Schottky diode characteristics against ruthenium oxide was confirmed by comparing the contact barrier barrier height and the anomaly index by measuring the current-voltage characteristics of the heat-treated samples. Same as

제1도는 n형 갈륨비소기판(1) 위에 아무런 처리를 하지 않은 상태에서 직류마그네트론 스퍼터링법으로 산화루테늄(2) 또는 루테늄박막(3)을 증착시킨 상태를 보인 단면도이고, 제2도는 갈륨비소기판(1')의 표면을 수소화시킨 후, 산화루테늄(2')을 증착시킨 상태의 단면도로서, 이 때의 상기 산화루테늄(2')의 두께는 약 0.1 ㎛이고 수소화된 갈륨비소층(4)은 약 1-2㎛이다.FIG. 1 is a cross-sectional view showing ruthenium oxide (2) or ruthenium thin film (3) deposited by direct current magnetron sputtering without any treatment on n-type gallium arsenide substrate (1), and FIG. A cross-sectional view of a state in which ruthenium oxide 2 'is deposited after hydrogenating the surface of 1', wherein the thickness of the ruthenium oxide 2 'is about 0.1 占 퐉 and the hydrogenated gallium arsenide layer 4 Is about 1-2 μm.

제3도 및 제4도는 수소화 전후의 갈륨비소반도체(1)(1')와 산화루테늄(2)(2')박막 접촉베리어에 대한 열처리에 따른 전류-전압특성의 장벽높이(barrier height)와 이상지수(ideality factor) 각각의 변화상태(여기서 열처리시간은 10분임)를 도시한 것으로서, 먼저 제3도에 나타난 바와 같이, 종래의 갈륨비소(1)의 표면에 아무런 처리를 하지 않은 시료에서의 루테늄(3) 접촉의 장벽높이는 열처리전에 0.88 eV(5)에서 열처리를 함에 따라 점차 감소하여 400 ℃이상에서는 0.73 eV(5')로 낮아지게 됨을 알 수 있다. 또한, 산화루테늄(2)의 경우에는 열처리전에 0.85 eV(6)에서 열처리온도가 증감함에 따라 급격히 감소하여 300 ℃의 열처리에서도 장벽높이가 0.74 eV(6')로 낮아지는 것을 보이고 있다. 이 때 산화루테늄(2)이 루테늄(3)의 경우보다 열적 안정성이 약 100℃정도 낮게 나타남을 알 수 있다.3 and 4 show the barrier height of the current-voltage characteristics of the gallium arsenide semiconductor (1) (1 ') and ruthenium oxide (2) (2') thin film contact barriers before and after hydrogenation. As shown in FIG. 3, first, as shown in FIG. 3, a sample without any treatment on the surface of the conventional gallium arsenide 1 is shown. It can be seen that the barrier height of ruthenium (3) contact gradually decreases as the heat treatment is performed at 0.88 eV (5) before the heat treatment, and lowers to 0.73 eV (5 ') above 400 ° C. In addition, in the case of ruthenium oxide (2), the heat treatment temperature decreases rapidly at 0.85 eV (6) before the heat treatment, and the barrier height is lowered to 0.74 eV (6 ') even at 300 ° C heat treatment. At this time, it can be seen that the ruthenium oxide (2) is about 100 ° C lower in thermal stability than the ruthenium (3).

본 발명에 의해 수소화처리된 갈륨비소(1')의 산화루테늄(2') 쇼트키 다이오드의 경우는 열처리 전의 장벽높이가 0.88 eV(7)로 수소화처리하지 않은 시료에서보다 높게 나타나고 있으며, 열처리에 따른 변화에서도 400 ℃까지 루테늄(3)시료와 같은 0.73 eV(5')(7') 이상의 장벽높이를 유지함으로써 수소화처리에 의해 갈륨비소반도체(1)(1')와 산화루테늄(2)(2')사이의 접촉계면에서 발생하기 쉬운 열적반응이 효과적으로 억제되고 있음을 알 수 있다. 이와 같은 결과는 수소화처리로 인해 갈륨비소(1)(1')표면에 존재하여 전기적 활성상태에 있는 각종 결함들이 전기적으로 중성화되는 효과에 의해 300 ℃ 이상에서 산화루테늄(2')이 포함하는 산소와 갈륨비소기판(1') 사이에 열적반응을 억제시켜주는 역할을 하기 때문이다.In the case of the ruthenium oxide (2 ') Schottky diode of the gallium arsenide (1') hydrogenated by the present invention, the barrier height before heat treatment was 0.88 eV (7) higher than that in the non-hydrogenated sample. The gallium arsenide semiconductor (1) (1 ') and ruthenium oxide (2) (by hydrogenation treatment) were maintained by maintaining the barrier height of 0.73 eV (5') (7 '), such as ruthenium (3) sample, up to 400 ° C. It can be seen that the thermal reaction which is likely to occur at the contact interface between 2 ') is effectively suppressed. The result is that oxygen contained in ruthenium oxide (2 ') at 300 ° C or higher due to the effect of the hydrogenation treatment on the surface of gallium arsenide (1) (1'), which causes various defects in the electrically active state to be electrically neutralized. This is because it serves to suppress the thermal reaction between the gallium arsenide substrate (1 ').

제4도에 도시한 바와 같은 이상지수의 열처리온도에 따른 변화에서는 수소화처리 전후의 모습이 현저히 상이함을 알 수 있는 데, 먼저 수소화처리를 하지 않은 시료의 경우에는 수소화처리를 한 경우에 비해 전반적으로 이상지수가 높은 편으로서 열처리 온도가 증가함에 따라 300 ℃까지는 1.05(8)에서 1.11(8')로 비교적 완만한 증가를 보이다가 그 이상의 온도가 되면 급격히 증가하여 500 ℃에서는 1.35(8)까지 증가한다.The change according to the heat treatment temperature of the anomaly index as shown in FIG. 4 shows that the appearance before and after the hydrotreatment is remarkably different. As the anomaly index is high, as the heat treatment temperature increases, it shows a relatively gentle increase from 1.05 (8) to 1.11 (8 ') up to 300 ℃, but rapidly increases to above 1.35 (8) at 500 ℃. Increases.

그러나, 갈륨비소(1')를 수소화처리한 경우에는 350℃까지는 1.03(9)에서 1.00(9')로 아주 이상적인 값을 보이며 400 ℃에서도 1.10(9)까지 유지한 후, 그 이상의 온도에서 급격히 증가하는 모습을 보이고 있으며, 열처리 온도 400 ℃에서 루테늄(3)의 이상지수 1.09(10)의 값에 비교할 때 수소화처리 한 경우가 400 ℃까지는 산화루테늄(2')과 갈륨비소(1')와의 접촉소자특성을 잘 유지시키도록 작용함을 알 수 있다. 이는 접촉장벽높이의 변화에서와 같이, 수소화처리의 효과가 400 ℃까지 유지되어 갈륨비소(1)(1')와 산화루테늄(2)(2') 사이에 존재하는 결함상태를 전기적으로 중성화시켜 열적 반응을 효과적으로 억제시키기 때문이다.However, in the case of hydrogenation of gallium arsenide (1 '), it is very ideal value from 1.03 (9) to 1.00 (9') up to 350 ℃, and maintained at 1.10 (9) at 400 ℃, then rapidly at a higher temperature. When compared to the value of the anomaly index 1.09 (10) of ruthenium (3) at the heat treatment temperature of 400 ° C, the hydrogenation treatment up to 400 ° C was performed with ruthenium oxide (2 ') and gallium arsenide (1'). It can be seen that it works to maintain the contact device characteristics well. As in the change of the contact barrier height, the effect of the hydrogenation treatment is maintained up to 400 ° C to electrically neutralize the defect state existing between gallium arsenide (1) (1 ') and ruthenium oxide (2) (2'). This is because it effectively suppresses the thermal reaction.

한편, 루테늄(3)접촉의 경우에는 열처리 온도에 따른 장벽높이 및 이상지수가 수소화처리 한 후에도 거의 변화가 없는데, 이는 루테늄(3)과 갈륨비소(1)(1') 사이의 열처리에 의한 반응이 산화루테늄(2)(2')접촉의 경우보다 훨씬 작기 때문이다. 즉, 산화루테늄(2)(2')접촉의 경우에는 갈륨비소(1)(1')와의 접촉표면에 존재하는 계면결합을 통한 갈륨비소(1)(1')표면의 산화가 소자열화의 주된 근원으로서 이와 같은 반응의 활성도를 수소화처리를 통해 효과적으로 억제시킬 수 있음을 나타내는 것이다.On the other hand, in the case of ruthenium (3) contact, the barrier height and abnormality index according to the heat treatment temperature are almost unchanged even after the hydrogenation treatment, which is a reaction by heat treatment between ruthenium (3) and gallium arsenide (1) (1 '). This is because it is much smaller than the ruthenium oxide (2) (2 ') contact. That is, in the case of ruthenium oxide (2) (2 ') contact, the oxidation of the surface of gallium arsenide (1) (1') through interfacial bonding present on the contact surface with gallium arsenide (1) (1 ') is caused by element degradation. As the main source, the activity of such a reaction can be effectively suppressed through the hydrogenation treatment.

그러나, 400 ℃ 이상의 온도에서는 수소자신이 활성화되어 빠져나옴에 따라 수소화처리하지 않은 시료에서와 같이 갈륨비소(1')와 산화루테늄(2')사이의 반응으로 산화갈륨(Ga2O3) 또는 산화아세닉(As2O3)과 같은 갈륨비소산화층의 형성이 시작되어 소자의 특성이 저하됨을 알 수 있다.However, at temperatures above 400 ° C, as the susosin is activated and exits, the reaction between gallium arsenide (1 ') and ruthenium oxide (2'), such as in a non-hydrogenated sample, causes gallium oxide (Ga 2 O 3 ) or It can be seen that the formation of the gallium arsenide oxide layer, such as the oxide oxide (As 2 O 3 ), begins to degrade the device characteristics.

이상에서 상세히 설명한 바와 같이, 본 발명에 의한 갈륨비소반도체와 산화루테늄 접촉장벽의 열적 안정화방법은 갈륨비소반도체의 쇼트키접촉용 금속으로 비저항이 작고 안정된 산화물인 산화루테늄의 접촉안정성을 높이기 위하여 갈륨비소반도체의 표면에 수소화를 실시함으로써, 반도체 표면에 존재할 수 있는 결함 및 불순물들의 전기적 이온상태를 중성화시켜 접촉베리어에 영향을 미치는 계면고정효과(interface pinning effect)를 방지할 수 있고, 접촉계면의 산화반응을 억제하게 되어 열적 안정성이 유지되는 효과가 있다.As described in detail above, the thermal stabilization method of the gallium arsenide semiconductor and ruthenium oxide contact barrier according to the present invention is a Schottky contact metal of gallium arsenide semiconductor to increase the contact stability of ruthenium oxide, which is a small resistivity and stable oxide. By hydrogenating the surface of the semiconductor, it is possible to neutralize the electrical ion state of defects and impurities that may exist on the surface of the semiconductor to prevent the interface pinning effect affecting the contact barrier, and the oxidation of the contact interface It is to suppress the effect that the thermal stability is maintained.

Claims (2)

산화루테늄을 직류마그네트론 스퍼터링법으로 갈륨비소반도체 표면 위에 증착함에 있어서, 상기 산화루테늄과 갈륨비소반도체의 계면상에 존재하는 각종 결함들의 전기적 활성상태를 중성화하도록 갈륨비소의 표면을, 수소 플라즈마로 수소화처리한 후, 산화루테늄으로 박막증착함을 특징으로 하는 갈륨비소반도체와 산화루테늄 접촉베리어의 열적안정화방법.In depositing ruthenium oxide on the gallium arsenide semiconductor by direct current magnetron sputtering, the surface of gallium arsenide is hydrogenated with hydrogen plasma to neutralize the electrical activity of various defects present at the interface between the ruthenium oxide and the gallium arsenide semiconductor. After that, the thermal stabilization method of the gallium arsenide semiconductor and ruthenium oxide contact barrier, characterized in that the thin film is deposited with ruthenium oxide. 제1항에 있어서, 상기 갈륨비소표면의 수소화처리는 플라즈마 파워를 0.06∼01W/㎠로 하고, 기판 온도를 150∼250℃로 유지하여 수행함을 특징으로 하는 갈륨비소반도체와 산화루테늄 접촉베리어의 열적안정화방법.The gallium arsenide semiconductor and ruthenium oxide contact barrier are thermally treated according to claim 1, wherein the hydrogenation of the gallium arsenide surface is carried out at a plasma power of 0.06 to 01 W / cm2 and a substrate temperature of 150 to 250 ° C. Stabilization method.
KR1019940033313A 1994-12-08 1994-12-08 Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide KR0162863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940033313A KR0162863B1 (en) 1994-12-08 1994-12-08 Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940033313A KR0162863B1 (en) 1994-12-08 1994-12-08 Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide

Publications (2)

Publication Number Publication Date
KR960026134A KR960026134A (en) 1996-07-22
KR0162863B1 true KR0162863B1 (en) 1999-02-01

Family

ID=19400731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940033313A KR0162863B1 (en) 1994-12-08 1994-12-08 Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide

Country Status (1)

Country Link
KR (1) KR0162863B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757738B1 (en) * 2006-09-21 2007-09-12 연세대학교 산학협력단 Method for removing metal/gaas schottky contact interface impurities

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430683B1 (en) * 1996-12-31 2004-07-05 주식회사 하이닉스반도체 Method of forming metal line of semiconductor device using diffusion barrier layer
KR19990064934A (en) * 1999-05-25 1999-08-05 이환철 Fabrication method of an insulating films for MIS electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757738B1 (en) * 2006-09-21 2007-09-12 연세대학교 산학협력단 Method for removing metal/gaas schottky contact interface impurities

Also Published As

Publication number Publication date
KR960026134A (en) 1996-07-22

Similar Documents

Publication Publication Date Title
Kim et al. A study of transparent indium tin oxide (ITO) contact to p-GaN
KR100348269B1 (en) Schottky Contact Method Using Ruthenium Oxide
JP3986887B2 (en) Semiconductor device
Kampen et al. Barrier heights of GaN Schottky contacts
US7875538B2 (en) Semiconductor device having schottky junction and method for manufacturing the same
US3983264A (en) Metal-semiconductor ohmic contacts and methods of fabrication
Schultz et al. Influence of oxygen deficiency on the rectifying behavior of transparent-semiconducting-oxide–metal interfaces
US6326294B1 (en) Method of fabricating an ohmic metal electrode for use in nitride compound semiconductor devices
JP2015503847A (en) Metal oxide surface treatment method and thin film transistor manufacturing method
KR0162863B1 (en) Thermal stabilizing method of contact barrier of gaas semiconductor and ruthenium oxide
US20200365705A1 (en) Method of forming ohmic contact for gallium nitride-based compound semiconductor device and gallium nitride-based compound semiconductor device
RU2748300C1 (en) Method for producing ohmic contact with low specific resistance to passivated gallium nitride heterostructure on silicone substrate
KR970004839B1 (en) Gaas mesfets with enhanced schottky barrier
US6586328B1 (en) Method to metallize ohmic electrodes to P-type group III nitrides
JPH06350078A (en) Semiconductor device and manufacture thereof
KR20010097906A (en) Metal thin film for ohmic contact and fabrication method thereof
JP2003017749A (en) Metal electrode for light emitting diode using n-type zinc oxide-based semiconductor and manufacturing method therefor
Wang et al. A study of metal/GaAs interface modification by hydrogen plasma
Waytena et al. The use of a double mask system to prevent Ti diffusion from a Ti/Pt/Au ohmic contact on diamond
KR100373161B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100515652B1 (en) Transparant Electrode Film for Ohmic Contact of p-GaN Semiconductor
US20220406898A1 (en) Gallium nitride-based compound semiconductor device
KR100757738B1 (en) Method for removing metal/gaas schottky contact interface impurities
KR20050025210A (en) Method of ohmic contact to p type zno
TW201830526A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030730

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee