KR0152000B1 - Method for manufacturing in-sb thin film for hall generator - Google Patents

Method for manufacturing in-sb thin film for hall generator

Info

Publication number
KR0152000B1
KR0152000B1 KR1019950023551A KR19950023551A KR0152000B1 KR 0152000 B1 KR0152000 B1 KR 0152000B1 KR 1019950023551 A KR1019950023551 A KR 1019950023551A KR 19950023551 A KR19950023551 A KR 19950023551A KR 0152000 B1 KR0152000 B1 KR 0152000B1
Authority
KR
South Korea
Prior art keywords
range
substrate
thin film
layer
manufacturing
Prior art date
Application number
KR1019950023551A
Other languages
Korean (ko)
Other versions
KR970008677A (en
Inventor
장상권
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1019950023551A priority Critical patent/KR0152000B1/en
Publication of KR970008677A publication Critical patent/KR970008677A/en
Application granted granted Critical
Publication of KR0152000B1 publication Critical patent/KR0152000B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)

Abstract

본 발명은 홀소자에 사용되는 InSb 박막의 제조방법에 관한 것으로, 홀소자용 InSb 박막의 제조시 In과 Sb를 교차증발시켜 다층의 박막층을 형성시킨 후, 존멜팅 처리하므로서 InSb 증착막의 특성이 우수할 뿐만 아니라 제조비용이 저렴하고 공정관리가 용이한 홀소자용 InSb 박막의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing an InSb thin film used in a Hall device. In manufacturing an InSb thin film for a Hall device, In and Sb are cross-evaporated to form a multi-layered thin film layer. In addition, the present invention provides a method for manufacturing an InSb thin film for Hall device having low manufacturing cost and easy process management.

상기한 목적을 달성하기 위한 본발명은 진공도가 5×10-7Torr 이하로 유지되는 챔버내의 기판홀더에 장착된 기판을 20~200℃의 온도범위로 유지한후, 증발원상의 In및 Sb를 증발시키는 단계;상기 챔버내의 진공도를 0.1~7×10-6Torr 범위로 유지한후, In과 Sb를 3~15Å/sec의 속도범위로 교차증발시켜, 기판과 접하는 최하층 및 최상층이 내부 In층의 1/2두께인 In층이고 적층된 In및 Sb의 전체층이 0.8~1.5㎛두께 범위이고 In및 Sb의 최종 성분비가 1:0.95~1.05 범위가 되도록, 기판상에 In및 Sb를 교차적층하여 증착시키는 단계;및 In및 Sb가 증착된 기판을 500~650℃의 온도범위에서 존의폭을 5~30mm범위로 하고 이동속도를 0.5~10mm/sec의 범위로 하여 1~5회 반복하여 존멜팅(Zone melting)하는 단계를 포함하여 이루어지는 홀소자용 InSb박막의 제조방법에 관한 것을 그 요지로 한다.In order to achieve the above object, the present invention maintains a substrate mounted on a substrate holder in a chamber in which a vacuum degree is maintained at 5 × 10 −7 Torr or lower, and then evaporates In and Sb on an evaporation source. After maintaining the vacuum degree in the chamber in the range of 0.1 ~ 7 × 10 -6 Torr, In and Sb cross-evaporated at a speed range of 3 ~ 15 Å / sec, the lowest layer and the uppermost layer in contact with the substrate is 1 of the inner In layer Deposition and deposition of In and Sb on the substrate so that the entire In / Sb layer of In / Sb stacked in the thickness range of 0.8 to 1.5 μm and the final component ratio of In and Sb is in the range of 1: 0.95 to 1.05. And In and Sb on the substrate deposited with 500 to 650 ℃ the width of the zone in the range of 5 to 30mm and the moving speed in the range of 0.5 to 10mm / sec repeated 1 to 5 times John Melting ( The present invention relates to a method for manufacturing an InSb thin film for a Hall element comprising the step of Zone melting).

Description

홀(Hall) 소자용 안티몬화 인듐(InSb) 박막의 제조방법Method for manufacturing anti-indium monoxide (InSb) thin film for Hall device

제1도는 본 발명의 방법이 적용되는 진공챔버의 개략도.1 is a schematic diagram of a vacuum chamber to which the method of the present invention is applied.

제2도는 본 발명의 방법에 의해 기판상에 In 및 Sb가 증착된 상태를 나타낸 단면도.2 is a cross-sectional view showing a state where In and Sb are deposited on a substrate by the method of the present invention.

제3도는 본 발명의 방법에 의해 존멜팅처리된 후 기판상에 InSb 박막이 증착된 상태를 나타낸 단면도.3 is a cross-sectional view showing a state in which an InSb thin film is deposited on a substrate after being zone melted by the method of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 챔버 2 : 발열원(Heater)1: Chamber 2: Heater

3 : 기판홀더 4 : 증발원3: substrate holder 4: evaporation source

5 : 셔터 6 : In층5: shutter 6: In floor

7 : Sb층 8 : 기판7: Sb layer 8: substrate

9 : InSb 박막9: InSb thin film

본발명은 홀소자에 사용되는 안티몬화 인듐(이하 : 'InSb'이라 한다)박막의 제조방법에 관한 것으로, 보다 상세하게는, 홀소자용 InSb박막의 제조시 기판상에 In과 Sb를 다층상으로 교차증착시킨후 존멜팅(Zone Melting) 처리하여 재결정 시키므로서 증착막의 특성이 우수할 뿐만아니라 제조비용이 저렴하고 공정관리가 용이한 홀소자용 InSb 박막의 제조방법에 관한 것이다.The present invention relates to a method for producing an indium antimonide thin film (hereinafter referred to as 'InSb') thin film used in a Hall element, and more specifically, In and Sb in a multi-layered form on a substrate during the manufacture of an InSb thin film for Hall element The present invention relates to a method of manufacturing an InSb thin film for a Hall device, which is not only excellent in the characteristics of a deposited film, but also inexpensive in manufacturing cost and easy for process management by recrystallization by cross-depositing and zone melting.

홀소자(Hall generator)는 금속과 반도체에 전류와 수직방향으로 자계를 걸면 양자가 직교하는 방향으로 기전력이 일어나는 홀효과(Hall effect)를 이용하는 소자(전자 디바이스)로서 자기장 강도의 측정등에 사용된다.A Hall generator is a device (electronic device) that uses the Hall effect in which electromotive force is generated in a direction perpendicular to current when a magnetic field is applied to metals and semiconductors in a direction perpendicular to current, and is used for measuring magnetic field strength.

일반적으로 홀소자의 특성은 기판상에 증착된 박막에 큰 영향을 받는다.In general, the characteristics of the Hall element are greatly affected by the thin film deposited on the substrate.

이와같이 홀소자의 특성에 큰 영향을 미치는 박막재료에는 Si와 Ge외에 전자이동도가 큰 Ⅲ~Ⅴ족 화합물인 InSb, InAs, GaAs 등이 사용된다.As described above, thin film materials having a large influence on the characteristics of Hall devices include InSb, InAs, GaAs, etc., which are group III-V compounds having a high electron mobility, in addition to Si and Ge.

상기화합물들중 특성이 좋은 InSb 박막을 갖는 홀소자는 종래 InSb 단결정의 증착 또는 In 및 Sb를 각각 증발시켜 기판상에 증착시킨후, 존멜팅법 등의 열처리방법을 이용하여 재결정시켜 제조하였다.The Hall device having an InSb thin film having good characteristics among the compounds was manufactured by depositing InSb single crystal or evaporating In and Sb on a substrate, and then recrystallization using a heat treatment method such as a zone melting method.

그러나 상기와 같은 방법으로 홀소자를 제조시 증발물질로 InSb 단결정을 사용할 경우에는 가격이 상승하는 문제점이 있으며, 각각의 In 및 Sb를 동시 증발시킬 경우에는 제조공정의 관리가 어려운 문제점이 있다.However, when using the InSb single crystal as the evaporation material when manufacturing the Hall device by the method as described above, there is a problem that the price rises, when the simultaneous evaporation of each In and Sb has a problem that the management of the manufacturing process is difficult.

이에, 본발명자는 상기한 종래 방법들의 문제점을 해결하기 위하여 연구와 실험을 행하고 그 결과에 근거하여 본발명을 제안하게 된것으로, 본발명은 홀소자용 InSb 박막의 제조시 In과 Sb를 교차증발시켜 다층의 박막층을 형성시킨후, 존멜팅 처리하므로서 InSb 증착막의 특성이 우수할 뿐만아니라 제조비용이 저렴하고 공정관리가 용이한 홀소자용 InSb 박막의 제조방법을 제공하고자 하는데 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments to solve the problems of the conventional methods described above, and proposed the present invention based on the results. The present invention cross-evaporates In and Sb during fabrication of InSb thin films for Hall devices. It is an object of the present invention to provide a method of manufacturing an InSb thin film for Hall devices, which is excellent in the characteristics of an InSb deposited film and has low manufacturing cost and easy process management by forming a multi-layered thin film layer and performing zone melting.

이하, 본발명을 설명한다.The present invention will be described below.

본발병은 진공도가 5×10-7Torr 이하로 유지되는 챔버내의 기판홀더에 장착된 기판을 20~200℃의 온도범위로 유지한후, 증발원상의 In및 Sb를 증발시키는 단계;상기 챔버내의 진공도를 0.1~7×10-6Torr 범위로 유지한후, In과 Sb를 3~15Å/sec의 속도범위로 교차증발시켜, 기판과 접하는 최하층 및 최상층이 내부 In층의 1/2두께인 In층이고 적층된 In및 Sb의 전체층이 0.8~1.5㎛두께 범위이고 In및 Sb의 최종 성분비가 1:0.95~1.05 범위가 되도록, 기판상에 In및 Sb를 교차적층하여 증착시키는 단계;및 In및 Sb가 증착된 기판을 500~600℃의 온도범위에서 존의폭을 5~30mm범위로 하고 이동속도를 0.5~10mm/sec의 범우로 하여 1~5회 반복하여 존멜팅(Zone melting)하는 단계를 포함하여 이루어지는 홀소자용 InSb박막의 제조방법에 관한 것이다.The present invention comprises the steps of maintaining the substrate mounted in the substrate holder in the chamber in which the vacuum degree is maintained at 5 × 10 -7 Torr or less in the temperature range of 20 ~ 200 ℃, evaporating In and Sb on the evaporation source; Is maintained in the range of 0.1 to 7 × 10 -6 Torr, and In and Sb are cross-evaporated at a speed range of 3 to 15 Å / sec, and the lowermost and uppermost layers in contact with the substrate are In layers having a thickness of 1/2 of the inner In layer. Laminating and depositing In and Sb on the substrate so that the entire layer of In and Sb laminated is 0.8 to 1.5 탆 in thickness and the final component ratio of In and Sb is in the range of 1: 0.95 to 1.05; and In and Sb Zn melting the substrate on the deposited substrate in the temperature range of 500 ~ 600 ℃ range of 5 ~ 30mm and the movement speed of 0.5 ~ 10mm / sec 1 to 5 times to repeat the zone melting (Zone melting) The present invention relates to a method for manufacturing an InSb thin film for Hall devices.

이하, 본발명을 첨부된 도면 제1도, 제2도 및 제3도를 참조하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to FIGS. 1, 2, and 3 of the accompanying drawings.

상기한 목적을 달성하기위하여 본발명에서는 먼저 5×10-7Torr 이하의 진공도로 유지되는 챔버(1)내의 기판홀더(3)에 기판(8)을 장착한후, 기판(8)을 20~200℃의 온도범위로 유지하고 셔터(5)를 닫은상태에서 증발원(4)상의 In및 Sb를 증발시킨다.In order to achieve the above object, in the present invention, the substrate 8 is first mounted on the substrate holder 3 in the chamber 1 which is maintained at a vacuum of 5 × 10 −7 Torr or less, and then the substrate 8 is placed between 20 and 20 mm. It maintains in the temperature range of 200 degreeC, and In and Sb on the evaporation source 4 are evaporated with the shutter 5 closed.

이때, 기판의 온도는 20~200℃범위를 유지함이 바람직한데 그 이유는 상기 기판의 온도가 20℃ 이하인 경우에는 기판과 박막간의 밀착력이 떨어져 박막이 박리 될 우려가 있으며, 200℃ 이상일 경우에는 증착된 In및 Sb박막이 상호확산에 의해 혼합되어 버리므로서 층상의 형태를 유지하지 못할 우려가 있기 때문이다.At this time, the temperature of the substrate is preferably maintained in the range 20 ~ 200 ℃ The reason is that when the temperature of the substrate is 20 ℃ or less there is a possibility that the adhesion between the substrate and the thin film is peeled off, the thin film is peeled off, if the temperature is 200 ℃ or more This is because the In and Sb thin films are mixed by interdiffusion so that the layered form cannot be maintained.

또한, 본발명에서는 증발원상의 증발물질, 즉 In 및 Sb를 증발시킴에 있어서 어떠한 방법을 써도 무관하나, 1~6KW의 에너지버뮈를 갖는 전자빔(Electron Bean)을 사용하여 증발시킴이보다 바람직한데, 그 이유는 다음과 같다.In the present invention, any method for evaporating evaporation materials on the evaporation source, i.e., In and Sb, may be used, but evaporation using an electron beam having an energy burst of 1 to 6 kW is more preferable. The reason is as follows.

In는 융점이 낮아 어떤 가열방법을 써도 무관하나, Sb은 융점이 높아 전자빔을 사용하여 용융시키는 것이 보다 효과적이고, 전자빔을 사용하더라도 그 에너지가 1KW 이하일 경우에는 증발원상의 증발물질의 용융이 잘일어나지 않을 뿐만아니라 증발이 일어나도 그 속도가 늦기 때문에 증발물질이 오염되어 제품 특성을 열화시킬 우려가 있으며, 6KW 이상일 경우에는 증발물질이 불필요하게 과다 용융되어 증착막의 특성을 열화시킬 우려가 있기 때문이다.In is low melting point irrespective of any heating method, but Sb is high melting point and more effective to melt using an electron beam, even if using the electron beam is less than 1KW, the evaporation of the evaporation material on the evaporation source is likely to occur well In addition, the evaporation material is contaminated because of its slow speed even if evaporation occurs, and if the evaporation material is more than 6KW, the evaporation material may be excessively melted to deteriorate the properties of the deposited film.

상기와 같이 In및 Sb의 증발이 일어나면 셔터(5)를 교대로 열어 기판(8)상에 In및 Sb를 층상으로 적층시키게 되는데, 이때 챔버(1)내의 진공도를 0.1~7×10-6Torr 범위로 유지한 상태에서 In및 Sb를 3~15Å/sec의 속도범위로 교차증발시켜, 기판(8)과 접하는 최하층 및 최상층이 증착막 내부 In층(6)의 1/2두께인 In층(6)이고 적층된 In및 Sb의 전체층 두께가 0.8~1.5mm 범위이고 In및 Sb의 최종성분비가 1:0.95~1.05 범위가 되도록함이 바람직하며 그 이유는 다음과 같다.As described above, when In and Sb evaporate, the shutters 5 are alternately opened to stack In and Sb on the substrate 8 in a layered manner, in which the vacuum degree in the chamber 1 is 0.1 to 7 × 10 -6 Torr. In and Sb are cross-evaporated at a speed in the range of 3 to 15 dB / sec in the state maintained in the range, so that the lowermost layer and the uppermost layer in contact with the substrate 8 are half the thickness of the inner layer 6 of the deposited film. ) And the total layer thickness of In and Sb laminated are in the range of 0.8 to 1.5 mm and the final component ratio of In and Sb is in the range of 1: 0.95 to 1.05. The reason is as follows.

증착시 진공도가 0.1×10-6Torr 이하인 증착 준비에 시간이 많이 소모되며 그에 따라 생산성이 큭 저하되며 7×10-6Torr 이상이면 증발원 상의 재료 및 증착막이 오염되는 문제점이 발생하기 때문이다.This is because a great deal of time is required for deposition preparation having a vacuum degree of 0.1 × 10 −6 Torr or less during deposition, and thus productivity decreases significantly, and when 7 × 10 −6 Torr or more occurs, the material and the deposited film on the evaporation source may be contaminated.

In과 Sb의 증발속도는 상기 진공도조건과 상호 연관성이 큰 것으로 3Å/sec 이하일 경우에는 막의 증착에 많은 시간이 소요되어 그에 따른 오염이 문제가 있으며, 15Å/sec 이상일 경우에는 막의 구조조절이 어렵게 되며 막의 표면이 거칠어지는등의 특성열화의 우려가 크기 때문이다.The evaporation rate of In and Sb is highly correlated with the vacuum condition, and when it is 3 Å / sec or less, it takes a lot of time to deposit the film, which causes a problem of contamination, and when it is 15 Å / sec or more, it is difficult to control the structure of the film. This is because there is a high possibility of deterioration of characteristics such as roughening of the surface of the film.

상기 속도범위를 In및 Sb박막을 기판상에 증착시 기판(8)과 접하는 최하층 및 최상층이 In층(6)이 아닐경우에는 증발력이 강한 Sb가 증발되어 제품특성열화의 우려가 있다. 반면에 In층(6)을 최하층 및 최상층으로 하게되면 In층이 분위기증의 산소와 결합하여 기판 및 외부와의 계면에 열팽창계수가 InSb와 거의 비슷한 InO3층이 형성도어 Sb의 증발을 억제하게 되며 이후 공정상에서 InSb 막의 산화방지 및 신뢰성 향상에 도움을 주게 된다. 또한, 이러한 In의 최하층과 최상층의 두께는 증착막 전체의 In과 Sb의 조성을 1:1로 맞추기 위해서 증착막 내부의 In층(6)의 1/2로 한다.When the In and Sb thin films in the above speed range are not in the In layer 6 when the bottom layer and the top layer are in contact with the substrate 8, the strong evaporation force Sb may evaporate, resulting in deterioration of product characteristics. On the other hand, when the In layer 6 is the lowermost layer and the uppermost layer, the In layer combines with atmospheric oxygen to form an InO 3 layer at the interface between the substrate and the outside, which has a coefficient of thermal expansion almost similar to that of InSb, to suppress evaporation of the door Sb. And it will help to prevent the oxidation and reliability of the InSb film in the subsequent process. In addition, the thickness of the lowermost layer and the uppermost layer of In is set to 1/2 of the In layer 6 inside the deposited film so that the composition of In and Sb of the entire deposited film is 1: 1.

이러한 형태로 적층되는 In및 Sb층의 전체 두께가 0.8㎛ 이하일 경우에는 막 전체가 기판 및 표면의 영향을 크게 받아 특성이 열화될 우려가 있으며, 1.5㎛ 이상일 경우에는 출력전압이 작아지는 문제점이 있기 때문이다.If the total thickness of the In and Sb layers laminated in such a form is 0.8 μm or less, the entire film may be greatly influenced by the substrate and the surface, and thus the characteristics may be deteriorated. Because.

상기와 같은 과정 및 두께 범위로 증착되는 InSb박막층에 있어서 In과 Sb의 최종성분비는 가장 이상적인 형태에 가까운 1:0.95~1.05 범위가 바람직하다.In the InSb thin film layer deposited in the same process and thickness range as described above, the final component ratio of In and Sb is preferably in the range of 1: 0.95 to 1.05, which is close to the ideal form.

또한, 본발명에서는 상기한 바와같이 기판상에 In및 Sb를 증착시킬때, In및 Sb층의 전체 갯수는 3~30개, 각층의 두께는 In:50~200mm, Sb:55~360mm, In및 Sb의 두께비율은 1:1.1~1.8인 것이 바람직하며 그 이유는 다음과 같다.In the present invention, when In and Sb are deposited on the substrate as described above, the total number of In and Sb layers is 3 to 30, and the thickness of each layer is In: 50 to 200mm, Sb: 55 to 360mm, In And the thickness ratio of Sb is preferably 1: 1.1 ~ 1.8 and the reason is as follows.

상기 In및 Sb층의 전체 갯수가 3개 이하일 경우에는 충분한 반응이 일어나기 위한 확산거리가 매우 길게 되어 결정도가 나빠져 원하는 특성을 얻기가 어려우며, 30개 이상일 경우에는 공정시간이 길어지고 존멜팅의 효과가 적어져 특성이 열화될 우려가 크기 때문에 층의 갯수는 3~30이 바람직하며, 보다 바람직하게는 7~15개이다.When the total number of In and Sb layers is 3 or less, the diffusion distance for a sufficient reaction is very long, resulting in poor crystallinity, making it difficult to obtain desired characteristics. In the case of 30 or more, the process time is long and the effect of zone melting is increased. The number of layers is preferably 3 to 30, and more preferably 7 to 15, because there is a high possibility that the properties will deteriorate.

이와같이 층의 갯수가 많을수록 In및 Sb의 층의 두께는 얇아야 하는데, 본발명에서는 이러한 층의 두께가 너무 얇을 경우에는 산화에의한 오염의 문제가 있고 너무 두꺼우면 차후 In과 Sb의 균일한 혼합에 문제가 있으므로 In:50~200nm, Sb:55~360nm가 바람직하다. 예에서 Sb의 두께 비율은 In에 대하여 1:1.1~1.8 정도로 약간 두꺼움이 바람직한데 그 이유는 Sb의 경우 증발에 의한 손실을 감안하여야 하기 때문이다. 상기 In및 Sb의 두께비는 1:1.2~1.4가 보다 바람직하다.As the number of layers increases, the layer thickness of In and Sb should be thin. In the present invention, if the thickness of the layer is too thin, there is a problem of contamination by oxidation, and if too thick, subsequent mixing of In and Sb will be uniform. In: 50-200 nm and Sb: 55-360 nm are preferable because of a problem. In the example, the thickness ratio of Sb is preferably about 1: 1.1 to 1.8 for In thick, because Sb has to take into account the loss due to evaporation. As for the thickness ratio of said In and Sb, 1: 1.2-1.4 are more preferable.

이상과 같은 조건하에서 기판(8)상에 In및 Sb를 다층상으로 증착시킨 후에는 기판(8)을 500~650℃의 온도범위에서 존(Zone)의 폭을 5~30mm 범위로 하고 이동속도를 0.5~10mm/sec 범위로 하여 1~5회 반복 존멜팅 처리하여 층상의 InSb조직을 단결정에 가까운 InSb 화합물의 재결정조직으로 변화시킴이 바람직하다.After depositing In and Sb in a multi-layer on the substrate 8 under the above conditions, the width of the zone is 5 to 30 mm in the temperature range of 500 to 650 ° C. and the moving speed is increased. It is preferable to change the layered InSb structure into a recrystallized structure of an InSb compound close to a single crystal by repeating zone melting treatment 1 to 5 times in a range of 0.5 to 10 mm / sec.

이때, 온도가 650℃ 보다 높고 이동속도가 0.5mm/sec 보다 늦고 반복횟수가 5회보다 많을 경우에는 Sb의 증발량이 증가하여 In의 농도가 높아지므로서 제품의 특성을 변화시키는 문제가 있으며, 이와 반대의 경우, 즉 온도가 500℃ 보다 낮고 이동속도가 10mm/sec 보다 빠르면 InSb의 구조가 나빠 결정도가 좋지 않으면 막의 특성이 저하되는 문제점이 있기 때문이다.At this time, if the temperature is higher than 650 ℃, the moving speed is slower than 0.5mm / sec and the number of repetitions more than five times, there is a problem of changing the characteristics of the product by increasing the concentration of In by increasing the evaporation amount of Sb. On the contrary, if the temperature is lower than 500 ° C. and the moving speed is faster than 10 mm / sec, the structure of the InSb is bad, and if the crystallinity is not good, there is a problem that the film properties are deteriorated.

이하, 실시예를 통하여 본발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

챔버의 진공도는 2.4×10-7Torr로 유지하고 기판의 온도를 135℃로 유지한 상태에서 증발원상의 In및 Sb를 교차증발시켜 기판상에 In과 Sb를 다층상으로 교차 증착하였다. 이때, 증착속도는 In의 경우 6Å/sec, Sb의 경우 8Å/sec 이었으며 층두께는 In의 경우 150mm, Sb의 경우 200mm이었다.The vacuum degree of the chamber was maintained at 2.4 × 10 −7 Torr and In and Sb on the evaporation source were cross-evaporated while the substrate temperature was maintained at 135 ° C., and In and Sb were cross-deposited on the substrate in a multi-layered manner. At this time, the deposition rate was 6 kW / sec for In, 8 kW / sec for Sb, and the layer thickness was 150 mm for In and 200 mm for Sb.

상기와 같이 In과 Sb을 교차 증착한 후 온도:560℃, 폭:12mm, 이동속도 2.6mm/sec의 조건으로 존멜팅 처리하여 본 발명의 InSb 박막을 제조하고 InSb 박막의 최종막두께 및 상온에서의 전자이동도를 측정한 결과, 최종막두께는 1.05~1.0㎛ 범위이고, 전자이동도는 30,000㎠/V.sec임을 알 수 있다.After cross-depositing In and Sb as described above, the InSb thin film of the present invention was prepared by zone melting treatment under conditions of temperature: 560 ° C., width: 12 mm, and moving speed of 2.6 mm / sec. As a result of measuring the electron mobility of the final film thickness is 1.05 ~ 1.0㎛ range, it can be seen that the electron mobility is 30,000 cm 2 /V.sec.

또한, 상기 InSb 박막을 전자현미경으로 관찰한 결과, InSb 박막은 화학양론적 비율이 잘 맞으며 고순도의 수지상 조직을 갖음을 알 수 있다.In addition, as a result of observing the InSb thin film with an electron microscope, it can be seen that the InSb thin film has a good stoichiometric ratio and has a high-density dendritic structure.

따라서, 본 발명의 방법을 적용하여 홀소자용 InSb 박막을 제조할 경우 종래방법에 비하여 전자이동도가 우수한 InSb 박막을 제조할 수 있음을 알 수 있다.Therefore, it can be seen that when the InSb thin film for the Hall device is manufactured by applying the method of the present invention, an InSb thin film having excellent electron mobility can be prepared as compared with the conventional method.

상술한 바와같이, 본 발명은 홀소자용 InSb 박막의 제조시 In과 Sb를 교차 증발시켜 다층의 박막층을 형성시킨 후, 존멜팅 처리하므로서 InSb 박막의 특성이 우수할 뿐만 아니라 제조비용이 저렴하고 공정관리가 용이한 홀소자용 InSb 박막을 제조할 수 있는 효과가 있다.As described above, the present invention cross-evaporates In and Sb to form a multi-layered thin film layer during the manufacturing of the InSb thin film for the Hall device, and thus, not only has excellent characteristics of the InSb thin film but also low manufacturing cost and process management by the zone melting treatment. There is an effect that can be easily manufactured InSb thin film for Hall devices.

Claims (3)

진공도가 5×10-7Torr 이하로 유지되는 챔버내의 기판홀더에 기판을 장착하여 20~200℃의 온도범위로 유지한후, 증발원상의 In및 Sb를 증발시키는 단계;상기 챔버내의 진공도를 0.1~7×10-6Torr 범위로 유지한후, In과 Sb를 3~15Å/sec의 속도범위로 교차증발시켜, 기판과 접하는 최하층 및 최상층이 내부 In층의 1/2두께인 In층이고 적층된 In및 Sb의 전체층이 0.8~1.5㎛두께 범위이고 In및 Sb의 최종성분비가 1:0.95~1.05 범위가 되도록, 기판상에 In및 Sb를 교차적층하여 증착시키는 단계;및 In및 Sb가 증착된 기판을 500~650℃의 온도범위에서 존의폭을 5~30mm범위로 하고 이동속도를 0.5~10mm/sec의 범위로 하여 1~5회 반복하여 존멜팅(Zone melting)하는 단계를 포함하여 이루어짐을 특성으로 하는 홀소자용 InSb박막이 제조방법.Evaporating In and Sb on the evaporation source after mounting the substrate in a substrate holder in a chamber in which the vacuum degree is maintained at 5 × 10 -7 Torr or less and maintaining it at a temperature range of 20 to 200 ° C .; After maintaining in the range of 7 × 10 -6 Torr, In and Sb are cross-evaporated at a speed range of 3 to 15 Å / sec, and the lowest and uppermost layers in contact with the substrate are In layers having a thickness of 1/2 of the inner In layer and stacked In And depositing In and Sb on the substrate so that the entire layer of Sb is in the range of 0.8 to 1.5 μm in thickness and the final component ratio of In and Sb is in the range of 1: 0.95 to 1.05; and In and Sb are deposited. It includes the step of zone melting by repeating the substrate 1 to 5 times in the temperature range of 500 ~ 650 ℃ to the width of the zone 5 ~ 30mm range and the moving speed in the range of 0.5 ~ 10mm / sec. The manufacturing method of InSb thin film for Hall element which has the characteristic. 제1항에 있어, 상기 In및 Sb의 증발에너지는 1~6KW의 전자빔이며, 기판상에 증착되는 In및 Sb층의 전체 갯수는 3~30개 범위이며, 각층의 두께는 In:50~200nm, Sb:55~360nm범위이고 그 두께비율은 1:1.1~1.8 범위인 것을 특징으로 하는 홀소자용 InSb박막의 제조방법.The evaporation energy of In and Sb is an electron beam of 1 to 6 KW, and the total number of In and Sb layers deposited on a substrate is in the range of 3 to 30, and the thickness of each layer is In: 50 to 200 nm. , Sb: 55 ~ 360nm range and the thickness ratio is 1: 1.1 ~ 1.8 manufacturing method of the Hall element InSb thin film characterized in that the range. 제1항 또는 제2항에 있어서, 기판상에 증착되는 In및 Sb층의 전체 갯수는 7~15개 범위이며, In과 Sb의 두께 비율은 1:1.2~1.4인 것을 특징으로 하는 홀소자용 InSb 박막의 제조방법.The InSb for Hall device according to claim 1 or 2, wherein the total number of In and Sb layers deposited on the substrate is in the range of 7 to 15, and the thickness ratio of In and Sb is 1: 1.2 to 1.4. Method for producing a thin film.
KR1019950023551A 1995-07-31 1995-07-31 Method for manufacturing in-sb thin film for hall generator KR0152000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950023551A KR0152000B1 (en) 1995-07-31 1995-07-31 Method for manufacturing in-sb thin film for hall generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950023551A KR0152000B1 (en) 1995-07-31 1995-07-31 Method for manufacturing in-sb thin film for hall generator

Publications (2)

Publication Number Publication Date
KR970008677A KR970008677A (en) 1997-02-24
KR0152000B1 true KR0152000B1 (en) 1998-10-01

Family

ID=19422483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950023551A KR0152000B1 (en) 1995-07-31 1995-07-31 Method for manufacturing in-sb thin film for hall generator

Country Status (1)

Country Link
KR (1) KR0152000B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493323A (en) * 2018-03-16 2018-09-04 昆明理工大学 A kind of preparation of layered nanostructured InSb pyroelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493323A (en) * 2018-03-16 2018-09-04 昆明理工大学 A kind of preparation of layered nanostructured InSb pyroelectric material

Also Published As

Publication number Publication date
KR970008677A (en) 1997-02-24

Similar Documents

Publication Publication Date Title
JP3064701B2 (en) Method for producing chalcopyrite-type compound thin film
US7781067B2 (en) Aligned crystalline semiconducting film on a glass substrate and method of making
US20010015319A1 (en) Process for producing thin film gas sensors with dual ion beam sputtering
KR0152000B1 (en) Method for manufacturing in-sb thin film for hall generator
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH1070315A (en) Manufacture of thermoelectric material
Tao et al. BixTey thermoelectric thin films sputtered at room temperature onto moving polymer web: Effect of gas pressure on materials properties
KR20190087185A (en) Method of mamufacturing transition metal dichalcogenide thin film for flexible devices
Czigány et al. Annealing induced interdiffusion and crystallization in sputtered amorphous Si/Ge multilayers
EP0716166B1 (en) Process for preparing single crystal material and composite material for forming such single crystal material
US20050155675A1 (en) Amorphous ferrosilicide film exhibiting semiconductor characteristics and method of for producing the same
JP3181074B2 (en) Method for producing Cu-based chalcopyrite film
KR20080111886A (en) The antimony telluride thin film and synthetic solution with modulation of nano multilayer and non-isothermal heat treatment
Madhukar et al. Pulsed laser-ablation deposition of thin films of molybdenum silicide and its properties as a conducting barrier for ferroelectric random-access memory technology
Kitada Reactions in Au/Nb bilayer thin films
KR950005968B1 (en) Multlayer thin film type hall device and manufacturing method thereof
EP0402128B1 (en) Method of forming an oxide superconductor/semiconductor junction
JP3664368B2 (en) Method for forming InSb film and method for manufacturing Hall element using InSb film
JP3413888B2 (en) Method of forming oxide thin film
RU2330350C2 (en) Method of epitaxial films obtaining
JP2821885B2 (en) Superconducting thin film forming method
Carroll et al. Compositional Studies Related to Sputtered Cd‐Si‐As Films
JPS6269508A (en) Manufacture of compound semiconductor device
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH05170448A (en) Production of thin ceramic film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030416

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee