KR0151810B1 - A fabrication method of infrared ray detecting sensor - Google Patents

A fabrication method of infrared ray detecting sensor

Info

Publication number
KR0151810B1
KR0151810B1 KR1019940013298A KR19940013298A KR0151810B1 KR 0151810 B1 KR0151810 B1 KR 0151810B1 KR 1019940013298 A KR1019940013298 A KR 1019940013298A KR 19940013298 A KR19940013298 A KR 19940013298A KR 0151810 B1 KR0151810 B1 KR 0151810B1
Authority
KR
South Korea
Prior art keywords
single crystal
crystal growth
growth layer
infrared sensing
sensing element
Prior art date
Application number
KR1019940013298A
Other languages
Korean (ko)
Other versions
KR960002906A (en
Inventor
윤창주
이기방
이형재
Original Assignee
윤창주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤창주 filed Critical 윤창주
Priority to KR1019940013298A priority Critical patent/KR0151810B1/en
Publication of KR960002906A publication Critical patent/KR960002906A/en
Application granted granted Critical
Publication of KR0151810B1 publication Critical patent/KR0151810B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 매몰형 p형 실리콘 게르마늄 실리사이드 쇼트키 다이오드 적외선 감지 소자를 실현하기에 적합한 적외선 감지 소자의 제조 방법에 관한 것으로, 종래에는 관측할 수 있는 적외선 파장은 쇼트키 정합을 만드는 금속 종류에 달려있으므로 상온에서 나오는 8㎛급의 파장에 해당하는 적외선을 감지하는 소자를 제작하는 것이 불가능하다는 것과 모큐리-카드뮴-테레라이드 적외선 감지 소자와 비교해 보면 같은 파장에 대한 감지 능력이 매우 낮은 결점이 있었으나, 본 발명에서는 실리사이드 쇼트키 다이오드를 p형 실리콘 게르마늄 단결정 속에 매몰시켜 실리사이드 쇼트키 다이오드 2개가 서로 연결된 것과 같이됨으로써 적외선 감지 능력이 높아지므로 상기 결점을 개선시킬 수 있는 것이다.The present invention relates to a method for manufacturing an infrared sensing element suitable for realizing an investment-type p-type silicon germanium silicide Schottky diode infrared sensing element, and the infrared wavelength observable in the past depends on the type of metal making the Schottky match. Although it was impossible to fabricate an infrared sensing element corresponding to an 8 µm wavelength at room temperature, and compared with Mocury-Cadmium-Terride Infrared Sensing Element, the sensing ability of the same wavelength was very low. In the present invention, since the silicide Schottky diode is buried in the p-type silicon germanium single crystal, the two silicide Schottky diodes are connected to each other, thereby increasing the infrared sensing ability, thereby improving the defect.

Description

적외선 감지 소자의 제조 방법Manufacturing method of the infrared sensing element

제1도는 본 발명에 따른 적외선 감지 소자의 구조의 일 실시예를 나타낸 단면도.1 is a cross-sectional view showing an embodiment of the structure of the infrared sensing element according to the present invention.

제2도(a) 내지 제2도(f)는 제1도에 따른 적외선 감지 소자의 제조 방법의 일 실시예를 나타낸 공정 단면도.2 (a) to 2 (f) are cross-sectional views showing an embodiment of a method of manufacturing the infrared sensing device according to FIG.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1,21 : 기판 2,3,7,22,25 : 단결정 성장층1,21: substrate 2,3,7,22,25: single crystal growth layer

4 : 산화막 5 : 금속4: oxide film 5: metal

6,24 : 금속 실리사이드 8,26 : 절연체6,24 metal silicide 8,26 insulator

9,27 : 도전체 10,28 : 적외선 반반사층9,27: conductor 10,28: infrared reflective layer

본 발명은 적외선(Infrared Ray; IR)감지 소자에 관한 것으로, 특히 매몰형 p형 실리콘 게르마늄(SixGe1-X) 실리사이드 쇼트키 다이오드(Silicide schottky diode)적외선 감지 소자를 실현하기에 적합한 적외선 감지 소자의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared ray (IR) sensing element, and more particularly to an infrared sensing element suitable for realizing an investment type p-type silicon germanium (SixGe 1-X ) silicide schottky diode infrared sensing element. It relates to a manufacturing method.

일반적으로, 상온(300K)에서 물체가 내는 적외선 파장인 8㎛를 감지할 수 있는 적외선 감지 소자는 매우 중요하다.In general, an infrared sensing element capable of detecting 8 μm, which is an infrared wavelength emitted by an object at room temperature (300 K), is very important.

이와 관련하여, 종래에는 상기와 같은 파장대에서 감지 능력(sensitivity)이 가장 우수한 재료인 머큐리-카드뮴-테레라이드(HgCdTe)로 제작한 적외선 감지 소자가 지금까지 가장 많이 이용되어 왔다.In this regard, the infrared sensing element made of Mercury-Cadmium-Terride (HgCdTe), which is the material having the highest sensitivity in the above wavelength range, has been used the most.

그러나, 이와 같은 적외선 감지 소자는 재료의 특성상 개별 소자로 제작이 가능하기 때문에 화상을 구성하기 위해서는 많은 개별 소자를 연결해야 하므로 소규모 화상 구성 장치에는 가능하나 화상의 분해능을 높이기 위한 많은 수의 화점(pixel)을 갖는 장치에는 부적절하다.However, such an infrared sensing element can be manufactured as an individual element because of the characteristics of the material, so many individual elements must be connected in order to construct an image, but it is possible for a small image forming apparatus, but a large number of pixels for improving an image resolution Inappropriate for devices with).

또한, 화상 처리를 위한 주변 회로를 따로 제작하여 하이브리드(hybrid) 타입으로 연결해야 하므로 생산단가가 높은 단점이 있다.In addition, since the peripheral circuit for image processing must be manufactured separately and connected in a hybrid type, production costs are high.

이를 개선하기 위하여 p형 실리콘 기판 위에 백금 실리사이드(Pt silicide)를 접합시켜 만든 쇼트키 다이오드 형 적외선 감지 소자는 기존에 개발된 실리콘 공정을 이용해서 대규모 화점과 주변 회로를 동시에 제작할 수 있는 장점을 가지고 있기 때문에 물체를 식별하기 위한 화상의 이미지 개선과 생산 단가를 싸게 제작할 수 있는 적외선 감지 소자이다.In order to improve this, the Schottky diode-type infrared sensing device made by bonding Pt silicide on p-type silicon substrate has the advantage of being able to simultaneously manufacture large-scale flash point and peripheral circuit using the existing silicon process. Therefore, it is an infrared sensing element that can produce an image improvement and production cost cheaply for identifying an object.

상기에 반하여, 관측할 수 있는 적외선 파장은 쇼트키 정합을 만드는 금속 종류에 달려 있으므로 상온에서 나오는 8㎛급의 파장에 해당하는 적외선을 감지하는 소자를 제작하는 것이 불가능하다는 것과 머큐리-카드뮴-테레라이드 적외선 감지 소자와 비교해 보면 같은 파장에 대한 감지 능력이 매우 낮은 단점도 가지고 있다.In contrast, the observable infrared wavelengths depend on the type of metal making the Schottky match, making it impossible to fabricate an infrared-sensing device with a wavelength of 8 µm at room temperature. Compared with infrared sensing devices, it has the disadvantage that the sensing ability for the same wavelength is very low.

따라서, 이와 같은 장점을 살리고 감지할 수 있는 파장을 9㎛급까지 확장하기 위하여 p형 실리콘 대신 에너지띠 간격이 좁은 p형 실리콘 게르마늄 단결정 위에 백금 실리사이드 쇼트키 다이오드를 제작하여 감지 파장을 8㎛로 확장한 감지 소자가 일본 응용 물리학회지(Vol.28, No.4,4,1989,p544-546)에 제안되었다.Therefore, in order to take advantage of these advantages and extend the detectable wavelength up to 9㎛, a platinum silicide Schottky diode is fabricated on p-type silicon germanium single crystal with narrow band gap instead of p-type silicon to extend the detection wavelength to 8㎛. One sensing element has been proposed in the Japanese Society of Applied Physics (Vol. 28, No. 4,4,1989, pp. 544-546).

그러나, 이와 같이 제안된 소자도 감지 파장을 장파장 쪽으로 확장시키는데는 성공하였지만 여전히 머큐리-카드뮴-테레라이드에 비해 같은 파장에 대한 감지 능력이 낮은 단점을 가지고 있다.However, the proposed device has been successful in extending the sensing wavelength toward the longer wavelength, but still has a disadvantage in that the sensing ability for the same wavelength is lower than that of Mercury-cadmium-terride.

본 발명은 이와 같은 종래의 결점을 해결하기 위하여 안출한 것으로, p형 실리콘 게르마늄 실리사이드 쇼트키 다이오드 정합을 이용한 적외선 감지 소자의 감지 능력을 높일 수 있는 적외선 감지 소자의 제조 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a method for manufacturing an infrared sensing element that can increase the sensing capability of the infrared sensing element using p-type silicon germanium silicide Schottky diode matching. .

이와 같은 목적을 달성하기 위한 본 발명에 따른 적외선 감지 소자의 구조는 기판위에 제1 단결정 성장층이 형성되고, 제1 단결정 성장층 위 일측을 제외한 영역에 금속 실리사이드가 형성되며, 금속 실리사이드 영역을 제외한 제1 단결정 성장층 표면에 단결정 성장층이 형성되고, 금속 실리사이드 표면에 제2 단결정 성장층이 형성되며, 노출된 단결정 성장층 쪽의 제2 단결정 성장층의 측면에 절연체가 형성되고, 노출된 단결정 성장층 및 절연체 영역 도전체가 형성되어 제2 단결정 성장층과 단결정 성장층과 단결정 성장층이 접속되도록 하며, 제2 단결정 성장층 표면에 적외선 반반사층이 형성되어 이루어지는 것을 특징으로 한다.In order to achieve the above object, the infrared sensing device according to the present invention has a structure in which a first single crystal growth layer is formed on a substrate, a metal silicide is formed in an area except one side on the first single crystal growth layer, and a metal silicide region is excluded. A single crystal growth layer is formed on the surface of the first single crystal growth layer, a second single crystal growth layer is formed on the surface of the metal silicide, an insulator is formed on the side of the second single crystal growth layer toward the exposed single crystal growth layer, and the exposed single crystal is exposed. The growth layer and the insulator region conductor are formed to connect the second single crystal growth layer, the single crystal growth layer and the single crystal growth layer, and an infrared antireflection layer is formed on the surface of the second single crystal growth layer.

또한, 본 발명에 따른 적외선 감지 소자의 제조 방법은 기판위에 제1 단결정 성장층을 형성하는 단계와, 제1 단결정 성장층 위헤 금속 실리사이드 쇼트키 다이오드를 형성하는 단계와, 금속 실리사이드를 매몰시키기 위해 금속 실리사이드 위에 제2 단결정 성장층을 형성하는 단계와, 홈 구조를 형성하고 그 홈의 측벽에 절연체를 형성하는 단계와, 홈에 도전체를 채워 위아래 성장시킨 제1,제2 단결정 성장층을 연결하는 단계와, 제2 단결정 성장층 표면에 적외선 반반사층을 형성하는 단계로 이루어지는 것을 특징으로 한다.In addition, the method for manufacturing an infrared sensing element according to the present invention includes the steps of forming a first single crystal growth layer on a substrate, forming a metal silicide Schottky diode on the first single crystal growth layer, and metal to bury the metal silicide. Forming a second single crystal growth layer on the silicide, forming a groove structure and forming an insulator on the sidewall of the groove, and connecting the first and second single crystal growth layers grown up and down by filling a groove with a conductor. And forming an infrared reflective layer on the surface of the second single crystal growth layer.

이하에서 이와 같은 본 발명의 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings an embodiment of the present invention as follows.

제1도는 본 발명에 따른 적외선 감지 소자의 구조의 일 실시예를 나타낸 단면도로, 기판(p형 실리콘 기판)(21)위에 제1 단결정 성장층(p형 실리콘 게르마늄 단결정 성장층)(22)이 형성되고, 제1 단결정 성장층(22) 위 일측을 제외한 영역에 금속 실리사이드(백금 실리사이드, 팔라듐(Pd) 실리사이드, 이리듐(Ir) 실리사이드 등의 금속 실리사이드 중에서 택일)(24)가 형성되며, 금속 실리사이드(24) 영역을 제외한 제1 단결정 성장층(22)위에 단결정 성장층(p형 실리콘 단결정 성장층이되, 그 두께는 50Å 이하)(23)이 형성되고, 금속 실리사이드(24) 표면에 제2 단결정 성장층(p형 실리콘 게르마늄 단결정 성장층)(25)이 형성되며, 노출된 단결정 성장층(23) 쪽의 제2 단결정 성장층(25)의 측면에 절연체(26)가 형성되고, 노출된 단결정 성장층(23) 및 절연체(26) 영역 도전체(다결정 실리콘, 알루미늄 등의 도전체 중에서 택일)(27)가 형성되어 제2 단결정 성장층(25)가 단결정 성장층(23)이 접속되도록 하며, 제2 단결정 성장층(25) 표면에 적외선 반반사층(28)이 형성되어 이루어진다.1 is a cross-sectional view showing an embodiment of the structure of the infrared sensing element according to the present invention, wherein a first single crystal growth layer (p-type silicon germanium single crystal growth layer) 22 is formed on a substrate (p-type silicon substrate) 21. Metal silicide (optional among metal silicides such as platinum silicide, palladium (Pd) silicide, and iridium (Ir) silicide) 24 is formed in a region except one side on the first single crystal growth layer 22, and the metal silicide A single crystal growth layer (p-type silicon single crystal growth layer having a thickness of 50 GPa or less) is formed on the first single crystal growth layer 22 except for the (24) region, and the second surface of the metal silicide 24 surface is formed. A single crystal growth layer (p-type silicon germanium single crystal growth layer) 25 is formed, and an insulator 26 is formed on the side of the second single crystal growth layer 25 toward the exposed single crystal growth layer 23, and the exposed Single crystal growth layer 23 and insulator 26 region conductor (polycrystalline A second one of the conductors such as silicon and aluminum is formed so that the second single crystal growth layer 25 is connected to the single crystal growth layer 23, and an infrared antireflection layer (on the surface of the second single crystal growth layer 25) 28) is formed.

제2도는 제1도에 따른 적외선 감지 소자의 제조 방법의 일 실시예를 나타낸 공정 단면도로, 먼저 쇼트키 다이오드 적외선 감지는 금속 실리사이드(도면 중에 도시되지 않음)내에서 적외선에 의해 발생한 전자가 금속 실리사이드와 기판(도면 중에 도시되지 않음) 접합부에 있는 전위 장벽을 넘을 수 있는 전하만 전기적인 신호로 감지할 수 있으므로 이 전위벽이 낮을 수록 파장은 길어진다.FIG. 2 is a process cross-sectional view showing an embodiment of a method of manufacturing an infrared sensing element according to FIG. 1, in which Schottky diode infrared sensing is a metal silicide in which electrons generated by infrared rays in a metal silicide (not shown in the figure) are shown. The lower the potential wall, the longer the wavelength, since only electrical charge that can cross the potential barrier at the junction of the and substrate (not shown in the figure) can be detected by the electrical signal.

따라서, p형 실리콘보다 p형 실리콘 게르마늄이 전위벽이 더 낮으므로 더 긴 파장의 감지 능력을 가진 적외선 감지 소자를 만들 수 있다.Thus, since p-type silicon germanium has lower potential walls than p-type silicon, an infrared sensing element having a longer wavelength sensing capability can be made.

또한, p형 실리콘 게르마늄 단결정 성장 방법에 따라 이완(relax)형층 또는 스트레스(stress)형층으로 단결정을 성장시킬 수 있으며, 스트레스형은 스트레스 에너지에 의하여 전위벽이 더욱 낮아져 파장의 감지 능력이 긴 파장(약 9㎛) 쪽으로 확장된다.In addition, according to the p-type silicon germanium single crystal growth method, single crystals can be grown in a relaxed layer or a stress type layer, and the stress type has a lower wavelength of potential due to stress energy and thus has a long wavelength detection capability. About 9 μm).

따라서, 본 발명에서는, 먼저 제2도(a)와 같이 기판(p형 실리콘 기판)(1) 위에 기판(1)을 성장핵으로 하여 제1 단결정 성장층(p형 실리콘 게르마늄 단결정 성장층)(2)을 이완형층부터 시작하여 최종적으로 스트레스형 단결정으로 성장시킨다.Therefore, in the present invention, firstly, the first single crystal growth layer (p-type silicon germanium single crystal growth layer) is formed on the substrate (p-type silicon substrate) 1 as the growth nucleus on the substrate (p-type silicon substrate) 1 as shown in FIG. Start with 2) and then grow into stress type single crystal.

다음, 이 성장된 제1 단결정 성장층(2) 위에 금속 실리사이드를 만들기 위해 전 표면에 50Å 이하의 두께로 단결정 성장층(p형 실리콘 성장층)(3)을 성장시킨 후 전 표면에 산화막(저온 산화막)(4)을 증착한다.Next, a single crystal growth layer (p-type silicon growth layer) 3 is grown on the entire surface of the grown first single crystal growth layer 2 to a thickness of 50 Å or less on the entire surface, and then an oxide film (low temperature) Oxide film) 4 is deposited.

이어, 제2도(b)와 같이 금속을 증착할 수 있는 공간을 만들기 위해 사진 식각하여 산화막(4)의 한쪽 부분을 남기고 제거한후 드러난 단결정 성장층(3) 표면에 금속(백금, 팔라듐, 이리듐 등의 금속 중에서 택일)(5)을 50Å이하의 두께로 증착하고 제2도(c)와 같이 400℃이하의 온도로 열처리하여 금속 실리사이드(6)를 형성하며, 이때 상기 성장층(3)의 두께는 금속 실리사이드(6) 형성시 소요되는 비를 계산하여 적절히 조정한다.Subsequently, as shown in FIG. 2 (b), metal (platinum, palladium, iridium) is formed on the surface of the single crystal growth layer 3 that is exposed after photo etching to remove and leave one part of the oxide film 4 to make a space for depositing metal. (5) is deposited to a thickness of 50 GPa or less and heat-treated at a temperature of 400 ° C or less as shown in FIG. 2 (c) to form the metal silicide 6, wherein the growth layer 3 The thickness is appropriately adjusted by calculating the ratio required for forming the metal silicide 6.

다음, 제2도(d)와 같이 상기 산화막(4)을 식각하여 제거하고 노출된 성장층(3)을 성장핵으로 하여 전 표면에 제2 단결정 성장층(p형 실리콘 게르마늄 단결정 성장층)(7)을 형성하여 금속 실리사이드(6)를 매몰시키며, 이 때 노출되어 있는 단결정 성장층(3)을 성장핵으로 하여 측면에서 열선이나 레이저 빔으로 가열하여 단결정 성장층을 형성할 수 있고 또한, 금속 실리사이드(6)를 시드로하여 단결정 성장층을 직접 성장할 수도 있다.Next, as shown in FIG. 2D, the oxide layer 4 is etched and removed, and the second single crystal growth layer (p-type silicon germanium single crystal growth layer) is formed on the entire surface using the exposed growth layer 3 as a growth nucleus ( 7) is formed to bury the metal silicide 6, and at this time, the exposed single crystal growth layer 3 is used as a growth nucleus, and a single crystal growth layer can be formed by heating with a hot wire or a laser beam from the side surface. It is also possible to grow a single crystal growth layer directly using the silicide 6 as a seed.

그리고, 제2도(e)와 같이 제2 단결정 성장층(7)을 사진 식각하여 금속 실리사이드(6) 영역을 제외한 제2 단결정 성장층(7)의 일측을 제거해서 홈을 형성한 후 그 홈의 측면에 절연체(8)를 증착하며, 제2도(f)와 같이 그 홈을 도전체(다결정 실리콘 또는 알루미늄 등의 도전체 중에서 택일)(9)로 채워 제1,제2 단결정 성장층(2,7)이 접속되도록 하여 실리사이드 쇼트키 다이오드 두 개가 서로 역방향으로 연결되도록 해서 매몰형 적외선 감지 소자가 이루어지도록 한다.As shown in FIG. 2E, the second single crystal growth layer 7 is photo-etched to remove one side of the second single crystal growth layer 7 except for the metal silicide 6 region to form a groove, and then the groove. The insulator 8 is deposited on the side surface of the first and second single crystal growth layers (filled with a conductor (optional among conductors such as polycrystalline silicon or aluminum) 9 as shown in FIG. 2 (f)). 2) and 7) are connected so that the two silicide Schottky diodes are connected in the opposite direction to each other so that the buried infrared sensing element is achieved.

여기서, 쇼트키 감지 소자의 같은 파장에 대한 감지 능력은 금속 실리사이드(6)의 두께와 밀접한 관계가 있는데 이는 금속 실리사이드(6) 내에서 전자 또는 홀의 자유 행로(mean free path)의 길이에도 관계되어 감지 효율은 금속 실리사이드(6)의 두께가 엷을 수록 증가하게 된다.Here, the sensing ability for the same wavelength of the Schottky sensing element is closely related to the thickness of the metal silicide 6, which is also related to the length of the free path of electrons or holes in the metal silicide 6. The efficiency increases as the thickness of the metal silicide 6 becomes thinner.

따라서, 이와 같은 새로운 소자의 구조에는 전극이 위아래 제1,제2 단결정 성장층(2,7)에 각각 연결되어 있으므로 같은 부호의 전압을 인가하면 실리사이드 쇼트키 다이오드 위아래 층에 같은 전압이 가해지므로 금속 실리사이드(6)이 두께를 1/2로 줄인 것과 같은 효과를 나타내어 감지 효율이 증가하게 된다.Therefore, since the electrodes are connected to the first and second single crystal growth layers 2 and 7, respectively, in the structure of the new device, when the same voltage is applied, the same voltage is applied to the upper and lower layers of the silicide Schottky diode. The silicide 6 has the same effect as reducing the thickness by 1/2, thereby increasing the sensing efficiency.

최종적으로, 제2 단결정 성장층(7) 표면에 적외선 반반사층(10)을 증착한다.Finally, the infrared antireflective layer 10 is deposited on the surface of the second single crystal growth layer 7.

이와 같은 본 발명에 따른 적외선 감지 소자는 물체 표면에서 발생하는 적외선 파장을 9㎛까지 감지할 수 있는 적외선 감지 소자로, 실리콘 공정을 이용하여 많은 화점을 구성하면 적외선 화상을 구성할 수 있기 때문에 적외선 시시디(Charge Coupled Device ; CCD)감지 센서 또는 감시용 시시디 카메라 등이 이용할 수 있고, 인공 위성에 장착하여 지표의 물체를 추적하는데 사용할 수 있는 적외선 감지 장치를 제작할 수 있다.Such an infrared sensing element according to the present invention is an infrared sensing element capable of detecting infrared wavelengths generated from an object surface up to 9 μm, and if a large number of firing points are formed using a silicon process, an infrared image may be formed. A Charge Coupled Device (CCD) sensor or a surveillance camera can be used, and an infrared sensing device can be manufactured that can be mounted on a satellite and used to track an object on the surface of the earth.

이상에서 설명한 바와 같이 본 발명은 실리사이드 쇼트키 다이오드를 p형 실리콘 게르마늄 단결정 속에 매몰시켜 실리사이드 쇼트키 다이오드 두 개가 서로 연결된 것과 같이 되므로 적외선 감지 능력이 높아지는 효과가 있다.As described above, according to the present invention, since the silicide schottky diode is buried in the p-type silicon germanium single crystal, the two silicide schottky diodes are connected to each other, thereby increasing the infrared sensing ability.

Claims (4)

기판(1)의 전 표면에 제1 단결정 성장층(2), 단결정 성장층(3) 그리고 산화막(4)을 차례로 형성하는 단계; 상기 산화막(4)의 일측을 제외한 부분을 제거한 후 드러난 상기 단결정 성장층(3) 표면에 금속(5)을 증착하고 소정의 온도로 열처리하여 금속 실리사이드(6)를 형성하는 단계; 상기 산화막(4)을 제거하고 전 표면에 제2 단결정 성장층(7)을 형성하여 상기 금속 실리사이드(6)를 매몰시키는 단계; 상기 금속 실리사이드(6) 영역을 제외한 상기 제2 단결정 성장층(7)의 일측을 제거하여 홈을 형성한 후 그 홈의 측면에 절연체(8)를 증착하는 단계;상기 홈을 도전체(9)로 채워 상기 제1,제2 단결정 성장층(2,7)이 접속되도록 하고 상기 제2 단결정 성장층(7) 표면에 적외선 반반사층(10)을 증착하는 단계를 포함하여 이루어지는 적외선 감지 소자의 제조 방법에 있어서; 상기 제2 단결정 성장층(7)은, p형 실리콘 게르마늄 단결정 성장층으로 이루어짐을 특징으로 하는 적외선 감지 소자의 제조 방법.Sequentially forming a first single crystal growth layer (2), a single crystal growth layer (3), and an oxide film (4) on the entire surface of the substrate (1); Depositing a metal (5) on the surface of the single crystal growth layer (3) which is exposed after removing a portion except the one side of the oxide film (4) and heat-treating to a predetermined temperature to form a metal silicide (6); Removing the oxide film (4) and forming a second single crystal growth layer (7) on the entire surface to bury the metal silicide (6); Removing one side of the second single crystal growth layer 7 except for the metal silicide 6 region to form a groove, and then depositing an insulator 8 on a side of the groove; Manufacturing an infrared sensing device comprising the step of allowing the first and second single crystal growth layers 2 and 7 to be connected to each other and depositing an infrared antireflective layer 10 on the surface of the second single crystal growth layer 7. In the method; The second single crystal growth layer (7) is a method of manufacturing an infrared sensing element, characterized in that consisting of a p-type silicon germanium single crystal growth layer. 제1항에 있어서, 상기 제2 단결정 성장층(7)은, 노출되어 있는 단결정 성장층(3)을 성장핵으로 하여 측면에서 열선이나 레이저 빔으로 가열하여 형성함을 특징으로 하는 적외선 감지 소자의 제조 방법.The infrared sensing element according to claim 1, wherein the second single crystal growth layer (7) is formed by heating the exposed single crystal growth layer (3) as a growth nucleus by heating with a hot wire or a laser beam. Manufacturing method. 제1항에 있어서, 상기 제2 단결정 성장층(7)은, 금속 실리사이드(6)를 성장핵으로 하여 형성함으로 특징으로 하는 적외선 감지 소자의 제조 방법.The method of manufacturing an infrared sensing element according to claim 1, wherein the second single crystal growth layer (7) is formed by using a metal silicide (6) as a growth nucleus. 제1항에 있어서, 상기 도전체(9)는, 다결정 실리콘 또는 알루미늄으로 이루어짐을 특징으로 하는 적외선 감지 소자의 제조 방법.The method of manufacturing an infrared sensing element according to claim 1, wherein the conductor (9) is made of polycrystalline silicon or aluminum.
KR1019940013298A 1994-06-14 1994-06-14 A fabrication method of infrared ray detecting sensor KR0151810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940013298A KR0151810B1 (en) 1994-06-14 1994-06-14 A fabrication method of infrared ray detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940013298A KR0151810B1 (en) 1994-06-14 1994-06-14 A fabrication method of infrared ray detecting sensor

Publications (2)

Publication Number Publication Date
KR960002906A KR960002906A (en) 1996-01-26
KR0151810B1 true KR0151810B1 (en) 1998-10-01

Family

ID=19385209

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940013298A KR0151810B1 (en) 1994-06-14 1994-06-14 A fabrication method of infrared ray detecting sensor

Country Status (1)

Country Link
KR (1) KR0151810B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959754B1 (en) * 2018-02-27 2019-03-19 한국과학기술원 Forming method of sensing film for uncooled type infrared sensor, sensing film formed by the method, manufacturing method of uncooled type infrared sensor and uncooled type infrared sensor manufactured by the method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488302B1 (en) * 2016-08-02 2023-01-13 뉴포트 코포레이션 Multi-junction detector device and method of use
KR102220054B1 (en) * 2019-10-16 2021-02-25 (주)지코빌 Functional towel hanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959754B1 (en) * 2018-02-27 2019-03-19 한국과학기술원 Forming method of sensing film for uncooled type infrared sensor, sensing film formed by the method, manufacturing method of uncooled type infrared sensor and uncooled type infrared sensor manufactured by the method
WO2019168218A1 (en) * 2018-02-27 2019-09-06 한국과학기술원 Method for forming sensing film for uncooled infrared sensor and sensing film for uncooled infrared sensor formed thereby, and method for manufacturing uncooled infrared sensor and infrared sensor manufactured thereby

Also Published As

Publication number Publication date
KR960002906A (en) 1996-01-26

Similar Documents

Publication Publication Date Title
JP2784020B2 (en) Schottky barrier photodiode with groove for infrared detection
AU740862B2 (en) Infrared solid state image sensing device
US5288649A (en) Method for forming uncooled infrared detector
US6025585A (en) Low-resistivity photon-transparent window attached to photo-sensitive silicon detector
CN100449769C (en) CMOS image sensor and method of fabrication
US4783594A (en) Reticular detector array
TWI434402B (en) Improved semiconductor sensor structures with reduced dislocation defect densities and related methods for the same
US6521924B2 (en) Image sensor incorporating therein a capacitor structure and method for the manufacture thereof
US7667178B2 (en) Image sensor, method of manufacturing the same, and method of operating the same
US4100672A (en) Method of preparation of SOS extrinsic infrared detector and read-out device
US5751049A (en) Two-color infrared detector
US5426060A (en) Method of inspecting image sensors
KR0151810B1 (en) A fabrication method of infrared ray detecting sensor
JP3153647B2 (en) Method for manufacturing charge transfer device
US3810796A (en) Method of forming dielectrically isolated silicon diode array vidicon target
US4148052A (en) Radiant energy sensor
KR960001182B1 (en) Solid state image pick-up device
US5641973A (en) Semiconductor piezoelectric photoelectric converting device and imaging device using such semiconductor photoelectric converting device
JPH02166769A (en) Laminated solid state image sensor and manufacture thereof
JPH0570945B2 (en)
JP2000292257A (en) Thermal infrared sensor
KR100709645B1 (en) Radiation hardened visible p-i-n detector
JP2697081B2 (en) Semiconductor light receiving device
JPS5892262A (en) Semiconductor device
JPH07335929A (en) Semiconductor photodetector

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee