KR0151162B1 - Fabricating method for anti reflection layer of solar cell - Google Patents

Fabricating method for anti reflection layer of solar cell

Info

Publication number
KR0151162B1
KR0151162B1 KR1019920009943A KR920009943A KR0151162B1 KR 0151162 B1 KR0151162 B1 KR 0151162B1 KR 1019920009943 A KR1019920009943 A KR 1019920009943A KR 920009943 A KR920009943 A KR 920009943A KR 0151162 B1 KR0151162 B1 KR 0151162B1
Authority
KR
South Korea
Prior art keywords
wafer
spray
solar cell
inches
tio
Prior art date
Application number
KR1019920009943A
Other languages
Korean (ko)
Other versions
KR940001471A (en
Inventor
이규정
김인식
남효진
박철
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019920009943A priority Critical patent/KR0151162B1/en
Publication of KR940001471A publication Critical patent/KR940001471A/en
Application granted granted Critical
Publication of KR0151162B1 publication Critical patent/KR0151162B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지의 반사방지막 형성시, 사용물질을 줄이고 열처리와 동시 스프레이 조건을 달리하면서 스프레이 코팅하므로서 제조공정의 간소화를 비롯한 효율을 향상시킨 반사방지막에 관한 것으로, 단결정 실리콘 웨이퍼를 이용한 태양전지의 반사방지막을 형성함에 있어서, 반사방지막 재료로서 titanium isopropoxide와 n-butyl acetate을 혼합한 용액을 이용하여 예열된 웨이퍼에 스프레이(spray) 코팅시, 상기 용액의 분사압력이 40[psi], 상기 용액을 건(gun)까지 운반해 주는 원료압력(material pressure)이 10[inches water], 웨이퍼가 건(gun)의 한 스트로크(stroke)때마다 전진하는 거리를 나타내는 테이블인덱스(table index)가 1.0[inches/stroke], 스프레이건이 웨이퍼를 횡단하는 속도를 나타내는 트래버스 스피드(traverse speed)를 1-15[inches/sec]로 하여 스프레이 코팅함을 특징으로 하는 반사방지막을 형성한 태양전지의 제조방법에 관한 기술이다.The present invention relates to an anti-reflection film that improves efficiency including simplification of the manufacturing process by spray coating while reducing the use material and varying the heat treatment and simultaneous spray conditions when forming the anti-reflection film of the solar cell. In forming the antireflection film, when spray coating the preheated wafer using a solution containing titanium isopropoxide and n-butyl acetate as an antireflection material, the spray pressure of the solution is 40 [psi] and the solution is The material pressure to deliver to the gun is 10 [inches water], and the table index is 1.0 [inches] which shows the distance the wafer advances with each stroke of the gun. stroke], spray coating with a traverse speed of 1-15 [inches / sec] that represents the speed at which the spray gun traverses the wafer. A description of a manufacturing method of a solar cell by forming an antireflection film that.

Description

태양전지 반사방지막 형성방법Solar cell anti-reflection film formation method

제1도는 본 발명의 태양전지 제조공정도.1 is a solar cell manufacturing process of the present invention.

제2도는 건(gun)높이에 따른 TiO2두께를 나타낸 그래프.2 is a graph showing the TiO 2 thickness according to the gun height.

제3도는 분사압력에 따른 TiO2두께를 나타낸 그래프.3 is a graph showing the TiO 2 thickness according to the injection pressure.

제4도는 원료압력에 따른 TiO2두께를 나타낸 그래프.4 is a graph showing the TiO 2 thickness according to the raw material pressure.

제5도는 Table index에 따른 TiO2두께를 나타낸 그래프.5 is a graph showing the TiO 2 thickness according to the table index.

제6도는 트래버스 스피드에 따른 TiO2두께를 나타낸 그래프.6 is a graph showing the TiO 2 thickness according to the traverse speed.

제7도는 전면전극 그리드 패턴도.7 is a front electrode grid pattern diagram.

제8도는 반사방지막 두께에 따른 단락전류 밀도를 나타낸 그래프.8 is a graph showing the short-circuit current density according to the anti-reflection film thickness.

제9도는 본 발명의 태양전지 구조도.9 is a structural diagram of a solar cell of the present invention.

제10도는 본 발명의 태양전지의 전류-전압특성을 나타낸 그래프.10 is a graph showing the current-voltage characteristics of the solar cell of the present invention.

본 발명은 단결정 실리콘 태양전지에 관한 것으로, 특히 반사방지막 형성시 사용물질을 줄이고 열처리와 동시에 스프레이 코팅함과 함께 스프레이 조건을 최적으로 함으로서 제조공정의 간소화를 비롯한 단락전류 밀도와 효율을 향상시킨 균일한 반사방지막을 얻는데 적합한 태양전지의 제조방법에 관한 것이다.The present invention relates to a single crystal silicon solar cell, and in particular, to reduce the material used in the formation of the anti-reflection film, and to uniformly improve the short-circuit current density and efficiency, including the simplification of the manufacturing process by spraying and optimizing the spray conditions at the same time as the heat treatment. The present invention relates to a method for manufacturing a solar cell suitable for obtaining an antireflection film.

종래의 태양전지 제조(RCA Review, 제41권, 6월호, PP 133-180, 1980)에 있어서는 절단된 (Saw Cut) P형 단결정 실리콘 웨이퍼를 이용하여 에칭한 후 POCL3용액을 이용하여 고온에서 인(Phosphorus)을 도핑 p-n 접합을 형성시킨다.In conventional solar cell manufacturing (RCA Review, Vol. 41, June, pp. 133-180, 1980), etching is performed using a saw cut P-type single crystal silicon wafer, followed by etching at a high temperature using a POCL 3 solution. Phosphorus forms a doped pn junction.

그리고 Ag를 스크린 프린팅하여 전극을 형성시킨 후 스프레이(Spray)방법으로 반사방지막을 형성한다.Ag is then screen printed to form an electrode, and then an anti-reflection film is formed by a spray method.

이때 반사방지막으로서 TiO2막을 입혀주기 위한 재료는 티타늄소스로는 Titanium isopropoxide, 희석용매인 n-butyl acetate, 평평하게 하기 위한 sec-butanol, 균일증착을 위한 2-ethye-1-hexnol을 일정비율 섞어 스프레이한 후 열처리 공정 (70℃, 200℃, 450℃에서 각각 30초씩 열처리)을 거쳐 650-750Å 정도의 두께를 갖는 TiO2막을 형성시키므로서 단락전류와 효율의 향상을 도모하고 있다.At this time, the material for coating TiO 2 film as anti-reflection film is mixed with titanium source with titanium isopropoxide, dilute solvent n-butyl acetate, sec-butanol for flattening and 2-ethye-1-hexnol for uniform deposition. After spraying, a TiO 2 film having a thickness of about 650-750 kPa is formed through a heat treatment process (30 second heat treatment at 70 ° C., 200 ° C., and 450 ° C. for 30 seconds), thereby improving short circuit current and efficiency.

이렇게 하여 얻어진 태양전지는 일종의 다이오드로서 앞면에 태양광이 흡수되면 이광에너지에 의해 전자-정공쌍이 생성되고 이들은 열평형 상태에서 전위 장벽을 중심으로 서로 분리되어 전기를 발생시키는데, 이런 태양전지에 부하를 연결하여 단락전류, 개방전압, 충실도 등을 측정하므로서 이전지의 효율을 알 수 있다.The solar cell thus obtained is a kind of diode, and when the solar light is absorbed on the front side, electron-hole pairs are generated by the two-light energy, and they are separated from each other around the potential barrier in thermal equilibrium to generate electricity. By measuring the short-circuit current, open-circuit voltage, and fidelity, the efficiency of the previous site can be known.

그러나 이때 사용되는 실리콘 웨이퍼는 Saw Cut 된 것으로서 이런 공정이 가능하였으나 실리콘 웨이퍼가 texture 되어 표면이 피라미드 구조를 가지게 되면 이런 공정을 해 줄 수가 없다.However, the silicon wafer used at this time was a saw cut, and this process was possible. However, if the silicon wafer is textured and the surface has a pyramid structure, this process cannot be performed.

왜냐하면 이런 상태에서 TiO2를 먼저 스프레이하고 열처리를 나중에 해주면 피라미드 사이의 골에는 많이 코팅되고 피라미드 꼭대기 부분은 코팅이 되지 않아 웨이퍼 표면에 균일한 코팅이 이루어지지 않기 때문이다.This is because in such a state, TiO 2 is sprayed first and heat treated later, so that the valleys between the pyramids are coated a lot and the tops of the pyramids are not coated.

또한 스프레이후의 열처리 공정에서는 70℃, 200℃, 450℃와 같이 여러 단계의 온도조건에 따라 열처리하여야 하므로 공정이 복잡하고, 반사방지막 원료사용에도 많은 종류의 원료를 혼합 사용하여야 하므로 제조원가의 상승 요인이 되고 있다.In addition, in the heat treatment process after spraying, the process is complicated due to various temperature conditions such as 70 ° C, 200 ° C, and 450 ° C, and the production cost increases because many kinds of raw materials must be mixed and used for the anti-reflection film raw material. It is becoming.

이에 본 발명은 반사방지막 형성을 위한 스프레이시 열처리와 함께 스프레이하고 또한 스프레이 조건을 최적 상태로, 반사방지막 형성 원료도 단순화함으로서 상기의 문제점을 개선하고자 하는데 목적이 있다.Accordingly, an object of the present invention is to improve the above problems by spraying with heat treatment during spraying to form an antireflection film, and optimizing the spray conditions in an optimal state, and also simplifying the antireflection film forming material.

이하 본 발명을 설명한다.Hereinafter, the present invention will be described.

제1도는 본 발명의 제조공정도로서, P형 단결정 실리콘 웨이퍼를 KOH나 NaOH를 이용하여 텍스튜어 에칭(Texture Etching)하고, POCl3용액을 이용하여 확산 열처리하여 전면에 인(P)을 도핑 n+도핑층을 얻은 후 웨이퍼의 전, 후면에 생긴 산화막을 제거한다.First turning the inventive manufacturing process degree, etching Tech seutyueo using a P-type single crystal silicon wafer KOH or NaOH (Texture Etching), and the diffusion heat treatment using the POCl 3 solution of (P) doped n + doping on the front After the layer is obtained, the oxide films formed on the front and back sides of the wafer are removed.

그리고 후면에는 Al을 스크린 프린팅한 후 열처리하여 Al을 웨이퍼의 Si속에 확산시켜서 P+층인 BSF층(Back surface Field)을 형성시키고, Ag를 스크린 프린팅하고 열처리하여 전, 후면에 전극을 형성시킨다.The back surface is printed on Al and heat-treated to diffuse Al into Si on the wafer to form a B + layer (Back surface Field), which is a P + layer, and the Ag is screen printed and heat treated to form electrodes on the front and back.

이어서 반사방지막 코팅(Antireflection Coating)을 한다.Subsequently, antireflection coating is performed.

반사방지막 형성 재질로는 여러 가지 (SiOX, SnOX, Si3N4, Ta2O5, TiO2)가 있으나 양산에 적합한 TiO2를 선택하였다.There are various anti-reflection film forming materials (SiO X , SnO X , Si 3 N 4 , Ta 2 O 5 , TiO 2 ), but TiO 2 was selected for mass production.

이때 TiO2를 얻기 위한 재료로서는 Titanium isopropoxide와 희석 용매인 n-butyl acetate를 적정 비율로 혼합한 용액으로 준비하고, 이를 스프레이 할 때 웨이퍼 온도가 400-450℃로 유지될 수 있게끔 히터(Heater)위에 웨이퍼를 올려놓은 상태에서 상기 용액을 스프레이 한다.At this time, as a material for obtaining TiO 2 , prepare a solution in which titanium isopropoxide and n-butyl acetate, a dilution solvent, are mixed in an appropriate ratio, and when spraying it, the wafer temperature is maintained at 400-450 ° C. on a heater. Spray the solution while the wafer is on.

또한 이때 스프레이의 조건을 웨이퍼로부터 스프레이건(Spray gun)까지의 높이, 스프레이 분사압력, 스프레이 용액을 스프레이건까지 운반해주는 원료압력, 스프레이건의 트래버스 스피드(traverse speed), 스프레이건의 관통구멍 크기 등의 공정 변수를 적용하여 최적의 균일 두께를 갖는 반사방지막을 얻어 단락전류 밀도(Jsc)를 높여 효율을 향상시킨다.In this case, the spray conditions include the height from the wafer to the spray gun, the spray injection pressure, the raw material pressure for conveying the spray solution to the spray gun, the traverse speed of the spray gun, and the through-hole size of the spray gun. Applying the parameters to obtain an antireflection film having an optimal uniform thickness to increase the short-circuit current density (Jsc) to improve the efficiency.

본 기술 분야에서 반사방지막의 기본 이론은, 태양전지 표면에서의 빛 반사를 줄여주고 특정 파장영역의 선택성을 증가시켜 주기 위해서 반사방지막을 형성시켜 주는데, 빛의 반사를 줄이기 위해서는 굴절률이 n1인 반사방지막 재료의 표면에서 반사되는 빛과 굴절률이 n2인 실리콘 표면에서 반사되는 빛이 파괴적 간섭을 일으켜야 한다.The basic theory of the anti-reflection film in the art, a solar cell, reducing the light reflection at the surface juneunde to form an anti-reflection coating to give increased selectivity of a particular wavelength region, which is to reduce the reflection of light, the refractive index n 1 reflection Light reflected from the surface of the barrier material and light reflected from the silicon surface having a refractive index of n 2 should cause destructive interference.

이간섭은일 때 일어나며일 때 완전해진다.Lee Geun-seop Wake up when Perfect when

여기서 d는 반사방지막의 두께이며, λ는 입사파장, n3는 태양 전지들을 모아서 모듈을 제작할 때 쓰이는 encapsuland(ethylene vinyl acetate resin)의 굴절률이다.Where d is the thickness of the anti-reflection film, λ is the incident wavelength, and n 3 is the refractive index of encapsuland (ethylene vinyl acetate resin), which is used to make solar modules.

이때 n3값은 1.5정도이고 n2는 3.2-4.0 정도이므로 n1은 약 2.3-2.4 정도가 적합하다.At this time, n 3 value is about 1.5 and n 2 is about 3.2-4.0, so n 1 is about 2.3-2.4.

선택파장이 6000Å 일 때 파괴 간섭에 의한 반사방지막 두께는 약 650Å정도가 된다.When the selective wavelength is 6000 kHz, the anti-reflection film thickness due to breakdown interference is about 650 kHz.

따라서 반사방지막의 효고를 극대화시키기 위해서는 상기의 조건들을 만족시키는 재료와 최적의 공정변수를 찾아내야 한다.Therefore, in order to maximize the effectiveness of the anti-reflection film, it is necessary to find a material and an optimal process variable that satisfy the above conditions.

이하 실시예를 통하여 설명한다.It will be described through the following examples.

1. 반사방지막 재료 및 히터 온도와의 관계;1. Relationship between antireflection film material and heater temperature;

반사방지막 재료로는 여러 가지가 있으나 양산에 적합하며 아래의 조건을 만족할 수 있는 TiO2를 선택하였다.There are various anti-reflection film materials, but TiO 2 was selected for mass production and satisfying the following conditions.

이때 재료로는 titanium isopropoxide와 희석용매인 n-butyl acetate를 1 : 1 비율로 혼합한 용액으로 하였고, 웨이퍼를 400-450℃로 유지할 수 있도록 히터 위에 올려놓은 상태에서 상기의 TiO2용액을 스프레이 한다.At this time, titanium isopropoxide and n-butyl acetate, which is a diluting solvent, were mixed at a ratio of 1: 1. The TiO 2 solution was sprayed on a heater to maintain the wafer at 400-450 ° C. .

TiO2의 재료로서 100%의 titanium isopropoxide만을 사용한 경우는 공정 변수를 달리하여 650Å 정도의 TiO2막을 입힐 수 있는데 이 titanium isopropoxide는 공기와 오래 접촉하거나 특히 공기중 습기가 많으면 이것과 반응하여 하얀 파우더(powder)가 많이 생기므로 TiO2막에 흰 반점(spot)이 많이 생김과 함께 스프레이건의 노즐이 막히게되므로 희석용매로 n-butyl acetate를 1 : 1 비율로 사용하여 상기문제점을 방지하여 준 것이고, 스프레이 할 때 웨이퍼 온도변화는 400-450℃로서 이 범위를 벗어나면 TiO2막이 균일하지 않거나 반점(spot)들이 발생하므로 상기 온도가 바람직하다.In case of using only 100% titanium isopropoxide as a material of TiO 2 , it is possible to coat about 650Å of TiO 2 film with different process parameters. This titanium isopropoxide reacts with white powder ( Since a lot of powders are generated, many white spots appear on the TiO 2 membrane and the nozzle of the spray gun is clogged. Therefore, the above problem is prevented by using n-butyl acetate in a 1: 1 ratio as a diluting solvent. The wafer temperature change is 400-450 ° C. and outside this range, the temperature is preferable because the TiO 2 film is not uniform or spots are generated.

2. 스프레이 공정변수와 TiO2두께;2. Spray process parameters and TiO 2 thickness;

(가) 스프레이건(spray gun)높이와의 관계: 제2도는 스프레이건 높이와 TiO2의 두께를 나타낸 것으로, 다른 변수들은 고정시키고 건(gun) 높이에 대한 효과만을 나타낸 것인데, 이때 고정된 변수들은 분사압력을 40[psi], 원료압력은 10[inches water], 테이블인덱스(table index)는 1.0[inches/stroke], 트래버스 스피드(traverse speed)는 15[inches/sec]로 하였다.(A) Relation to spray gun height: Figure 2 shows the spray gun height and the thickness of TiO 2 , with the other variables fixed and only the effect on gun height. The injection pressure was 40 [psi], the raw material pressure was 10 [inches water], the table index was 1.0 [inches / stroke], and the traverse speed was 15 [inches / sec].

이에 나타낸 바와 같이 gun의 높이가 높을수록 TiO2두께가 얇아진다. 여기서 제시된 5.5-4인치 정도의 높이에서는 스프레이 된 후의 반사방지 막질의 변화는 차이가 없었다.As shown in the figure, the higher the height of the gun, the thinner the TiO 2 thickness. At the heights of 5.5-4 inches presented here, there was no difference in antireflective film quality after spraying.

(나) 분사압(atomization presure)과의 관계: 제3도는 분사압과 TiO2두께를 나타낸 것으로 gun의 높이는 5.5 인치로 하였고 기타의 고정변수는 상기와 같은 조건으로 하였다(원료압력은 10[inches water], table index는 1.0[inches/stroke], 트래버스 스피드는 15[inches/sec]).(B) Relationship between atomization presure: Figure 3 shows the injection pressure and the thickness of TiO 2. The height of the gun was 5.5 inches and the other fixed parameters were as described above (raw pressure 10 [inches] water], table index is 1.0 [inches / stroke], traverse speed is 15 [inches / sec]).

이에 나타난 바와 같이, 분사압력이 커질수록 TiO2의 두께가 얇아짐을 알 수 있다.As shown in the figure, it can be seen that as the injection pressure increases, the thickness of TiO 2 becomes thinner.

그러나 분사압력이 50[psi]이상 일 때는 압력이 강하므로 히터 위에 올려놓은 웨이퍼가 유동 될 수 있고 20[psi]와 같이 낮으면 TiO2막에 반점들이 생긴다.However, when the injection pressure is higher than 50 [psi], the pressure is strong so that the wafer placed on the heater can flow, and as low as 20 [psi], spots appear on the TiO 2 film.

따라서 30-40[psi] 범위로 함이 바람직하다.Therefore, the range is preferably 30-40 [psi].

(다) 원료압력과의 관계: 제4도는 원료압력변화에 따른 TiO2의 두께 변호를 나탄낸 것으로 이때 적용되는 나머지 고정변수는 상기의 분사압력 적용시와 같은 조건으로 고정하였다.(분사압력은 40[psi]).(C) Relation with raw material pressure: Figure 4 shows the thickness variation of TiO 2 according to the raw material pressure change, and the remaining fixed variables were fixed under the same conditions as the above injection pressure. 40 [psi]).

이에 나타난 바와 같이 원료압력이 작을수록 TiO2의 두께가 얇아짐을 알 수있다.As shown in the figure, the smaller the raw material pressure, the thinner the thickness of TiO 2 .

여기서 원료압력이 너무 작으면 스프레이건의 관통 구멍을 통해 분사되는 TiO2의 양이 일정하지 않아 두께가 일정치 않는다.If the raw material pressure is too small here, the amount of TiO 2 injected through the through hole of the spray gun is not constant and the thickness is not constant.

따라서 낮은 수치에서 스프레이하는 것은 좋지 않다.Therefore, it is not good to spray at low level.

(라) table index와의 관계: 제5도는 table index변화에 따른 TiO2의 두께를 나타낸 것으로 여기서 table index의 단위는 스프레이건이 한번움직일 때(전, 후)마다 기관이 전진하는 거리를 나타내는 [inches/stroke]이다.(D) Relation to table index: Figure 5 shows the thickness of TiO 2 according to the change of the table index, where the unit of the table index represents the distance that the trachea moves forward each time the spray gun moves (before and after). stroke].

이때 적용되는 나머지 고정변수는 상기 분사압 적용시와 같은 조건으로 고정하였다(분사압력은 40[psi]).At this time, the remaining fixed variables were fixed under the same conditions as the injection pressure (injection pressure is 40 [psi]).

이에 나타난 바와 같이 table index가 빠를수록 TiO2의 두께는 얇아진다. 따라서 0.8-1.4[inches/stroke]일 때는 이상이 없으나 이 범우를 벗어나면 TiO2가 불균일하게 코팅되거나 줄무늬가 생긴다.As shown in the figure, the faster the table index, the thinner the thickness of TiO 2 . Therefore, when it is 0.8-1.4 [inches / stroke], there is no problem, but beyond this range, TiO 2 is unevenly coated or streaked.

(마) 트래버스 스피드와의 관계: 제6도는 트래버스 스피드 변화에 따른 TiO2두께를 나타낸 것으로, 여기에서 트래버스 스피트의 단위는 스프레이건이 붙어있는 축(shaft)이 스프레이하면서 웨이퍼를 횡단하는 속도를 나타내는 [inches/sec]이다.(E) Relation to traverse speed: FIG. 6 shows the TiO 2 thickness according to the traverse speed change, where the unit of the traverse speed represents the speed of traversing the wafer while spraying the shaft attached to the spray gun [ inches / sec].

여기에서 적용되는 나머지 고정변수는 상기 분사압 적용시와 같은 조건으로 고정하였다.The rest of the fixed variables applied here were fixed under the same conditions as when the injection pressure was applied.

이에 나타난 바와 같이 트래버스 스피드가 빠를수록 TiO2두께는 얇아진다.As shown, the faster the traverse speed, the thinner the TiO 2 thickness.

이때 트래버스 스피드도 table index에서와 같이 너무 빠르거나 느리면 TiO2가 균일하게 코팅되지 않거나 줄무늬가 나타나므로 트래버스 스피드의 완급은 table index와 조화를 이루게 하여야 한다.At this time, if the traverse speed is too fast or slow as in the table index, TiO 2 is not uniformly coated or streaked. Therefore, the completion of the traverse speed should be harmonized with the table index.

그러나 10[inches/sec]이하의 속도에서는 table index와 원만한 조합이 어려우므로 좋지 않다.However, at speeds of 10 [inches / sec] and below, table indexes and smooth combinations are difficult, which is not good.

(바) 스프레이건의 관통구멍 크기와의 관계: 스프레이 관통직경이 0.011-0.015인치의 것을 사용한 결과 TiO2의 두께 변화가 심하지는 않았으나, 이보다 작으면 gun의 구멍이 잘막히고, 이보다 너무 크면 코팅된 TiO2의 막질이 육안으로 보기에도 입자 크기가 너무 커보이므로 바람직하지 않다.(F) The relation between the spray guns through-hole size: diameter of the spray through the results using the 0.011-0.015 inchi although the change in thickness of TiO 2 simhajineun, is smaller than the hole in the gun well blocked, too large coating than TiO 2 It is not preferable because the particle size seems too large for the naked eye to see.

이상에서 나타난 바와 같이 본 발명은 gun 높이를 5.5-4.0[inch], 분사압력을 40-30[psi], 원료압력을 15-10[inches water], table index를 1.2-1.0[inches/stroke], 트래버스 스피드를 18-15[inches/sec]로 함에 따라 균일한 두께의 TiO2막을 얻을 수 있었으며 이에 따른 TiO2막을 ellipsometer로 측정한 결과 굴절률(n1)이 2.3-2.4를 나타내어 반사방지막의 조건을 충족시켰고, Auger electron spectroscopy로 반사방지막 구조를 분석한 결과 비정질 상태의 TiOx구조로서 X값은 2를 나타내었다.As shown above, the present invention has a gun height of 5.5-4.0 [inch], injection pressure of 40-30 [psi], raw material pressure of 15-10 [inches water], and table index of 1.2-1.0 [inches / stroke]. , TiO 2 film with uniform thickness was obtained by setting traverse speed to 18-15 [inches / sec]. As a result of measuring TiO 2 film by ellipsometer, refractive index (n 1 ) was 2.3-2.4 The antireflection film structure was analyzed by Auger electron spectroscopy, and the X value was 2 as TiO x structure in the amorphous state.

(사) 태양전지 제작공정은 결정방위가 (100)이고, 비저항이 4-5[Ω-㎝]이며, 두께가 400[μm]인 10[㎝]×10[㎝]의 P형 단결정 실리콘 웨이퍼를 이용하였다.The solar cell manufacturing process is a P-type single crystal silicon wafer having a crystal orientation of (100), a resistivity of 4-5 [Ω-cm], and a thickness of 400 [μm] of 10 [cm] x 10 [cm]. Was used.

그리고 그리드 패턴으로서 제7도와 같이 전체 태양전지(1) 크기는 10[㎝]×10[㎝]로서 모서리가 라운딩(rounding)되어 있어 전체면적이 97.85[㎠]이고, 굵은 그리드핑거(2)와 얇은 그리드핑거(3)로 전면전극은 전체 전극면적이 태양전지 면적의 약 8.5%로 설계하였다(후면 전극은 도시를 생략함).The size of the entire solar cell 1 is 10 [cm] × 10 [cm] as the grid pattern, and the rounded corners are rounded. The total area is 97.85 [cm 2], and the thick grid finger 2 A thin grid finger (3), the front electrode is designed to approximately 8.5% of the total solar cell area (the rear electrode is not shown).

이와 같은 공정을 위한 스크린 프린팅 방법의 메쉬사이즈(maesh size) 패턴은 200으로 하였다.The mesh size pattern of the screen printing method for such a process was set to 200.

제1도에 따라 본 발명의 제조공정이 실시되는데, KOH로서 texture 표면을 만들고, POCl3를 이용하여 880℃에서 30분간 인(P) 확산 공정을 거쳐 면저항이 25[Ω/□]인 p-n 접합을 형성시킨다.According to FIG. 1, a manufacturing process of the present invention is carried out. A texture surface is formed as KOH, and a pn junction having a sheet resistance of 25 [Ω / □] is obtained through a phosphorus diffusion process at 880 ° C. for 30 minutes using POCl 3 . To form.

이 공정 후에 전, 후면에 있는 산화막을 제거하고 세척한 후 Al Paste를 이용하여 약 50[μm]의 두께로 적외선로를 이용 750℃ 하에서 벨트속도(belt speed)를 10[inch/min]로 하여 열처리함으로서 P+BSF(back surface field)를 형성하였다.After this process, remove the oxide film on the front and back and wash it, and then use Al Paste to make a belt speed of 10 [inch / min] under 750 ℃ using an infrared furnace with a thickness of about 50 [μm]. The heat treatment formed a P + back surface field (BSF).

그리고 Ag pate를 이용하여 650℃에서 17.5[inch/min] 이동속도로 열처리하여 전, 후면 전극을 형성후 반사방지막 공정에 들어간다.Ag pate is then heat treated at 650 ° C. at a speed of 17.5 [inch / min] to form the front and rear electrodes and then enter the anti-reflection film process.

이때 반사방지막을 얻기 위한 스프레이의 공정변수는 상기와 같은 조건을 이용하여 TiO2두께를 450, 550, 650, 750, 850Å로 변화시켜 그 효과를 관찰하였다.At this time, the process parameters of the spray to obtain the anti-reflection film was observed by changing the TiO 2 thickness to 450, 550, 650, 750, 850Å using the conditions described above.

반사방지막 두께만의 변화를 보기 위해 그 전단계까지 제조된 태양전지 중에서 단락전류밀도(Jsc), 개방전압(Voc), 충실도(FF)가 거의 비슷한 전지들을 선택하여 여기에 반사방지막을 형성해주고 100[mw/㎤]의 인공조명 아래에서 25℃의 온도를 유지하면서 측정, 비교하였든바 제8도와 같이 나타났다.In order to see only the thickness of the anti-reflection film, the solar cells manufactured up to the previous stage were selected to have almost the same short-circuit current density (Jsc), open voltage (Voc), and fidelity (FF). mw / cm 3] was measured and compared while maintaining a temperature of 25 ℃ under artificial light as shown in FIG.

제8도는 반사방지막의 두께 변화에 따른 단락전류 밀도의 변화를 나타낸 것인데, 여기서 단락전류 밀도의 변화만을 나타낸 것은 반사방지막 형성후에 개방전압과 충실도의 변화는 거의 없었고 단락전류 밀도의 변화는 컸기 때문이다,FIG. 8 shows the change in short circuit current density according to the thickness change of the antireflection film, because only the change in the short circuit current density is due to the small change in the open voltage and fidelity after the formation of the antireflection film, and the change in the short circuit current density is large. ,

이에 나타난 바와 같이 반사방지막의 두께 650-750[Å] 정도에서 단락전류 밀도가 18%정도 증대되어 효율이 향상되었음을 알 수 있다.As shown in the figure, the short-circuit current density was increased by about 18% at the thickness of the anti-reflection film of about 650-750 [Å], indicating that the efficiency was improved.

제9도는 본 발명에 의해 제조된 태양전지의 구조도로서, p형기기판(4) 상,하 전면에 n+형 영역과 p+영역(p+BSF), 전면전극(5)과 후면전극(6), 반사방지막(7)이 형성되어 이루어진다.FIG. 9 is a structural diagram of a solar cell manufactured by the present invention, wherein n + type regions and p + regions (p + BSF) on the front and bottom surfaces of the p-type substrate 4, the front electrode 5 and the rear electrode 6 ), An antireflection film 7 is formed.

제10도는 본 발명의 태양전지 개방전압(Voc)-단락전류 특성을 나타낸 것으로 단락전류 밀도(Jsc)=36.89[mA/㎠], 개방전압=612[mV], 충실도(FF)=0.73, 효율(Eff)=16.48% 정도로서 종래보다 향상된 것이다.Figure 10 shows the solar cell open voltage (Voc) -short current characteristics of the present invention, the short-circuit current density (Jsc) = 36.89 [mA / ㎠], the open voltage = 612 [mV], fidelity (FF) = 0.13, efficiency (Eff) = 16.48%, an improvement over the prior art.

이상에서와 같이 본 발명은 반사방지막 형성시 여러 가지 종류의 원료를 혼합 사용한 것을 2가지 단순화하였고, 열처리와 동시에 스프레이 함과 함께 스프레이 공정변수를 최적으로 하므로서 균일한 TiO2코팅에 따라 향상된 효율을 갖는 반사방지막을 얻게된다.As described above, the present invention simplifies the use of various kinds of raw materials when forming the anti-reflection film, and has improved efficiency according to the uniform TiO 2 coating by optimizing the spray process parameters while spraying simultaneously with heat treatment. You get an antireflection film.

따라서 이렇게 제조하여서된 태양전지는 지상용 전력공급 전원으로 유효하게 사용될 수 있다.Therefore, the manufactured solar cell can be effectively used as a ground power supply.

Claims (4)

Titanium isopropoxid와 희석용액인 n-butyl acetate를 혼합하는 단계; 상기 혼합용액을 예열시킨 웨이퍼에 스프레이건으로 분사하면서 열처리 하는 단게를 포함하는 태양전지 반사방지막 형성방법.Mixing titanium isopropoxid and n-butyl acetate as a dilution solution; A method of forming a solar cell anti-reflection film comprising the step of heat treatment while spraying the mixed solution to the preheated wafer with a spray gun. 제1항에 있어서, 상기 Titanium isopropoxid 와 n-butyl acetate 혼합용액의 혼합비율을 1:1로 하여 분사하는 태양전지 반사방지막 형성방법.The method of claim 1, wherein the mixing ratio of the titanium isopropoxid and the n-butyl acetate mixed solution is 1: 1. 제1항에 있어서, 웨이퍼의 가열온도를 400∼450℃로 하여 열처리 하는 태양전지 반사방지막 형성방법.The method of forming a solar cell antireflection film according to claim 1, wherein the wafer is heat-treated at a heating temperature of 400 to 450 캜. 제1항에 있어서, 상기 혼합용액을 웨이퍼에 분사할 때 스프레이건의 높이를 5.5∼4.0[inch], 상기 용액의 분사압력을 40∼30[psi], 상기 용액을 스프레이건까지 운반해 주는 원료압력을 15∼10[inches water], 웨이퍼가 한 스트로크마다 전진하는 거리를 나타내는 테이블 인덱스를 1.2∼1.0[inches/stroke], 스프레이건이 웨이퍼를 횡단하는 속도를 나타내는 트래버스 스피드를 18∼15[inches/sec], 스프레이건의 관통구멍의 직경을 0.011∼0.015[inch]로 하여 스프레이 코팅함을 특징으로 하는 태양전지 반사방지막 형성방법.The raw material pressure of claim 1, wherein the spray gun has a height of 5.5 to 4.0 [inch], a spray pressure of 40 to 30 [psi], and the solution to the spray gun when the mixed solution is sprayed onto the wafer. 15 to 10 [inches water], 1.2 to 1.0 [inches / stroke] table index for the distance the wafer advances per stroke, and 18 to 15 [inches / sec for the speed at which the spray gun traverses the wafer. And spray coating with a diameter of the through-hole of the spray gun being 0.011 to 0.015 [inch].
KR1019920009943A 1992-06-09 1992-06-09 Fabricating method for anti reflection layer of solar cell KR0151162B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920009943A KR0151162B1 (en) 1992-06-09 1992-06-09 Fabricating method for anti reflection layer of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920009943A KR0151162B1 (en) 1992-06-09 1992-06-09 Fabricating method for anti reflection layer of solar cell

Publications (2)

Publication Number Publication Date
KR940001471A KR940001471A (en) 1994-01-11
KR0151162B1 true KR0151162B1 (en) 1998-10-01

Family

ID=19334379

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920009943A KR0151162B1 (en) 1992-06-09 1992-06-09 Fabricating method for anti reflection layer of solar cell

Country Status (1)

Country Link
KR (1) KR0151162B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950930B1 (en) * 2009-05-22 2010-04-01 동국대학교 산학협력단 Apparatus and method for anti-reflective layer onto solar cell
KR100977330B1 (en) * 2007-03-29 2010-08-20 어플라이드 머티어리얼스, 인코포레이티드 Method for producing an anti-reflection or passivation layer for solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100977330B1 (en) * 2007-03-29 2010-08-20 어플라이드 머티어리얼스, 인코포레이티드 Method for producing an anti-reflection or passivation layer for solar cells
KR100950930B1 (en) * 2009-05-22 2010-04-01 동국대학교 산학협력단 Apparatus and method for anti-reflective layer onto solar cell
WO2010134673A1 (en) * 2009-05-22 2010-11-25 동국대학교 산학협력단 Apparatus and method for fabricating anti-reflection film of solar battery cell

Also Published As

Publication number Publication date
KR940001471A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
US4366335A (en) Indium oxide/n-silicon heterojunction solar cells
US6331672B1 (en) Photovoltaic cell and method for manufacturing the same
EP0654831A2 (en) Method of manufacturing solar cell
CN113809205B (en) Preparation method of solar cell
JP2003179241A (en) Thin film solar cell
JPH07297429A (en) Solar battery cell and its manufacture
KR100677374B1 (en) Manufacturing method of porous solar cells using thin silicon wafer
KR20090007063A (en) Solar cell and preparing method thereof
KR20070099840A (en) Solar cell and manufacturing method of the same
JPS629238B2 (en)
CN103354954A (en) Method for producing silicon solar cells having a front-sided texture and a smooth rear side surface
JPS62156881A (en) Solar battery device
KR0151162B1 (en) Fabricating method for anti reflection layer of solar cell
JP3078936B2 (en) Solar cell
RU2139601C1 (en) METHOD FOR MANUFACTURING n+-p-p+ STRUCTURE SOLAR CELL
KR102405082B1 (en) Method For Manufacturing Electrode Of Solar Cell Using Conductive Paste For Low Temperature Firing
KR950003953B1 (en) Manufactuirn method of solar cell
CN114188429B (en) Homogeneous heterojunction battery with tunneling tunnel junction and preparation method thereof
KR950003954B1 (en) Solar cell and manufacturing method thereof
JPH03125481A (en) Photovoltaic device
CN102709378A (en) Preparation method of selective emitting electrode crystalline silicon solar battery
Garcia et al. Preparation of (thin film SnO2)/(textured n-Si) solar cells by spray pyrolysis
US4436765A (en) Method for forming indium oxide/n-silicon heterojunction solar cells
KR950003951B1 (en) Manufacturing method of solar cell
JPH1070293A (en) Solar cell and fabrication thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110328

Year of fee payment: 14

EXPY Expiration of term